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Motivation for Tutorial

e Sparse Signal Recovery is an interesting area with
many potential applications. Unification of the theory
will provide synergy.

* Methods developed for solving the Sparse Signal
Recovery problem can be a valuable tool for signal
processing practitioners.

e Many interesting developments in the recent past that
make the subject timely.
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Problem Description

q> nxm X

HEEK<
o m

y is n x 1 measurement vector.
® is n x m Dictionary matrix. m >> n.
x is m x 1 desired vector which is sparse with k non-zero entries.

€ is the additive noise modeled as additive white Gaussian.



Problem Statement

* Noise Free Case: Given a target signal tand a
dictionary @, find the weights x that solve:

minZl(x, =0) subjectto y=0x
where /(.) is the indicator function

* Noisy Case: Given a target signal y and a dictionary O,
find the weights x that solve:

minzmjl(xizo) subjectto |y —®x| <8



Complexity

» Search over all possible subsets, which would mean a search
over a total of ("C,) subsets. Combinatorial Complexity.

With m =30;n = 20; and k =10 there are 3 x 107 subsets (Very
Complex)

* Abranch and bound algorithm can be used to find the optimal
solution. The space of subsets searched is pruned but the
search may still be very complex.

e |Indicator function not continuous and so not amenable to
standard optimization tools.

Challenge: Find low complexity methods with acceptable
performance
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Applications

Signal Representation (Mallat, Coifman, Wickerhauser, Donoho,

...
 EEG/MEG (Leahy, Gorodnitsky, loannides, ...)

* Functional Approximation and Neural Networks (Chen,
Natarajan, Cun, Hassibi, ...)

» Bandlimited extrapolations and spectral estimation (Papoulis,
Lee, Cabrera, Parks, ...)

» Speech Coding (Ozawa, Ono, Kroon, Atal, ...)
» Sparse channel equalization (Fevrier, Greenstein, Proakis, ...)
e Compressive Sampling (Donoho, Candes, Tao...)

* Magnetic Resonance Imaging (Lustig,..)



DFT Example

* Measurementy
y[l1=2(cosw [+ cosw.l), [=0,1,2,..,n—1.n=64.

T T
w =233, 234

64 2 64 2

e Dictionary Elements:

—i(n— 27T
¢(m)_[1 e —jo, e jza), ’e Jj(n 1)a),]TIa)l: [
m

» Consider m =64, 128, 256 and 512.
Questions:
Whatis the result of a zero padded DFT?

*  When viewed as problem of solving a linear system of
equations dictionary, what solution does the DFT give us?

e Arethere more desirable solutions for this problem?



DFT Example

* Note that
_ 1(128) (128) (128) (128)
Y= 33 T 34 T 94 T 95
__ 4(256) (256) (256) (256)
=@ T Pg tPgs T 190
_ ¢(512) _|_¢(512) _|_¢(512) _|_¢(512)
— 132 1136 7376 7380

» Consider the linear system of equations
y=0"x
» The frequency components in the data are in
the dictionaries @™ for m = 128, 256, 512.

* What solution among all possible solutions
does the DFT compute?



DFT Example

m=64 m=128

m=256 m=512

20 40 60 80 100 120 50 100 150 200 250



Sparse Channel Estimation
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Example:
Sparse Channel Estimation

e Formulated as a sparse signal recovery problem

- r(o) | | s(0) s(<1) - s(=m+1D] c(o) | [ &(o) |
r(1) _ s(1) s(o) -+ s(—m+2) c(1) .\ £(1)
_r(n.—1)_ _s(n.— 1) s(n.—z) -+ s(=m+n) _c(m.—1)_ L &(n—1)

e Can use any relevant algorithm to estimate the sparse
channel coefficients



Compressive Sampling

* D. Donoho, "Compressed Sensing,” IEEE
Trans. on Information Theory, 2006

» E. Candes and T. Tao, "Near Optimal
Signal Recovery from random
Projections: Universal Encoding
Strategies,” IEEE Trans. on Information
Theory, 2006



Compressive Sampling

* Transform Coding

X
o

W

* What is the problem here?
o Sampling at the Nyquist rate
o Keeping only a small amount of nonzero coefficients
o Can we directly acquire the signal below the Nyquist rate?



Compressive Sampling

* Transform Coding
Wy

- —
|

e Compressive Sampling
A W X A




Compressive Sampling

e Compressive Sampling

A W

] X
>
G-

 ma
[
Il
mmmms R

e Computation:

1. Solve forwsuchthat®x =y
2. Reconstruction: b =Wx

e |ssues

> Need to recover sparse signal w with constraint Ox =y
> Need to design sampling matrix A
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Potential Approaches

Combinatorial Complexity and so need alternate
strategies

» Greedy Search Techniques: Matching Pursuit,
Orthogonal Matching Pursuit

e Minimizing Diversity Measures: Indicator function
not continuous. Define Surrogate Cost functions
that are more tractable and whose minimization
leads to sparse solutions, e.g. £, minimization

» Bayesian Methods: Make appropriate Statistical
assumptions on the solution and apply estimation
techniques to identify the desired sparse solution



Greedy Search Method: Matching

Pursuit

* Select a column that is most aligned with the current residual

y ®
o r(o) =y
o S0: set of indices selected
T _(i—1)

° [=argmax

1<j<m

o r

e Remove its contribution from the residual

X

&

|

Practical stop criteria:

e Certain # iterations
. Hf(l) 2smallerthan
threshold

> Update SO: If [¢S"™, 5" =5 J{l} . Or, keep S?the same
> Update r: r’ = P;r("_l) — i —¢,¢,Tl’(i_1)



Greedy Search Method:
Orthogonal Matching Pursuit (OMP)

e Select a column that is most aligned with the current residual

y ®
o r(O) :y
o S0: set of indices selected
o o T _(i—1)
[=argmax|¢, r

1< /<m

LIT TPl lg™>

&

|

e Remove its contribution from the residual

> Update S@: S = S" {3

- | 1 i i -
> Update r%: r" =Ry, r" ™ =r""=R



Greedy Search Method:
Order Recursive OMP

e Select a column that is most aligned with the current residual

Yy ®
o I’<O)=

o S0: set of indices selected

T(/ 1) /H¢(/ 1)

e Remove its contribution from the residual
o Update S®: S =S" {3
> Update 0: r =P r=r"-p

> Update H¢l(i) : ¢ =P, 4 -Canbe computed recursively

&

|

[(TTTTTTTTTITTTTX

> [=argmax|g,

1<j<m




Deficiency of Matching Pursuit
Type Algorithms

o If the algorithm picks a wrong index at an iteration,
there is no way to correct this error in subsequent
Iterations.

Some Recent Algorithms
*Stagewise Orthogonal Matching Pursuit (Donoho, Tsaig, ..)
*COSAMP (Needell, Tropp)



Inverse Techniques

e Forthe systems of equations ®x =y, the solution set is
characterized by {x, : x, = ®* y + v; ve N(®)}, where N(D)
denotes the null space of ® and O+ =P (OO ).

e Minimum Norm solution: The minimum £, norm solution

x,..=®*yis a popular solution

* Noisy Case: regularized ¢, norm solution often employed and
is given by

X,eg = DTOOT +A1) 2y



Minimum 2-Norm Solution

e Problem: Minimum £, norm solution is not sparse

Example: _ _
1 O 1 1
m: \/
s
O 1 1 0]

2 1 1 ' T
Xmn = |:_ o _:| VS. X = [1 (0) O]
3 3 3

DFT: Also computes minimum 2-norm solution



Diversity Measures

e Recall:

minZl(x, =0) subjectto y=Ox

e Functionals whose minimization leads to sparse
solutions

* Many examples are found in the fields of economics,
social science and information theory

e These functionals are usually concave which leads to
difficult optimization problems



Examples of Diversity Measures

e ¢ .. Diversity Measure

(p<1)
EP00=YIxf, p<a
e Asp—> o,
(p) P
LlLrgE (x)_lpuggz]x\ Z/(x = 0)

e /. norm, convex relaxation of £,

E(l)(X) _ i‘xi‘



/. Diversity Measure

e Noiseless case
m
min) |x,| subjectto ®x=y
X =1

* Nolisy case
o ¢, reqularization [Candes, Romberg, Tao]

mini|x,.| subjectto ||y —®x

<P

o Lasso [Tibshirani], Basis Pursuit De-noising [Chen,
Donoho, Saunders]

min|y —®x

. m
] +AZ|X,.|
i=1



£, norm minimization and MAP
estimation

* MAP estimation
X =argmaxp(x| y)

= argmxax[logp(y | x)+logp(x)]

e If we assume

° £ 15 zero mean, i.i.d. Gaussian noise

- px)=] [ p(x;), where p(x,.)ocexp(—/l
e Then

)

X;

o]

)?zargmin{Hy—CDx



Attractiveness of £, methods

» Convex Optimization and associated with
rich class of optimization algorithms

° Interior-point methods
o Coordinate descent method

e Question
> What is the ability to find the sparse solution?



Why diversity measure encourages
sparse solutions?

;
[Xx,,Xx.]

min‘ ‘Z subjectto ¢ x . +@dx =y

DX, +PX, =Y

X3 A /’ X A X3 A
equal-norm

,-~~ contour
i d
>
\ 1 1




£, norm and linear programming

Linear Program (LP):  min ¢’ x subjectto ®x=y

Key Result in LP (Luenberger):

a) If there is a feasible solution, there is a basic
feasible solution*

b) If there is an optimal feasible solution, there
is an optimal basic feasible solution.

*If @ is nxm, then a basic feasible solution is a solution
with n non-zero entries



Example with £, diversity measure

» Noiseless Case
° Xgp=1[1, 0, 0]'
* Noisy Case
> Assume the measurement noise € =[0.01, -0.01]"
o 51 reqularization result: x,,, =[0.986, o, 8.77x10°]"

> Lasso result (A = 0.05): X,.., = [0.975, 0, 2.50x105]"



Example with £, diversity measure

e Continue with the DFT example:
yll1=2(cosw [+cosw.]), [=0,1,2,..,n—1.n=64.

M3, _2M34

wo: , .=
64 2 64 2

64, 128,256,512 DFT cannot separate the adjacent
frequency components

Using ¢, diversity measure minimization (m=256)

1- © © -

o O
A~ O
\ \

! !

50 100 150 200 250
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Important Questions

e When is the ¢, solution unique?

* When is the £ solution equivalent to that of £?
> Noiseless Case

> Noisy Measurements



Uniqueness

» Definition of Spark

o The smallest number of columns from @ that are

linearlv annpdnnf (Qpark((l)) < n+1)

* Uniqueness of sparsest solution
S 1 . .
o If ) I(x, #0)<=Spark(®), then x is the unique
~ 2
solution to

argminZl(x,;to) subjectto ®x=y



Mutual Coherence

e Foragiven matrix® =[¢,, ¢, ..., P,,], the mutual
coherence u(®) is defined as

44
9,

u(®)= max

1<i, j<m;i% | H &
I

2 2



Performances of Z, diversity
minimization algorithms

* Noiseless Case [Donoho & Elad 03]

If ml(x,¢o)<i(1+ . j,thenxistheuni ue
Z 2 (D) :

solution to

argmini‘x,‘ subjectto ®Ox=y



Performances of Z, diversity

minimization algorithms
e Noisy Case [Donoho et al 06]

Assume y =Ox + &, |&|. <5, ml ,. i( = j
y ]l ,Z::' (x ;to)<4 1+,U((D)

Then the solution
d’ =argmdini‘di‘ subjectto |y—®d| <8
satisfies

2 _ 403

t 2= p(®)4fx], -2)

Hd* — X




frequency

S

Empirical distribution of mutual
coherence (Gaussian matrices)

e Gaussian Matrices: N(0,1), normalize column norm to 1.
» 2000 random generated matrices @
» Histogram of mutual coherence

Histogram Histogram
% T T T T &) T T

8 8 3 3
frequency
8

=
o
|

o

035 04 045 05 055 0.15 0.16 0.17 0.18 0.19 02
n n

) mean = 0.4025, std = 0.0249 o) mean = 0.161, std = 0.0073

1000x2000/

100x200/



Performance of Orthogonal
Matching Pursuit

e Noiseless Case [Tropp 04]

If mI(x,.;zf&o)<i(1+ 1 j,thenOMP uarantees
Z 2 (D) °

recovery of x after ) I(x, #0) iterations.

=1



Performance of Orthogonal
Matching Pursuit

* Noisy Case [Donoho et al]

Assume y=Ox + ¢, |e|. <B, x,,,=min

1<i<m

Xi

I

/7

i 1 1 ¢
I(x. — — :
and ; (x, #0)< 2L1+ ,U(CD)J ®) %

Stop OMP when residual error < 5.

Then the solution of OMP satisfies

> I

x|l <

i u@ ], -)

HXOMP -



Restricted Isometry Constant

o Definition [Candes et al]
For a matrix ®, the smallest constant 8, such that

N

-8 <|0x <o+ 8,
I

for any k-sparse signal x.



Performances of Z, diversity

measure minimization algorithms
o [Candes 08]

e, <Band &, <v2-1.

Assume y = Ox + &, x is k-sparse,

Then, the solution
d’ :argmdini‘d,\ subjectto |y—®d| <8

satisfies
Hd* — X

<C-B

where C only depends on 0,,.



Performances of Z, diversity

measure minimization algorithms
o [Candes 08]

el <B and &, <+v2-1.

Assumey = Ox + €,

Then, the solution
d’ :argmdini‘d,\ subjectto |y—®d| <8

satisfies
d —x

2 SCl-ﬁHx—xk 1+C2-,B

where C, C, only depend on 9,,, and x, is the vector x with

v 2

all but the k-largest entries set to zero.



Matrices with Good RIC

e It turns out that random matrices can satisfy the
requirement (say,d,, <~2—1) with high probability.

e Foramatrix®

nxm
° Generate each element ¢, ~ N(o, 1/n), i.i.d.

o [Candesetal]lf n =O( k Iog(%)j , then P(g <2-1)>1.

e Observations:

o Alarge Gaussian random matrix will have good RIC with high
probability.

o Similar results can be obtained using other probability ensembles:
Bernoulli, Random Fouirier, ....

e For / based procedure, number of measurements
required aren > klog m



More General Question

» What are limits of recovery in the presence
of noise?
> No constraint on recovery algorithm

 Information theoretic approaches are useful
in this case (Wainwright, Fletcher,
Akcakaya, ..)

» Can connect the problem of support
recovery to channel coding over the
Gaussian multiple access channel. Capacity
regions become useful (Jin)



Performance for Support Recovery

* Noisy measurements: y=Ox + &, &~ N(o,07), i.i.d.
 Random matrix ®, ¢; ~ N(o,,), i.i.d.

e Performance metric: exact support recovery

» Consider a sequence of problems with increasing sizes

o k=2:c(x)= min L|og(1+ % szonzeml,j}. (Two-user MAC capacity)

2

e |2 A o
Sufficient condition Necessary condition
If If there exists a sequence of
Iimsuplogm < c(x) support recovery methods
mow N such that
then there exists a sequence of lim P{supp(f() ” supp(x)} P
support recovery methods m—o0
such that then
. . . logm

lim P{supp(x) # supp(x)} =0 limsup p < c(x)

m

e The approach can deal with general scaling among (m, n, k).



Network information theory perspective
Connection to channel coding (K = 1)

N

| M

this column is selected




| M




Additive White Gaussian Noise (AWGN)
Channel

a: channel input

h: channel gain

e: additive Gaussian noise
b: channel output, b=ha +e

Vo

Recall
y=x;¢;+¢€




i3

i3

i3

58



59



60



61

.

.
-

-







Connection to channel coding: (K = 1)

O

| M

g:' ﬂ+




Multiple Access Channel (MAC)

¢s ° Cl)sk E Yy
X Xsl_l_ X Xs, _I_ 3 — Y =X 51+"'+Xsk¢sk+£
e
Ax Dk b / b=h.a.+.+ha.+e
h | >




Connection between two problems

®: dictionary, measurement matrix codebook
¢ a column a codeword
m different positions in x message set {1, 2, ..., m}
S,,---,S;: indices of nonzeros the messages selected
Xs: source activity channel gain h,




Differences between two problems

Channel coding

Support recovery

Each sender works with a
codebook designed only for that
sender.

All “senders” share the same
codebook A. Different senders
select different codewords.

\&VUTTHHTIVIT CUUCTUJUUVUUN)

Capacity result available when
channel gain h; is known at
receiver.

We don’t know the nonzero signal
activities x..
(Unknown channel)

* Proposed approach [Jin, Kim and Rao]

> Leverage MAC capacity result to shed light on performance limit of exact

support recovery.

o Conventional methods + customized methods.

Distance decoding
Nonzero signal value estimation
Fano's Inequality
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Section I:
Motivation



Limitation |

+ Most sparse recovery results, using either greedy methods
(e.g., OMP) or convex ¢, minimization (e.g., BP), place
heavy restrictions on the form of the dictionary .

+ While in some situations we can satisfy these restrictions
(e.g., compressive sensing), for many applications we
cannot (e.g., source localization, feature selection).

+ When the assumptions on the dictionary are violated,
performance may be very suboptimal



Limitation |

The distribution of nonzero magnitudes in the maximally
sparse solution x, can greatly affect the difficulty of
canonical sparse recovery problems.

This effect is strongly algorithm-dependent ...



Examples:
¢, -norm Solutions and OMP

+ With 7, -norm solutions, performance is independent of the
magnitudes of nonzero coefficients [Malioutov et al., 2004].

+ Problem: Performance does not improve when the
situation is favorable.

+ OMP is highly sensitive to these magnitudes.

+ Problem: Perform degrades heavily with unit magnitudes.




In General

+ If the magnitudes of the non-zero elements in x, are highly
scaled, then the canonical sparse recovery problem should
be easier.

N R
—~fTT YT T

scaled coefficients (easy) uniform coefficients (hard)

+ The (approximate) Jeffreys distribution produces sufficiently
scaled coefficients such that best solution can always be
easily computed.



Jeffreys Distribution

2.5

: 1
Density: p(x) o< —
| x |

All have
equal area




Empirical Example

+ For each test case:

1. Generate a random dictionary ® with 50 rows and 7100 columns.
2. Generate a sparse coefficient vector x,,.

3. Compute signal via y = ® x, (noiseless).

4. Run BP and OMP, as well as a competing Bayesian method called
SBL (more on this later) to try and correctly estimate x,

5. Average over1000 trials to compute empirical probability of failure.

+ Repeat with different sparsity values, i.e., HXOHO ranging
from 70to 30.



Sample Results (n =50, m = 100)

Approx. Jeffreys Coefficients
1 : . .

1l

0 1 a
10 15 20 25 30

Unit Coefficients

OMP

— SBL

15 20 25

a1l

30



¢

Limitation Il

It is not immediately clear how to use these methods to
assess uncertainty in coefficient estimates (e.g.,
covariances) .

Such estimates can be useful for designing an optimal
(non-random) dictionary &.

For example, it is well known in and machine learning
and image processing communities that under-sampled
random projections of natural scenes are very
suboptimal.



Section ll:

MAP Estimation Using
the Sparse Linear Model



Overview

+ Can be viewed as sparse penalized regression with
general sparsity-promoting penalties (¢, penalty is special
case).

+ These penalties can be chosen to overcome some
previous limitations when minimized with simple, efficient
algorithms.

+ Theory is somewhat harder to come by, but practical
results are promising.

+ In some cases can guarantee improvement over ¢,
solution on sparse recovery problems.



Sparse Linear Model

+ Linear generative model:

Observed
n-dimensional
data vector

A

y = PX+E ]

/N

Gaussian noise
with variance A

Matrix of m

basis vectors

Unknown
Coefficients

+ Objective: Estimate the unknown x given the following

assumptions:

1. ®is overcomplete, meaning the number of columns m is greater
than the signal dimension n.

2. Xis maximally sparse, i.e., many elements equal zero.




Sparse Inverse Problem

+ Noiseless case (¢ = 0):

A .
X, = argmin HXHO s.t. y=®dx

AN

(, norm = # of nonzeros in x

+ Noisy case (¢ > 0):

>
X,(4) 2 argmin |y-®x], + x|,

argmax. exp |y ~@x]; Jexp[ 4[] ]

. J \ J
Y Y

likelihood prior




Difficulties

1. Combinatorial number of local minima

2. Objective is discontinuous

A variety of existing approximate methods can
be viewed as MAP estimation using a flexible
class of sparse priors.




Sparse Priors: 2-D Example

[Tipping, 2001]

Gaussian Distribution Sparse Distribution



Basic MAP Estimation

X £ argmax p(xly)

= argmin —log p(y!x)—log p(x)

= argmin ly - CIDXHE + ﬂzn: g(x)

/ g'(xi)zh(x.z)

data fit 7

where his a
nondecreasing,
concave function

Note: Bayesian interpretation will be useful later ...




Example Sparsity Penalties

« With ¢(x) = I|x #0] we have the canonical sparsity
penalty and its associated problems.

+ Practical selections:

g (xl. ) = log (xl. + 8) , [Chartrand and Yin, 2008]

g(x.)=log (‘xi‘ + 8) ,  [Candes et al., 2008]

, [Rao et al., 2003 ]

+ Different choices favor different levels of sparsity.



Example 2-D Contours
g(%):

p

X.

1




Which Penalty Should We Choose?

+ Two competing issues:

1. If the prior is too sparse (e.g., p = 0), then we may get stuck in a
local minima: convergence error.

2. If the prior is not sparse enough (e.g. p = 1), then the global
minimum may be found, but it might not equal X, : structural error.

+ Answer is ultimately application- and algorithm-
dependent



-log p(xly)

Convergence Errors vs. Structural Errors

Convergence Error (p = () Structural Error (p = 1)

-log p(xly)

X' X( X' Xo

x' = solution we have converged to
X, = Mmaximally sparse solution



Desirable Properties of Algorithms

+ Can be implemented via relatively simple primitives
already in use, e.g., ¢, solvers, etc.

+ Improved performance over OMP, BP, etc.

+ Naturally extends to more general problems:

1. Constrained sparse estimation (e.g., finding non-negative sparse
solutions)

2. Group sparsity problems ...



Extension: Group Sparsity

+ Example :

+ The simultaneous sparse estimation problem - the goal is to recover
a matrix X, with maximal row sparsity [Cotter et al., 2005; Tropp, 2006] , given
observation matrix Y produced via

Y=PX+E

+ Optimization Problem:

X,(4) = argm}gn HY—CIDXHi+/1iI[HXi,H¢O}
i=1

N J
Y

# of nonzero rows in X

+ Can be efficiently solved/approximated by replacing
indicator function with alternative function g.



Reweighted ¢, Optimization
+ Assume: g(x)= h(xl.z), h concave

+ Updates: ,
x“*" - argmin Hy—CIDXH2 +/lz wi x?

= WO (AU +oW D) y

. 98 (x)

l 2
axl. X= xi(k+1)

W.(kH)

N\

W% 5 diag |:W(k D }_1

+ Based on simple 15t order approx. to g(x;) [Palmer et al., 2006].
+ Guaranteed not to increase objective function.
+ Global convergence assured given additional assumptions.




Examples
1. FOCUSS algorithm [Rao et al., 2003]:

", 0<p<g2

+ Penalty: g(x) = |'xi

(k+1) p-2

+ Weight update: — ‘xl.("“)

+ Properties: Well-characterized convergence rates; very susceptible
to local minima when p is small.

2. Chartrand and Yin (2008) algorithm:
g(x) = log(xl.2+€), >0

(k+1) (k+1) |2
+ Weight update: W — [(xi )+5J

+ Penalty:

+ Properties: Slowly reducing & to zero smoothes out local minima
initially allowing better solutions to be found; very useful for
recovering scaled coefficients ...



Empirical Comparison

+ For each test case:

1. Generate a random dictionary ® with 50 rows and 250 columns
2. Generate a sparse coefficient vector x,,.

3. Compute signal via y = ® x, (noiseless).

4. Compare Chartrand and Yin’s reweighted ¢, method with ¢, norm
solution with regard to estimating X,

5. Average over 1000 independent trials.

+ Repeat with different sparsity levels and different nonzero
coefficient distributions.



probability of success

Empirical: Unit Nonzeros
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Results: Gaussian Nonzeros
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Reweighted ¢, Optimization

+ Assume: g(xl.) = h(‘xi ), h concave

+ Updates:

x“Y —  argmin Hy—CIDXHz+/IZiWi(k) X,
X

D s ag (xi )
X.

1 a l

X, =X

(k+1)
i~

+ Based on simple 15t order approximation to g (x;) [Fazel et al., 2003]
Global convergence given minimal assumptions [Zangwill, 1969].
Per-iteration cost expensive, but few needed (and each are sparse).

Easy to incorporate alternative data fit terms or constraints on x.

L 2

L 2

L 2




Example [Candes et al., 2008]

o Penalty:  g(x)=log(|x|+¢€), €20

« Updates: g+ _ arg min “y—CIDX“2+/IZiWi

(k+1) n g] -1

W N [ (k+1)

l

+ When nonzeros in X, are scaled, works much better than
regular ¢,, depending on how & is chosen.

+ Local minima exist, but since each iteration is sparse,
local solutions are not so bad (no worse than regular ¢,
solution).



Empirical Comparison
+ For each test case:
1. Generate a random dictionary ® with 50 rows and 100 columns.

2. Generate a sparse coefficient vector X, with 30 truncated
Gaussian, strictly positive nonzero coefficients.

3. Compute signal via y = ® x,, (noiseless).
s. Compare Candes et al.’s reweighted ¢, method (10 iterations) with
/; norm solution, both constrained to be non-negative to try and

estimate x,

5. Average over 1000 independent trials.

+ Repeat with different values of the parameter &€ .



probability of success

Empirical Comparison
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Conclusions

+ In practice, MAP estimation addresses some limitations
of standard methods (although not Limitation lll,
assessing uncertainty).

+ Simple updates are possible using either iterative
reweighted ¢, or ¢, minimization.

+ More generally, iterative reweighted f minimization,
where f is a convex function, is possible.



Section lll:

Bayesian Inference Using
the Sparse Linear Model



Note

+ MAP estimation is really just standard/classical penalized
regression.

+ S0 the Bayesian interpretation has not really contributed
much as of yet ...



Posterior Modes vs. Posterior Mass

+ Previous methods focus on finding the implicit mode of
p(xly) by maximizing the joint distribution

p(x.y)=p(ylx)p(x)

+ Bayesian inference uses posterior information beyond
the mode, i.e., posterior mass:

+ Examples:

1.  Posterior mean: Can have attractive properties when used as a
sparse point estimate (more on this later ...).

2.  Posterior covariance: Useful assessing uncertainty in estimates,
e.g., experimental design, learning new projection directions for
compressive sensing measurements.



Posterior Modes vs. Posterior Mass

Mode

/

Probability Mass

pxly)




Problem

+ For essentially all sparse priors, cannot compute
normalized posterior

_p(yIx)p(x)
| p(y1x) p(x)dx

p(xly)

+ Also cannot computer posterior moments, e.g.,

#, = E[xly]
)} Cov|[xly]

X

+ S0 efficient approximations are needed ...



Approximating Posterior Mass

+ Goal: Approximate p(x.y) with some distribution p(x.y) that
1. Reflects the significant mass in p(x.,y).
2. Gan be normalized to get the posterior p(xly).
3. Has easily computable moments, e.g., can compute E[xly] or Cov|[xly].

+ Optimization Problem: Find the ﬁ(x,y) that minimizes the
sum of the misaligned mass:

HP(X,y)—]A)(X,y)‘dx = jP(Y|X)‘p(X)—]§(X)‘dx




Recipe

. Start with a Gaussian likelihood

—_n

p(ylx)=(271) " exp(— Ly —CIDXHz)

. Pick an appropriate prior p(x) that encourages sparsity

. Choose a convenient parameterized class of

approximate priors p(x)= p(x;7)

. Solve: §=argmin [ p(y1x)|p(x)— p(x;7)|dx
v

p(y!x)p(x7)
jp(ylx)p(x;?)dx

. Normalize: p(xly;§)=



Step 2: Prior Selection
+ Assume a sparse prior distribution on each coefficient:

—log p(x,) < g(x,)=h (xl.2 ), h concave, non-decreasing.

2-D example

~0 [Tipping, 2001]

Gaussian Distribution Sparse Distribution



Step 3: Forming Approximate Priors p(x;))

+ Any sparse prior can be expressed via the dual form [Paimer et al., 2006]:

2
—1/2 X.
x,)=max| (27y,) exp|— .
p(x)=ma {( 7:) p[ z%jw(%)}
+ Two options:
1. Start with p(x,) and then compute ¢(y; ) via convexity results, or

2. Choose ¢(7,;) directly and then compute p(x;); this procedure will always
produce a sparse prior [Palmer et al. 2006].

+ Dropping the maximization gives the strict variational lower bound
2

p(x) 2 p(x; ) =27y) " exp(_;_;jgp(%)

i

+ Yields a convenient class of scaled Gaussian approximations:

p(x;v)=Hp(xi;%)



Example: Approximations to Sparse Prior




Step 4: Solving for the Optimal vy

+ To find the best approximation, must solve

A

¥y = argminjp(y|X)‘P(X)—P(X;V)‘dx

v=0

+ By virtue of the strict lower bound, this is equivalent to

7 = argmax [ p(y %) p(xiy)dx

= arg I£1>1£1 log ‘Zy ‘ +y' 2y -2> logo(7,)
B i=1

where Zy = Al + dI'd’ I'=diag (’Y)



How difficult is finding the optimal
parameters vy?

+ If original MAP estimation problem is convex, then so is
Bayesian inference cost function [Nickisch and Seeger, 2009].

+ In other situations, Bayesian inference cost is generally
much smoother than associated MAP estimation (more
on this later ...).



Step 5: Posterior Approximation

+ We have found the approximation

p(yIx)p(x7)=p(xy:7)= p(x.y)

+ By design, this approximation reflects significant mass in
the full distribution p(x,y).

+ Also, it is easily normalized to form
(le’ )_ (lux’z )

4 = E[xly;f] o (A1 +®0D") y

¥, = Cov[xly;p] = [-T®"(Ar+ofd") of



Applications of Bayesian Inference

1. Finding maximally sparse representations
+ Replace MAP estimate with posterior mean estimator.
+ For certain prior selections, this can be very effective (next section)

2. Active learning, experimental design



Experimental Design

+ Basic Idea [Shihao Ji et al., 2007, Seeger and Nickisch, 2008]:
Use the approximate posterior

p(xly;¥)=N(u.,X,)

to learn new rows of the design matrix & such that
uncertainty about x is reduced.

+ Choose each additional row to minimize the differential
entropy H:

A A A —1 A
H=1log|y |, =, =[-T'®"(AI+®[®") @f




Experimental Design Cont.

+ Drastic improvement over random projections is possible
In a variety of domains.

+ Examples:

+ Reconstructing natural scenes [Seeger and Nickisch, 2008]

+ Undersampled MRI reconstruction [Seeger et al., 2009]



Section |V:

Analysis of Bayesian
Inference and
Connections with MAP



Overview

+ Bayesian inference can be recast as a general form of
MAP estimation in x-space.

+ This is useful for several reasons:

1. Allows us to leverage same algorithmic formulations as with iterative
reweighted methods for MAP estimation.

2. Reveals that Bayesian inference can actually be an easier
computational task than searching for the mode as with MAP.

3. Provides theoretical motivation for posterior mean estimator when
searching for maximally sparse solutions.

4. Allows modifications to Bayesian inference cost (e.g., adding
constraints), and inspires new non-Bayesian sparse estimators.



Reformulation of Posterior Mean Estimator

Theorem

p, = E[xly,9] = argmin|y-®x|; + g, (x)
with Bayesian inference penalty function

g . (X) = min xX'T7'x + log‘/'LI—l—CIDFCIDT‘ -2 ) logo(y,)

v=0

[Wipf and Nagarajan, 2008]

So the posterior mean can be obtained by minimizing a
penalized regression problem just like MAP

Posterior covariance is a natural byproduct as well




Property | of Penalty g. _...(x)

+ Penalty g. .. (x) is formed from a minimum of upper-
bounding hyperplanes with respect to each x

+ Thisimplies:
1. Concavity in xl-2 for all i [Boyd 2004].

2. Can be implemented via iterative reweighted ¢, minimization (multiple
possibilities using various bounding techniques) [Seeger, 2009; Wipf and
Nagarajan, 2009].

3. Note: Posterior covariance can be obtained easily too, therefore entire
approximation can be computed for full Bayesian inference.




Student’s t Example

+ Assume the following sparse distribution for each
unknown coefficient:

ptor=(o+2)"

2
Note:

+« When g =b — oo, prior approaches a Gaussian (not sparse)
« When a=5b— 0, prior approaches a Jeffreys (highly sparse)

+ Using convex bounding techniques to approximate the
required derivatives, leads to simple reweighted ¢,
update rules [Seeger, 2009; Wipf and Nagarajan, 2009].

+ Algorithm can also be derived via EM [Tipping, 2001].



Reweighted ¢, Implementation Example

xS argmm Hy (I)XH +/12w(k) :
_ W“”(IDT(;LI+<I>W(")CI>T )‘ y, W = diag[w(")]_l
w T — 1424

(x50) + (w®) = (W) g (AL +DW D )_1 & +2b

- Guaranteed to reduce or leave unchanged objective function at each iteration
- Other variants are possible using different bounding techniques
- Upon convergence, posterior covariance is given by

ZX:[IICIDTCI)+W”‘)]_I, w® = dlag[ (k)}




Property Il of Penalty g. .. (X)

If —2log () is concave in 7, then:

~

N

4

. 8ine(X) is concave in |x;| forallz ———)> sparsity-inducing

. The implies posterior mean will always have at least m — n
elements equal to exactly zero as occurs with MAP.

. Can be useful for canonical sparse recovery problems ...

. Can implement via reweighted ¢, minimization

[Wipf, 2006; Wipf and Nagarajan, 2009]




Reweighted ¢; Implementation Example

» Assume —2log@(y,) = ay,, a=0

X(k+1)

— argmin Hy—CIDXHz+ZZWi(k) X,
l

1
2

wk [Q.T (6”1 +@W™ diag x* | @’ )_1 & + a}

Guaranteed to converge to a minimum of the Bayesian
inference objective function

Easy to outfit with additional constraints
In noiseless case, sparsity will not increase, i.e.,

HX(kH) X(zl -norm)

< kel
0o 0o

0




Property lll of Penalty g. ...(x)

+ Bayesian inference is most sensitive to posterior mass,
therefore it is less sensitive to spurious local peaks as is
MAP estimation.

+ Consequently, in x-space, the Bayesian Inference
penalized regression problem

mxin Hy o (I)Xuj + Z’ginfer (X)

Is generally smoother than associated MAP problem.



Student’s t Example

+ Assume the Student’s t distribution for each unknown

coefficient:
5 \~(a+1/2)
X.
X )oc| b+

Note:

+« When g =b — oo, prior approaches a Gaussian (not sparse)
« When a=b— 0, prior approaches a Jeffreys (highly sparse)

+ Goal: Compare Bayesian inference and MAP for
different sparsity levels to show smoothing effect.



Visualizing Local Minima Smoothing

+ Consider when y =®x has a 1-D feasible region, i.e.,

m=n+1

+ Any feasible solution x will satisfy:
X = X, +tav

ve Null (CID)
where & 1S a scalar

X, 18 the true generative coefficients

+ Can plot penalty functions vs. « to view local minima profile
over the 1-D feasible region.



Empirical Example

Generate an iid Gaussian random dictionary & with 70
rows and 11 columns.

Generate a sparse coefficient vector x. . . with 9 nonzeros

and Gaussian iid amplitudes.

true

Compute signal y = P x,,

Assume a Student’s t prior on x with varying degrees of
sparsity.

Plot MAP/Bayesian inference penalties vs. & to compare
local minima profiles over the 1-D feasible region.



Local Minima Smoothing Example #1
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Local Minima Smoothing Example #2
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Local Minima Smoothing Example #3
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Property IV of Penalty g. .. (X)

+ Non-separable, meaning &, (x) # Zg,-(xi)

+ Non-separable penalty functions can have an advantage
over separable penalties (i.e., MAP) when it comes to
canonical sparse recovery problems [wipf and Nagarajan, 2010].




Example
+ Consider original sparse estimation problem

A .
X, = argmin HXHO s.t. y=®x

+ Problem: Combinatorial number of local minima:

m—1 o m
( j +1 < number of local minima < [ )
n n

+ Local minima occur at each basic feasible solution

BFSF x| <n st y=ax



Visualization of Local Minima in ¢, Norm

Generate an iid Gaussian random dictionary & with 70
rows and 11 columns.

Generate a sparse coefficient vector x
and Gaussian iid amplitudes.

with 9 nonzeros

true

Compute signal viay = P x,,.

Plot HXHO vs. a (1-D null space dimension) to view local
minima profile of the ¢, norm over the 1-D feasible region.



# of nonzeros

¢, Norm in 1-D Feasible Region
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Non-Separable Penalty Example

+ Would like to smooth local minima while retaining same
global solution as ¢, at all times (unlike ¢; norm)

+ This can be accomplished by a simple modification of
the ¢, penalty.

+ Truncated ¢, penalty:
X = k largest elements of x

X = arg min Hi” s.t.
x ’ y = dx

o If k < m, then there will necessarily be fewer local
minima; however, the implicit prior/penalty function is
non-separable.



Truncated ¢, Norm in 1-D Feasible Region

# of nonzeros
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Using posterior mean estimator for
finding maximally sparse solutions

Summary of why this could be a good idea:

1.

If —2loge(7,) is concave, then posterior mean will be
sparse (local minima of Bayesian inference cost will also
be sparse).

The implicit Bayesian inference cost function can be
much smoother than the associated MAP objective.

Potential advantages of non-separable penalty functions.



Choosing the function ¢

« For sparsity, require that—2log ¢(y,) is concave.

+ To avoid adding extra local minima (i.e., to maximally exploit
smoothing effect), require that —2log¢(y,) is convex.

¢ SO —2log (0(%) =ay, a=0 IS well-motivated [wipf et al. 2007].

+ Assume simplest case: —2log@(y,) = 0, sometimes
referred to as sparse Bayesian learning (SBL) [Tipping, 2001].

+ We denote the penalty function in this case &sgL (X)




Advantages of Posterior Mean Estimator

Theorem

+ Inthe low noise limit (A — 0), and assuming |x,|, < spark[®]-1,
then the SBL penalty satisfies:

arg min gg, (x) = arg min XHO

x: y=®x x: y=®x

+ No separable penalty g(x) = > ¢/(x) satisfies this
condition and has fewer minima than the SBL penalty in the
feasible region.

[Wipf and Nagarajan, 2008]




Conditions For a Single Minimum

Theorem

+ Assumel||x || < spark[®]-1. If the magnitudes of the non-zero
elements in X, are sufficiently scaled, then the SBL cost (A — 0)
has a single minimum which is located at X,,.

RN R S
T T YT T

scaled coefficients (easy) uniform coefficients (hard)

+ No possible separable penalty (standard MAP) satisfies this
condition.

[Wipf and Nagarajan, 2009]




Empirical Example

Generate an iid Gaussian random dictionary & with 70
rows and 11 columns.

Generate a maximally sparse coefficient vector x, with 9
nonzeros and either

1. amplitudes of similar scales, or

2. amplitudes with very different scales.

Compute signal via y = ® x,,.

Plot MAP/Bayesian inference penalty functions vs. a to
compare local minima profiles over the 1-D feasible
region to see the effect of coefficient scaling.
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Always Room for Improvement

Theorem

+ Consider the noiseless sparse recovery problem.

X, = argmin HXHO s.t. y=®&x
+ Under very mild conditions, SBL with reweighted ¢,

iImplementation will:

1. Never do worse than the regular ¢,-norm solution

2. For any dictionary and sparsity profile, there will always be
cases where it does better.

[Wipf and Nagarajan, 2010]




Empirical Example:
Simultaneous Sparse Approximation

+ Generate data matrix via Y = ®X,, (noiseless):

+ X, I1s 100-by-5 with random nonzero rows.

+ @ is 50-by-100 with Gaussian iid entries

+ Check if X, is recovered using various algorithms:

1. Generalized SBL , reweighted ¢, implementation [Wipf and
Nagarajan, 2010]

2. Candes et al. (2008) reweighted ¢, method

3. Chartrand and Yin (2008) reweighted ¢, method

4. ¢, solution via Group Lasso [Yuan and Lin, 2006]
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Conclusions

+ Posterior information beyond the mode can be very
useful in a wide variety of applications.

+ Variational approximation provides useful estimates of
posterior means and covariances, which can be
computed efficiently using standard iterative reweighting
algorithms.

+ In certain situations, posterior mean estimate can be
effective substitute for ¢; norm minimization.

+ In simulation tests, out-performs a wide variety of MAP-
based algorithms [Wipf and Nagarajan, 2010]...



Section V:

Application Examples In
Neuroimaging



Applications of Sparse Bayesian Methods

1. Recovering fiber track geometry from diffusion weighted MR
Images [Ramirez-Manzanares et al. 2007].

2. Multivariate autoregressive modeling of fMRI time series for
functional connectivity analyses [Harrison et al. 2003].

3. Compressive sensing for rapid MRI [Lustig et al. 2007].

4. MEG/EEG source localization [Sato et al. 2004; Friston et al. 2008].



MEG/EEG Source Localization

source space (X) sensor space (Y)



The Dictionary ¢

+ Can be computed using a boundary element brain model
and Maxwell's equations.

+ Wil be dependent on location of sensors and whether we
are doing MEG, EEG, or both.

+ Unlike compressive sensing domain, columns of ® will be
highly correlated regardless of where sensors are placed.



Source Localization

+ Given multiple measurement vectors Y, MAP or
Bayesian inference algorithms can be run to estimate X.

+ The estimated nonzero rows should correspond with the
location of active brain areas (also called sources).

+ Like compressive sensing, may apply algorithms in
appropriate transform domain where row-sparsity
assumption holds.



Empirical Results

1. Simulations with real brain noise/interference:
+ Generate damped sinusoidal sources
+ Map to sensors using ® and apply real brain noise, artifacts

2. Data from real-world experiments:

+ Auditory evoked fields from binaurally presented tones (which produce
correlated, bilateral activations)

Compare localization results using MAP estimation and
SBL posterior mean from Bayesian inference




MEG Source Reconstruction Example

Ground Truth SBL Group Lasso



Real Data:
Auditory Evoked Field (AEF)

SBL

Beamformer
sLORETA Group Lasso




Conclusion

+ MEG/EEG source localization demonstrates the
effectiveness of Bayesian inference on problems where
the dictionary is:

+ Highly overcomplete, meaning m > n, e.g.,
n=275 and m =100,000.

+ Very ill-conditioned and coherent, i.e., columns are highly
correlated.



Final Thoughts

+ Sparse Signal Recovery is an interesting area with many
potential applications.

+ Methods developed for solving the Sparse Signal Recovery
problem can be valuable tools for signal processing practitioners.

+ Rich set of computational algorithms, e.g.,
+ Greedy search (OMP)
+ ¢; norm minimization (Basis Pursuit, Lasso)
+ MAP methods (Reweighted ¢, and ¢, methods)
+ Bayesian Inference methods like SBL (show great promise)

+ Potential for great theory in support of performance guarantees
for algorithms.

+ Expectation is that there will be continued growth in the
application domain as well as in the algorithm development.






