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ABSTRACT

This paper describes algorithms for computing sparse solu-
tions to linear inverse problems when there are multiple measure-
ment vectors. Extensions to the forward sequential basis selection
methods (such as the matching pursuit and order recursive match-
ing methods) are developed for this purpose. In addition, new di-
versity measures are defined, and algorithms are developed to min-
imize them and obtain sparse solutions. The resulting algorithms
are an extension of the FOCUSS class of algorithms. Computer
simulations are provided to support the methods.

1. INTRODUCTION

The problem of computing sparse solutions to linear inverse prob-
lems has received attention because of its application to signal rep-
resentation, signal reconstruction, signal coding etc. Both sequen-
tial and parallel methods have been developed to deal with this
problem [1, 2, 3, 4, 5, 6, 7]. We consider an important variation of
this problem, namely that of computing sparse solutions to linear
inverse problems when there aremultiple measurementvectors
(MMV). This formulation was initially motivated by the need to
solve the neuromagnetic inverse problems that arises in Magne-
toencephalography (MEG), a modality for imaging the brain [8].
However, the framework is quite general and the algorithms devel-
oped have applications in signal representation, signal reconstruc-
tion, and array processing, among others. Because of the intimate
connection between the problem of computing sparse solutions to
linear inverse problems and the best basis selection problem, the
methods developed also extend the best basis selection framework.

2. PROBLEM FORMULATION

Mathematically, the MMV problem can be stated as solving the
following system of equations [9].

Ax(l) = b(l); l = 1; ::; L; or AX = B; (1)

whereX = [x(1); ::; x(L)], andB = [b(1); ::; b(L)]. L is the num-
ber of measurement vectors and is usually assumed to be much
less thanm. Past work has mainly dealt with the problem of one
measurement vector, i.e.L = 1. Here we concentrate on the case
whenL � 1 with b(l) denoting thelth measurement vector, and
x(l) the corresponding solution.A is am � n matrix which is
known and obtained using the physics of the problem. It is also
assumed thatm << n and rank(A) = m.

There are many solutions to (1), and the desired solution is
characterized by two distinct and important features.

1. The solution vectorsx(l) are sparse, i.e. most of the en-
tries are zero. This requirement is the same as that imposed
in the single measurement vector case. Often, the sparsest
solution will be of interest.

2. The solution vectorsx(l) are assumed to have a common
sparsity profile, i.e. the indices of the nonzero entries are
independent ofl: This requirement provides the coupling
between the vectors and is the source of the additional com-
plexity.

Some results concerning the theoretical uniqueness of such sparse
solutions can be found in [10, 9]. Based on the results related
to the problem of using a single measurement vector it is clear
that an approach based on a exhaustive search strategy is com-
putationally infeasible calling for simpler and yet reliable tech-
niques. The advantage of having more measurement vectors is the
enhanced ability to find sparse solutions having the correct sparsity
profile through suboptimal techniques and potential robustness in
the presence of noise. To address this problem, we extend both
the basis pursuit methodology and methods based on minimizing
diversity measures [11, 12].

3. FORWARD SEQUENTIAL SELECTION METHODS

The methods described in this section find a sparse solution by se-
lecting a small subset of columns vectors fromA to best represent
B. Selection of a column corresponds to selecting a nonzero row
of X. The vectors are selected sequentially, i.e. the basis set is
built up one vector at a time. The variants differ mainly in the
criteria used to select a column vector, and result in methods of
differing complexity and ability to select a compact basis set.

To facilitate the presentation, we first develop some notation.
The residual vector after thepth iteration is denoted byBp, with
B0 = B. The lth column ofBp is denoted byb(l)p . The indices
of thep vectors selected are stored in the index set denoted byIp;
whereIp = fk1; k2; ::; kpg, I0 = ;, and the vectors themselves
are stored as columns in the matrixSp; i.e.Sp =

�
ak1 ; ak2 ; :::; akp

�
,

S0 = ;. The orthogonal projection matrix onto the range space
of Sp is denoted byPSp and its orthogonal complementP?Sp =�
I � PSp

�
, PS0 = 0, P?S0 = I. Without loss of generality, it is

assumed that the columns of the matrixA are of unit norm.



3.1. The MMV Basic Matching Pursuit (M-BMP)

This method is an extension of the matching pursuit approach sug-
gested in [1, 13]. In this selection method, in thepth iteration
the vector most closely aligned with the residualBp�1 is cho-
sen. This is accomplished by examining the residualEp;k =
P?akBp�1, wherePak = aka

H

k
is the projection matrix onto the

space spanned by the vectorak, and selecting a column vector
fromA that minimizes the Frobenius norm of the error the most.

kEp;kk
2
F = tr(EH

p;kEp;k) = tr(BH

p�1P
?
ak
Bp�1)

= kBp�1k
2
F � tr(BH

p�1PakBp�1):

The minimization is achieved by maximizing the second term,
tr(BH

p�1PakBp�1), in the above expression. Using the fact that
Pak = aka

H

k , the computation involved for the selection is

kp = argmax
r

LX
l=1

jaHr b
(l)

p�1j
2: (2)

If kp 62 Ip�1; then the index and basis sets are updated, i.e.Ip =
Ip�1 [ kp; andSp = [Sp�1; akp ]. OtherwiseIp = Ip�1 and
Sp = Sp�1: The new residual vector is then computed asBp =
P?akBp�1 or more explicitly

b(l)p = P?akp b
(l)

p�1 = b
(l)

p�1 � (aHkpb
(l)

p�1)akp ; l = 1; : : : ; L: (3)

Equations (2) and (3) give the M-BMP algorithm (withB0 = B).
The procedure terminates when eitherp = r (for specified sparsity
indexr) or kBpkF � � (for specified�).

3.2. The MMV Order Recursive Matching Pursuit (M-ORMP)

This method employs a more comprehensive strategy for selecting
a new column, and is an extension of the methodology developed
in [3, 4, 13]. In this method, the pursuit of the matchingpth basis
vector conceptually involves solving(n � p + 1) order recursive
least squares problems of the typeminY k[Sp�1; ar]Y�Bk

2
F , and

selecting the vectorar =2 Sp�1 that reduces the residual the most.
Because of the similarity with the derivation with the single mea-
surement vector case [5], and due to space considerations, we omit
the details and only summarize the main steps in the algorithm.

With the initializationa(0)
k

= ak; k = 1; : : : ; n andB0 = B,
the index selection criteria in thepth iteration is given by

kp = argmax
r

P
L

l=1
j(a(p�1)r )Hb

(l)

p�1j
2

ka(p�1)r k2
; r =2 Ip�1; (4)

resulting inIp = Ip�1 [ kp, Sp = [Sp�1; akp ], andPSp =

PSp;kp = PSp�1 + qpq
H

p where

qp �
a
(p�1)

kp

ka(p�1)
kp

k
: (5)

Thepth iteration is completed by projecting the column vectors of
A andB.

a
(p)

l
= P?Spa

(p�1)

l
= a

(p�1)

l
� (qHp a

(p�1)

l
)qp: (6)

Similarly, the residual vectorb(l)p are recursively computed as

b(l)p = P?Spb
(l)

p�1 = b
(l)

p�1 � (qHp b
(l)

p�1)qp; l = 1; : : : ; L: (7)

Equations (4)–(7) constitute the M-ORMP algorithm. The termi-
nation procedure is the same as that for the M-BMP algorithm.

3.3. The MMV Modified Matching Pursuit (M-MMP)

This procedure, also referred to as the orthogonalized matching
pursuit [14], is a minor modification of the BMP method and seeks
to improve the computation of the residueBp�1 [5]. The index
selection procedure involves computation as in (2) of M-BMP, but
the residual matrixBp is computed asP?SpBp�1 as opposed to

P?akpBp�1. This residual computation is carried out by first car-
rying out a Modified Gram-Schmidt type of procedure on the vec-
tor akp selected, More precisely, with the initialization̂a(0)

kp
=

akp ; q0 = 0; we havePSp = PSp;kp = PSp�1 + qpq
H

p where

â
(`)

kp
= â

(`�1)

kp
� (qH`�1â

(`�1)

kp
)q`�1; ` = 1; ::; p (8)

qp =
â
(p)

kp

kâ(p)
kp
k

The residualBp is updated via

b(l)p = P?Spb
(l)

p�1 = b
(l)

p�1 � (qHp b
(l)

p�1)qp: (9)

Equations (2), (8) and (9) define the M-MMP algorithm. The stop-
ping rules are the same as for M-BMP.

4. DIVERSITY MINIMIZATION METHODS

4.1. Background

In this approach, all the vectors are initially selected and are elim-
inated (asymptotically) till only a few select columns remain [6].
To understand this methodology, it is useful to examine the solu-
tion set to (1). Any solution can be expressed as

X = Xmn + V;

whereXmn is the minimum Frobenius norm solution and is given
by xmn = A+b, whereA+ denotes the Moore-Penrose pseudo-
inverse. Thelth column ofXmn is the minimum 2-norm solution
to the system of equationsAx(l) = b(l). The matrixV is a spe-
cially constrained matrix. Its column vectorsv(l) are arbitrary as
long as they lie inN (A), the null space ofA. In this caseA has a
nontrivial nullspace of dimension(n�m).

In many situations, a popular approach has been to setV = 0
and to selectXmn as the desired solution. This has two main
drawbacks. The first is that the minimum 2-norm solutions that
make up this solution is based on a criteria that favors solutions
with many small nonzero entries, a property that is contrary to the
goal of sparsity/concentration [2, 6]. The second drawback is that
the solutions for each of the measurement vectors are computed
independently thereby being unable to enforce any common spar-
sity structure across the measurement vectors as required by the
problem. The first problem, 2-norm criteria, has been addressed in
the recent past, but the the second problem, common sparsity en-
forcement has not been addressed and is dealt with in this section.

4.2. Diversity Measures for the MMV Problem

To alleviate the problems encountered by minimum 2-norm solu-
tions, i.e. that of many non-zero entries, alternate functionals re-
ferred to here as diversity measures have been defined which when



optimized lead to sparse solutions. A popular diversity measure is
E(p)(x) [15, 16, 17, 18, 11, 12], where

E
(p)

(x) =

nX
i=1

jx[i]jp; 0 � p � 1:

Due to the close connection tòp norms, these measures are re-
ferred to as “̀(p�1) diversity measures” and often, more simply,
as the “p-norm-like diversity measures.” The diversity measure
for p = 0, thenumerositydiscussed in [16], is of special interest
because it is adirect measure of sparsity, providing a count of the
number of nonzero elements of a vectorx:

E(0)
(x) = #fi : x[i] 6= 0g:

Finding a global minimum to the numerosity measures requires an
enumerative search and is NP hard [4]. Consequently, alternate
diversity measures that are more amenable to optimization tech-
niques are of interest and theE(p)(x) measures forp � 1; p 6= 0
are useful candidate measures in this context. For discussion of
these diversity measures for0 � p � 1 the reader is referred to
[15, 16, 17, 12].

A new diversity measures is now defined for the MMV prob-
lem which when minimized leads to a sparseX, with the solution
vectors (the columns) sharing a common sparsity profile. There
are many ways in which these diversity measures can be defined
[12]. Among the several choices, we choose an extension that ap-
pears to meet the sparsity requirements and also results in a simple
computational algorithm,

J(p)(X) =

nX
i=1

 
LX
l=1

jx(l)[i]j2

! p

2

This is an extension of the “`(p�1) diversity measures” and asp ap-
proaches zero, it provides a count of the number of nonzero rows
in X. A nonzero row gets penalized asp gets small thereby pro-
moting a common sparsity profile across the columns ofX.

4.3. The M-FOCUSS Algorithm

Starting from this measure, the factored-gradient approach is used
to develop a algorithm to minimize it [11, 12]. This leads to an
interesting and useful class of iterative algorithms which reduces
to the the class of algorithms called FOCUSS whenL = 1 [6].
Since this algorithm represents an extension of the FOCUSS class
of algorithms to the MMV case, it is referred to as M-FOCUSS.
Due to space limitations, we omit the details and present only the
algorithm which is as follows:

Wk+1 = diag(ck[i]
1�

p

2 ); where ck[i] =

 
LX
l=1

(x
(l)

k
[i])2

! 1

2

Qk+1 = A+
k+1B ; where Ak+1 = AWk+1 (10)

Xk+1 = Wk+1Qk+1:

The algorithm can be initialized by using the minimum Frobenius
norm solution or any other suitable solution. The range ofp is p �
2, with p close to zero corresponding to the numerosity measure.
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Figure 1: Comparison of M-BMP, M-MMP, and M-ORMP test
data with sparsityr = 7 and no noise.m = 20; n = 30: The
number of measurement vectors areL = 1 andL = 3.

5. SIMULATIONS AND COMPARISON

Computer simulations are conducted to provide a comparative eval-
uations of the methods. In this test case, a randomm � n matrix
A is created whose entries are each Gaussian random variables
with mean zero and variance1. A known sparse matrix,Xs, with
L columns and a specified number of nonzero entries rowsr is
created; the indices of ther nonzero rows are chosen randomly
and the amplitudes of the row entries are also chosen randomly.
The MMV vectorB is then computed asB = AXs. Note that
choosing a nonzero row ofX is equivalent to selecting a column
of A. With a known sparse solution,Xs, now at hand to provide a
benchmark, the various best basis selection methods are evaluated.
The number of vectors chosen by the methods are compared with
the actual number,r, used to generate the data. The experiment
is repeated 100 times, and a histogram of aredundancy index, de-
fined as the ratio of the number of distinct columns chosen by the



method to the number of columns actually used to generate the
data, is plotted. Algorithms with a redundancy index histogram
concentrated around1 indicate a good procedure.

The results of these experiments give insight into the capabil-
ities of the various methods. The results obtained using the se-
quential methods are shown in Figure 1, and the results obtained
using M-FOCUSS are shown in Figure 2. Comparing M-BMP
and M-MMP, the M-MMP appears to do a better job of subset
selection with negligible additional computational complexity. It
avoids the problem of vectors being reselected that can occur with
M-BMP which unnecessarily increases the number of iterations.
Secondly, the stopping criteria based on the norm of the residual
vector is more meaningful with the M-BMP as it does represents
the true residual matrix. Of all the three forward selection meth-
ods, the M-ORMP is the most capable in terms of identifying a
sparse solution. The computational complexity though higher can
be greatly reduced by conducting a more careful scrutiny of the
steps [19]. The M-FOCUSS algorithm with the proper choice of
p in the diversity measure yields the best result on the test data.
For instance. when comparing the M-FOCUSS forp = 0 with
M-ORMP, though M-ORMP appears to have a slight edge with
L = 1, the M-FOCUSS does better withL = 3. The M-FOCUSS
algorithm is, however, more complex than the sequential methods.
Some procedures for reducing the complexity is suggested in [9].
In addition to these results, the M-FOCUSS approach appears to
provide better sparse solutions when theA matrix has structured
columns [5].
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