# Sparse Signal Recovery: Theory, Applications and Algorithms

Bhaskar Rao
Department of Electrical and Computer Engineering
University of California, San Diego

Collaborators: I. Gorodonitsky, S. Cotter, D. Wipf, J. Palmer, K. Kreutz-Delgado

Acknowledgement: Travel support provided by Office of Naval Research Global under Grant Number: N62909-09-1-1024. The

research was supported by several grants from the National Science Foundation, most recently CCF - 0830612



#### Outline

- Talk Objective
- Sparse Signal Recovery Problem
- 3 Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

#### Outline

- Talk Objective
- 2 Sparse Signal Recovery Problem
- Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

## Importance of Problem

Organized with Prof. Bresler a Special Session at the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing

#### SPEC-DSP: SIGNAL PROCESSING WITH SPARSENESS CONSTRAINT

| ignal Processing with the Sparseness Constraint                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| pplication of Basis Pursuit in Spectrum Estimation                                                                                                                                                   |  |
| arsimony and Wavelet Method for Denoising                                                                                                                                                            |  |
| arsimonious Side Propagation                                                                                                                                                                         |  |
| ast Optimal and Suboptimal Algorithms for Sparse Solutions to Linear Inverse Problems<br>Tharikumar (Tellabs Research, USA); C. Couvreur, Y. Bresler (University of Illinois, Urbana-Champaign, USA) |  |
| feasures and Algorithms for Best Basis Selection       III-1881         f. Kreutz-Delgado, B. Rao (University of California, San Diego, USA)                                                         |  |
| parse Inverse Solution Methods for Signal and Image Processing Applications                                                                                                                          |  |
| mage Denoising Using Multiple Compaction Domains                                                                                                                                                     |  |

#### Talk Goals

- Sparse Signal Recovery is an interesting area with many potential applications
- Tools developed for solving the Sparse Signal Recovery problem are useful for signal processing practitioners to know

#### Outline

- Talk Objective
- Sparse Signal Recovery Problem
- Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

## Problem Description



- t is tv × 1 illeasurement vector
- $\Phi$  is  $N \times M$  Dictionary matrix. M >> N.
- w is  $M \times 1$  desired vector which is sparse with K non-zero entries
- ullet is the additive noise modeled as additive white Gaussian

#### Problem Statement

**Noise Free Case**: Given a target signal t and a dictionary  $\Phi$ , find the weights w that solve:

$$\min_{w} \sum_{i=1}^{M} I(w_i \neq 0)$$
 such that  $t = \Phi w$ 

where I(.) is the indicator function

**Noisy Case**: Given a target signal t and a dictionary  $\Phi$ , find the weights w that solve:

$$\min_{w} \sum_{i=1}^{M} I(w_i \neq 0) \text{ such that } ||t - \Phi w||_2^2 \leq \beta$$

## Complexity

- Search over all possible subsets, which would mean a search over a total of  $({}^MC_K)$  subsets. Problem NP hard. With M=30, N=20, and K=10 there are  $3\times 10^7$  subsets (Very Complex)
- A branch and bound algorithm can be used to find the optimal solution. The space of subsets searched is pruned but the search may still be very complex.
- Indicator function not continuous and so not amenable to standard optimization tools.

**Challenge**: Find low complexity methods with acceptable performance

#### Outline

- Talk Objective
- Sparse Signal Recovery Problem
- 3 Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

## **Applications**

- Signal Representation (Mallat, Coifman, Wickerhauser, Donoho, ...)
- EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...)
- Functional Approximation and Neural Networks (Chen, Natarajan, Cun, Hassibi, ...)
- Bandlimited extrapolations and spectral estimation (Papoulis, Lee, Cabrera, Parks, ...)
- Speech Coding (Ozawa, Ono, Kroon, Atal, ...)
- Sparse channel equalization (Fevrier, Greenstein, Proakis, )
- Compressive Sampling (Donoho, Candes, Tao..)

## DFT Example

N chosen to be 64 in this example.

#### Measurement t:

$$t[n] = \cos \omega_0 n, n = 0, 1, 2, ..., N - 1$$
  
 $\omega_0 = \frac{2\pi}{64} \frac{33}{2}$ 

#### **Dictionary Elements:**

$$\phi_k = [1, e^{-j\omega_k}, e^{-j2\omega_k}, ..., e^{-j(N-1)\omega_k}]^T, \omega_k = \frac{2\pi}{M}$$

Consider M = 64, 128, 256 and 512

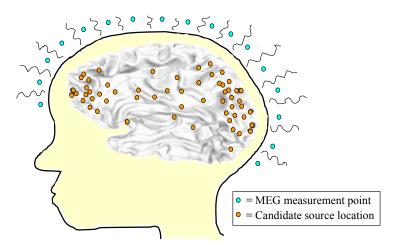
NOTE: The frequency components are included in the dictionary  $\Phi$  for M=128,256, and 512.

### FFT Results with Different M



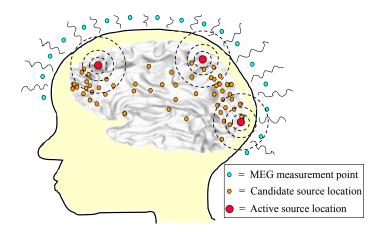
# Magnetoencephalography (MEG)

Given measured magnetic fields outside of the head, the goal is to locate the responsible current sources inside the head.



# MEG Example

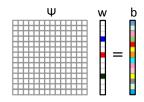
At any given time, typically only a few sources are active (SPARSE).



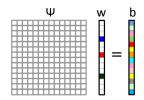
#### **MEG** Formulation

- Forming the overcomplete dictionary Φ
  - The number of rows equals the number of sensors.
  - The number of columns equals the number of possible source locations.
  - Φ<sub>ij</sub> = the magnetic field measured at sensor i produced by a unit current at location j.
  - ullet We can compute  $\Phi$  using a boundary element brain model and Maxwells equations.
- Many different combinations of current sources can produce the same observed magnetic field t.
- By finding the sparsest signal representation/basis, we find the smallest number of sources capable of producing the observed field.
- Such a representation is of neurophysiological significance

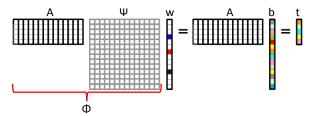
#### Transform Coding



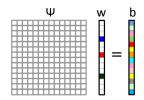
#### Transform Coding



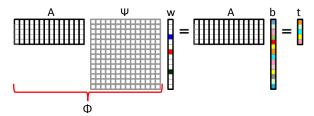
#### Compressive Sensing



#### Transform Coding



#### Compressive Sensing



Computation :  $t \rightarrow w \rightarrow b$ 

#### Outline

- Talk Objective
- 2 Sparse Signal Recovery Problem
- 3 Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

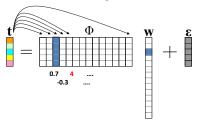
## Potential Approaches

#### Problem NP hard and so need alternate strategies

- Greedy Search Techniques: Matching Pursuit, Orthogonal Matching Pursuit
- Minimizing Diversity Measures: Indicator function not continuous. Define Surrogate Cost functions that are more tractable and whose minimization leads to sparse solutions, e.g.  $\ell_1$  minimization
- Bayesian Methods: Make appropriate Statistical assumptions on the solution and apply estimation techniques to identify the desired sparse solution

## Greedy Search Methods: Matching Pursuit

Select a column that is most aligned with the current residual



- Remove its contribution
- Stop when residual becomes small enough or if we have exceeded some sparsity threshold.
- Some Variations
  - Matching Pursuit [Mallat & Zhang]
  - Orthogonal Matching Pursuit [Pati et al.]
  - Order Recursive Matching Pursuit (ORMP)



### Inverse techniques

For the systems of equations  $\Phi w = t$ , the solution set is characterized by  $\{w_s : w_s = \Phi^+ t + v, v \in \mathcal{N}(\Phi)\}$ , where  $\mathcal{N}(\Phi)$  denotes the null space of  $\Phi$  and  $\Phi^+ = \Phi^T(\Phi\Phi^T)^{-1}$ .

Minimum Norm solution : The minimum  $\ell_2$  norm solution  $w_{mn} = \Phi^+ t$  is a popular solution

Noisy Case: regularized  $\ell_2$  norm solution often employed and is given by

$$w_{reg} = \Phi^{T} (\Phi \Phi^{T} + \lambda I)^{-1} t$$

Problem: Solution is not Sparse

## Diversity Measures

- Functionals whose minimization leads to sparse solutions
- Many examples are found in the fields of economics, social science and information theory
- These functionals are concave which leads to difficult optimization problems

## **Examples of Diversity Measures**

#### $\ell_{(p \le 1)}$ Diversity Measure

$$E^{(p)}(w) = \sum_{l=1}^{M} |w_l|^p, p \le 1$$

#### Gaussian Entropy

$$H_G(w) = \sum_{l=1}^M \ln|w_l|^2$$

#### Shannon Entropy

$$H_S(w) = -\sum_{l=1}^M \widetilde{w}_l \ln \widetilde{w}_l$$
. where  $\widetilde{w}_l = \frac{w_l^2}{\|w\|^2}$ 

### **Diversity Minimization**

#### Noiseless Case

$$\min_{w} E^{(p)}(w) = \sum_{l=1}^{M} |w_l|^p \text{ subject to } \Phi w = t$$

#### Noisy Case

$$\min_{w} \left( \|t - \Phi w\|^2 + \lambda \sum_{l=1}^{M} |w_l|^p \right)$$

p=1 is a very popular choice because of the convex nature of the optimization problem (Basis Pursuit and Lasso).

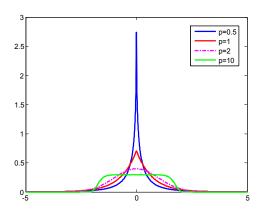
## Bayesian Methods

- Maximum Aposteriori Approach (MAP)
  - Assume a sparsity inducing prior on the latent variable w
  - Develop an appropriate MAP estimation algorithm
- Empirical Bayes
  - Assume a parameterized prior on the latent variable w (hyperparameters)
  - Marginalize over the latent variable w and estimate the hyperparameters
  - Determine the posterior distribution of w and obtain a point as the mean, mode or median of this density

#### Generalized Gaussian Distribution

Density function: Subgaussian: p > 2 and Supergaussian: p < 2

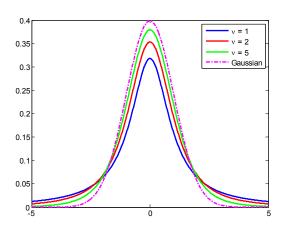
$$f(x) = \frac{p}{2\sigma\Gamma(\frac{1}{p})} \exp\left\{ \left| -\left(\frac{|x|}{\sigma}\right)^p \right\} \right\}$$



#### Student t Distribution

Density function:

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{\left(\frac{\nu+1}{2}\right)}$$



## MAP using a Supergaussian prior

Assuming a Gaussian likelihood model for f(t|w), we can find MAP weight estimates

$$w_{MAP} = \arg \max_{w} \log f(w|t)$$

$$= \arg \max_{w} (\log f(t|w) + \log f(w))$$

$$= \arg \min_{w} \left( \|\Phi w - t\|^2 + \lambda \sum_{l=1}^{M} |w_l|^p \right)$$

This is essentially a regularized LS framework. Interesting range for p is  $p \le 1$ .

# MAP Estimate: FOCal Underdetermined System Solver (FOCUSS)

Approach involves solving a sequence of Regularized Weighted Minimum Norm problems

$$q_{k+1} = \arg\min_{q} \left( \|\Phi_{k+1}q - t\|^2 + \lambda \|q\|^2 \right)$$

where  $\Phi_{k+1} = \Phi M_{k+1}$ , and  $M_{k+1} = \text{diag}(|w_{k,l}|^{1-\frac{p}{2}}$ .

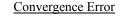
$$w_{k+1} = M_{k+1}q_{k+1}$$
.

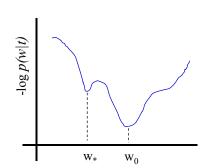
p=0 is the  $\ell_0$  minimization and p=1 is  $\ell_1$  minimization

## FOCUSS summary

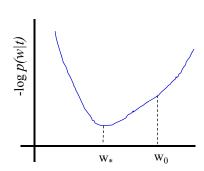
- For p < 1, the solution is initial condition dependent
  - Prior knowledge can be incorporated
  - Minimum norm is a suitable choice
  - Can retry with several initial conditions
- Computationally more complex than Matching Pursuit algorithms
- Sparsity versus tolerance tradeoff more involved
- Factor p allows a trade-off between the speed of convergence and the sparsity obtained

## Convergence Errors vs. Structural Errors





#### Structural Error



 $w_* =$ solution we have converged to

 $w_0 = maximally sparse solution$ 

## Shortcomings of these Methods

$$p = 1$$

- Basis Pursuit/Lasso often suffer from structural errors.
- Therefore, regardless of initialization, we may never find the best solution.

#### p < 1

- The FOCUSS class of algorithms suffers from numerous suboptimal local minima and therefore convergence errors.
- In the low noise limit, the number of local minima K satisfies

$$K \in \left[\left(egin{array}{c} M-1 \ N \end{array}
ight) + 1, \left(egin{array}{c} M \ N \end{array}
ight)
ight]$$

• At most local minima, the number of nonzero coefficients is equal to *N*, the number of rows in the dictionary.



## Empirical Bayesian Method

#### Main Steps

- Parameterized prior  $f(w|\gamma)$
- Marginalize

$$f(t|\gamma) = \int f(t, w|\gamma)dw = \int f(t|w)f(w|\gamma)dw$$

- ullet Estimate the hyperparameter  $\hat{\gamma}$
- Determine the posterior density of the latent variable  $f(w|t,\hat{\gamma})$
- Obtain point estimate of w

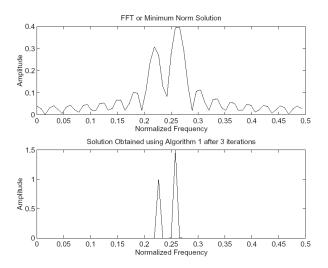
Example: Sparse Bayesian Learning (SBL by Tipping)



#### Outline

- Talk Objective
- 2 Sparse Signal Recovery Problem
- Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

## **DFT** Example



## **Empirical Tests**

- Random overcomplete bases  $\Phi$  and sparse weight vectors  $w_0$  were generated and used to create target signals t, i.e.,  $t = \Phi w_0 + \epsilon$
- SBL (Empirical Bayes) was compared with Basis Pursuit and FOCUSS (with various p values) in the task of recovering  $w_0$ .

## Experiment 1: Comparison with Noiseless Data

- Randomized  $\Phi$  (20 rows by 40 columns).
- Diversity of the true  $w_0$  is 7.
- Results are from 1000 independent trials.

NOTE: An error occurs whenever an algorithm converges to a solution w not equal to  $w_0$ .

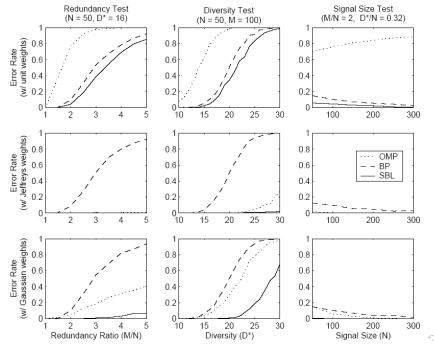
|                                         | FOCUSS $(p = 0.001)$ | FOCUSS $(p = 0.9)$ | Basis Pursuit $(p = 1.0)$ | SBL          |
|-----------------------------------------|----------------------|--------------------|---------------------------|--------------|
| Convergence Errors<br>Structural Errors | 34.1%<br>0.0%        | 18.1%<br>5.7%      | 0.0%<br>22.3%             | 7.4%<br>0.0% |
| Total Errors                            | 34.1%                | 23.8%              | 22.3%                     | 7.4%         |

## Experiment II: Comparison with Noisy Data

- Randomized  $\Phi$  (20 rows by 40 columns).
- Diversity of the true  $w_0$  is 7.
- 20 db AWGN
- Results are from 1000 independent trials.

NOTE: We no longer distinguish convergence errors from structural errors.

|              | FOCUSS $(p = 0.001)$ | FOCUSS $(p = 0.9)$ | Basis Pursuit $(p = 1.0)$ | SBL   |
|--------------|----------------------|--------------------|---------------------------|-------|
| Total Errors | 52.2%                | 43.1%              | 45.5%                     | 21.1% |



## MEG Example

- Data based on CTF MEG system at UCSF with 275 scalp sensors.
- Forward model based on 40,000 points (vertices of a triangular grid) and 3 different scale factors.
- Dimensions of lead field matrix (dictionary): 275 by 120,000.
- Overcompleteness ratio approximately 436.
- Up to 40 unknown dipole components were randomly placed throughout the sample space.
- SBL was able to resolve roughly twice as many dipoles as the next best method (Ramirez 2005).

#### Outline

- Talk Objective
- Sparse Signal Recovery Problem
- Applications
- 4 Computational Algorithms
- Performance Evaluation
- 6 Conclusion

## Summary

- Discussed role of sparseness in linear inverse problems
- Discussed Applications of Sparsity
- Discussed methods for computing sparse solutions
  - Matching Pursuit Algorithms
  - MAP methods (FOCUSS Algorithm and  $\ell_1$  minimization)
  - Empirical Bayes (Sparse Bayesian Learning (SBL))

Expectation is that there will be continued growth in the application domain as well as in the algorithm development.