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EarlyWorksEarlyWorksEarlyWorksEarlyWorks
R. R. Hocking and R. N. Leslie , �“Selection of the Best
Subset in RegressionAnalysis �”Technometrics 1967Subset in RegressionAnalysis, Technometrics, 1967.
S. Singhal and B. S. Atal, �“AmplitudeOptimization and
Pitch Estimation in Multipulse Coders,�” IEEETrans.
Acoust., Speech, Signal Processing, 1989Acoust., Speech, Signal Processing, 1989
S. D. Cabrera andT.W. Parks, �“Extrapolation and
spectral estimation with iterative weighted norm
modification,�” IEEETrans. Acoust., Speech, Signalod cat o , a s coust , Speec , S g a
Processing, April 1991.
ManyMore works
Our first workOur first work

I.F. Gorodnitsky, B. D. Rao and J. George, �“Source Localization in
Magnetoencephal0graphy using an IterativeWeightedMinimum
NormAlgorithm, IEEEAsilomarConference on Signals, Systems
andComputers PacificGrove CA Pages: 167 171 Oct 1992andComputers, PacificGrove, CA, Pages: 167 171,Oct. 1992
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Fast Optimal and Suboptimal Algorithms for Sparse Solutions to Linear Inverse Problems ....................................... 111-1877
G. Harikumar (Tellabs Research, USA); C. Couvreur, Y. Bresler (University of Illinois, Urbana-Champaign. USA)

Measures and Algorithms for Best Basis Selection ............................................................................................................ 111-1881
K. Kreutz-Delgado, B. Rao (University of Califomia, San Diego, USA)

Sparse Inverse Solution Methods for Signal and Image Processing Applications .......................................................... 111-1885
B. Jeffs (Brigham Young University, USA)
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Motivation forTutorialMotivation forTutorialMotivation forTutorialMotivation forTutorial
Sparse Signal Recovery is an interesting area with

i l li i U ifi i f h hmany potential applications. Unification of the theory
will provide synergy.

M th d d l d f l i th S Si lMethods developed for solving the Sparse Signal
Recovery problem can be a valuable tool for signal
processing practitioners.
Many interesting developments in the recent past that
make the subject timely.
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ProblemDescriptionProblemDescriptionProblemDescriptionProblemDescription

y xy xn×m

y is n × 1 measurement vector.

is n ×m Dictionary matrix.m >> n.

x ism × 1 desired vector which is sparse with k non zero entries.

i h ddi i i d l d ddi i hi G iis the additive noise modeled as additive whiteGaussian.
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ProblemStatementProblemStatementProblemStatementProblemStatement
Noise Free Case: Given a target signal t and a
di i fi d h i h h ldictionary , find the weights x that solve:

min ( 0) subject to
m

I x y x

where I(.) is the indicator function

1

min ( 0) subject toix
i

I x y x

( )

Noisy Case: Given a target signal y and a dictionary ,
find the weights x that solve:

min ( 0) subject to
m

I x y x

10
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ComplexityComplexityComplexityComplexity

Search over all possible subsets, which would mean a search
l f ( C ) b C bi i l C l iover a total of (mCk) subsets. Combinatorial Complexity.

Withm = 30;n = 20; and k = 10 there are 3 × 107 subsets (Very
Complex)p )

A branch and bound algorithm can be used to find the optimal
solution.The space of subsets searched is pruned but the
searchmay still be very complex.search may still be very complex.

Indicator function not continuous and so not amenable to
standard optimization tools.

Challenge: Find low complexity methods with acceptable
performance

11



Outline: Part 1Outline: Part 1Outline: Part 1Outline: Part 1
Motivation forTutorial

Sparse Signal Recovery Problem

A li tiApplications

Computational Algorithmsp g

Greedy Search

i i i ti1 normminimization

PerformanceGuarantees

12



ApplicationsApplicationsApplicationsApplications
Signal Representation (Mallat, Coifman,Wickerhauser, Donoho,
...)...)

EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...)

Functional Approximation and Neural Networks (ChenFunctional Approximation and Neural Networks (Chen,
Natarajan, Cun, Hassibi, ...)

Bandlimited extrapolations and spectral estimation (Papoulis,
Lee Cabrera Parks )Lee, Cabrera, Parks, ...)

Speech Coding (Ozawa,Ono, Kroon,Atal, ...)

S h l li ti (F i G t i P ki )Sparse channel equalization (Fevrier, Greenstein, Proakis, �…)

Compressive Sampling (Donoho, Candes,Tao...)

i iMagnetic Resonance Imaging (Lustig,..)
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DFT ExampleDFT Example
Measurement y

0 1 0,1,2,.[ ] 2(cos cos ),

2 33 2 34

.., 1. 64.l ny l l l n

Dictionary Elements:

0 1

2 33 2 34
, .

64 2 64 2

Dictionary Elements:

Considerm = 64 128 256 and 512

2 ( 1)( ) 2
[1, , ,..., ] ,l l lj j j nm T

l le e e l
m

Considerm = 64, 128, 256 and 512.
Questions:

What is the result of a zero padded DFT?p
When viewed as problem of solving a linear system of
equations dictionary, what solution does the DFT give us?
Are there more desirable solutions for this problem?
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DFT ExampleDFT Example
Note that

(128) (128) (128) (128)
33 34 94 95y
(256) (256) (256) (256)
66 68 1

(512) (512) (5

33

12) (512)
132 136 3

88 19

76 380

34 94

0

95

Consider the linear system of equations

132 136 376 380

( )m

The frequency components in the data are in
the dictionaries (m) form = 128 256 512

( )my x

the dictionaries ( ) form = 128, 256, 512.
What solution among all possible solutions
does the DFT compute?does the DFT compute?
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DFT ExampleDFT ExampleDFT ExampleDFT Example
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SparseChannel EstimationSparseChannel EstimationSparseChannel EstimationSparseChannel Estimation

1

( ) ( ) 0 1( 1) ( )
m

c jr i i ij ns i

Noise

17
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Example:Example:
h lh lSparse Channel EstimationSparse Channel Estimation

Formulated as a sparse signal recovery problem

( ) (0) ( 1) ( 1) ( ) ( )r o s s s m c o o( ) (0) ( ) ( ) ( ) ( )
(1) (1) (0) ( 2) (1) (1)

( ) ( ) ( ) ( ) ( ) ( )

o s s s c o o
r s s s m c

Can use any relevant algorithm to estimate the sparse

( 1) ( 1) ( 2) ( ) ( 1) ( 1)r n s n s n s m n c m n

y g p
channel coefficients
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Compressive SamplingCompressive SamplingCompressive SamplingCompressive Sampling

D. Donoho, �“Compressed Sensing,�” IEEEp g
Trans. on InformationTheory, 2006

E. Candes andT.Tao, �“NearOptimal
Signal Recovery from randomSignal Recovery from random
Projections: Universal Encoding
Strategies �” IEEETrans on InformationStrategies, IEEETrans. on Information
Theory, 2006
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Compressive SamplingCompressive SamplingCompressive SamplingCompressive Sampling

TransformCodingg
x b

What is the problem here?
Sampling at the Nyquist rateSampling at the Nyquist rate

Keeping only a small amount of nonzero coefficients

Can we directly acquire the signal below the Nyquist rate?

20



Compressive SamplingCompressive Sampling

TransformCoding

Compressive SamplingCompressive Sampling

g
x b

Compressive Sampling
x bA A y

21



Compressive SamplingCompressive SamplingCompressive SamplingCompressive Sampling
Compressive Sampling

x bA A y

Computation:
S l f h th t1. Solve forw such that x = y

2. Reconstruction: b = x

Issues
Need to recover sparse signalwwith constraint x = y
Need to design sampling matrix A

22
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Potential ApproachesPotential ApproachesPotential ApproachesPotential Approaches
Combinatorial Complexity and so need alternate
strategiesstrategies

Greedy SearchTechniques: Matching Pursuit,
Orthogonal Matching Pursuitg g

Minimizing Diversity Measures: Indicator function
not continuous. Define Surrogate Cost functions
th t t t bl d h i i i tithat are more tractable and whose minimization
leads to sparse solutions, e.g. minimization

Bayesian Methods: Make appropriate Statistical

1

Bayesian Methods: Make appropriate Statistical
assumptions on the solution and apply estimation
techniques to identify the desired sparse solution

24



Greedy Search Method: MatchingGreedy Search Method: Matching
PursuitPursuit

Select a column that is most aligned with the current residual

y x

r(0) = y
Practical stop criteria

S(i): set of indices selected
( 1)

1
argmax T i

jj m
l r

Practical stop criteria:

�•Certain # iterations

�• smaller than
( )ir

Remove its contribution from the residual
Update S(i): If . Or, keep S(i) the same

1 j m

( 1) ( ) ( 1), { }i i il S S S l

threshold
2

Update r(i):
25

( ) ( 1) ( 1) ( 1)P
l
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Greedy Search Method:Greedy Search Method:
O th l M t hi P it (OMP)O th l M t hi P it (OMP)Orthogonal Matching Pursuit (OMP)Orthogonal Matching Pursuit (OMP)
Select a column that is most aligned with the current residual

y x

r(0) = y
S(i): set of indices selected

( 1)

1
argmax T i

jj m
l r

Remove its contribution from the residual
Update S(i): ( ) ( 1) { }i iS S l

1 j m

Update r(i):

26
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( ) ( 1) ( 1) ( 1)
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Greedy Search Method:Greedy Search Method:
ddOrder RecursiveOMPOrder RecursiveOMP

Select a column that is most aligned with the current residual

y x

r(0) = y
S(i): set of indices selected

2 2( 1) ( 1)

21
argmax T i i

j jj m
l r

Remove its contribution from the residual
Update S(i):

j

( ) ( 1) { }i iS S l
Update r(i):
Update : . Can be computed recursively271 2

( )
[ , ,..., ]P

i

i
l l l l l

2( )

2

i
l

1 2 1 2

( ) ( 1) ( 1) ( 1)
[ , ,..., ] [ , ,..., ]P P

i i

i i i i
l l l l l lr r r r



Deficiency of Matching PursuitDeficiency of Matching Pursuit
l hl hTypeAlgorithmsTypeAlgorithms

If the algorithm picks a wrong index at an iteration,
there is no way to correct this error in subsequent
iterationsiterations.

Some Recent Algorithms
�•StagewiseOrthogonal Matching Pursuit (Donoho,Tsaig, ..)
�•COSAMP (Needell Tropp)COSAMP (Needell, Tropp)
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InverseTechniquesInverseTechniquesInverseTechniquesInverseTechniques
For the systems of equations x = y, the solution set is
characterized by {xs : xs = + y + v; v N( )}, whereN( )
denotes the null space of and + = T( T ) 1.

MinimumNorm solution:The minimum 2 norm solution

xmn = +y is a popular solution

Noisy Case: regularized 2 norm solution often employed and
is given by

T( T )xreg = T( T + I) 1y

29



Minimum 2Minimum 2 NormSolutionNormSolutionMinimum 2Minimum 2 NormSolutionNormSolution

Problem: Minimum 2 norm solution is not sparse

Example:
1 0 1 1

y,
0 1 1 0

y

vs.
2 1 1
3 3 3

T

mnx 1 0 0 Tx

DFT:Also computes minimum 2 norm solution

30



Diversity MeasuresDiversity MeasuresDiversity MeasuresDiversity Measures
Recall:

1

min ( 0) subject to y
m

ix
i

I x x

Functionals whose minimization leads to sparse
solutionssolutions

Many examples are found in the fields of economics,
social science and information theoryy

These functionals are usually concave which leads to
difficult optimization problemsp p

31



Examples of Diversity MeasuresExamples of Diversity MeasuresExamples of Diversity MeasuresExamples of Diversity Measures

(p 1) Diversity Measure

( )

1

( ) , 1
m

pp
i

i

E x x p

As p 0,
m m

( )

0 0
1 1

lim ( ) lim ( 0)
m m

pp
i ip p

i i

E x x I x

1 norm, convex relaxation of 0

(1) ( )
m

E

32

(1)

1

( ) i
i

E x x



Diversity MeasureDiversity Measure11 Diversity MeasureDiversity Measure
Noiseless case

N i
1

min subject to
m

ix
i

x x y

Noisy case

1 regularization [Candes, Romberg,Tao]
m

Lasso [Tibshirani], Basis Pursuit De noising [Chen,

2
1

min subject toix
i

x y x

[ ], g [ ,
Donoho, Saunders]

2
min

m

iy x x

33

2
1

ix
i
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11 normminimization andMAPnormminimization andMAP
i ii iestimationestimation

MAP estimation

�ˆ argmax ( | )
x

x p x y

f

argmax log ( | ) log ( )
x

p y x p x

If we assume

i is zero mean, i.i.d. Gaussian noise

Then
( ) ( ), where ( ) expi i i

i

p x p x p x x

34

2

2
�ˆ argmin ix

i

x y x x



Attractiveness ofAttractiveness of methodsmethodsAttractiveness ofAttractiveness of 11 methodsmethods
ConvexOptimization and associated withp
rich class of optimization algorithms

Interior point methodsInterior point methods

Coordinate descent method

�…�….

QuestionQuestion
What is the ability to find the sparse solution?

35



Why diversity measure encouragesWhy diversity measure encourages
llsparse solutions?sparse solutions?

1 2 1 1 2 2min [ , ] subject to
pT

p
x x x x y

1 1 2 2x x y

equal norm
contour

36
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norm and linear programmingnorm and linear programming11 norm and linear programmingnorm and linear programming

min subject toTc x x yLinear Program (LP): j
x

yg ( )

Key Result in LP (Luenberger):y ( g )

a) If there is a feasible solution, there is a basic
feasible solution*feasible solution*

b) If there is an optimal feasible solution, there
is an optimal basic feasible solution.

37

* If is n×m, then a basic feasible solution is a solution
with n non zero entries



Example withExample with diversity measurediversity measureExample withExample with 11 diversity measurediversity measure

1 0 1 1
,

0 1 1 0
y

Noiseless Case

xBP = [1, 0, 0]T (machine precision)

Noisy Casey

Assume the measurement noise = [0.01, 0.01]T

regularization result: xl R = [0 986 0 8 77 × 10 6]T1 regularization result: xl1R [0.986, 0, 8.77 × 10 ]

Lasso result ( = 0.05): xlasso = [0.975, 0, 2.50 × 10 5]T
38
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Example withExample with 11 diversity measurediversity measure
Continue with the DFT example:

0 1 0,1,2,.[ ] 2(cos cos ), .., 1. 64.l ny l l l n

0 1

2 33 2 34
, .

64 2 64 2

64, 128,256,512 DFT cannot separate the adjacent
frequency components
Using diversity measure minimization (m=256)Using 1 diversity measure minimization (m=256)

0 8

1

0.4

0.6
0.8

39
50 100 150 200 250

0
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ImportantQuestionsImportantQuestionsImportantQuestionsImportantQuestions
When is the 0 solution unique?

When is the 1 solution equivalent to that of 0?

N i l CNoiseless Case

Noisy Measurements

41



UniquenessUniquenessUniquenessUniqueness

D fi iti f S kDefinition of Spark

The smallest number of columns from that are
linearly dependent (Spark( ) n+1)linearly dependent. (Spark( )  n+1)

Uniqueness of sparsest solution
1m

If , then x is the unique

solution to
1

1
( 0) Spark( )

2

m

i
i

I x

1

argmin ( 0) subject to
m

ix
i

I x x y

42



Mutual CoherenceMutual CoherenceMutual CoherenceMutual Coherence
For a given matrix = [ 1, 2, �…, m], the mutual

h ( ) i d fi dcoherence µ( ) is defined as

T
i j

1 , ;
2 2

( ) max i j

i j m i j
i j

43



Performances ofPerformances of 11 diversitydiversity
l hl hminimization algorithmsminimization algorithms

N i l C [D h & El d ]Noiseless Case [Donoho & Elad 03]

If , then x is the unique1 1
( 0) 1

( )

m

iI x , q

solution to
1

( )
2 ( )i

i

m

1

argmin subject toix
i

x x y

44



Performances ofPerformances of 11 diversitydiversity
l hl hminimization algorithmsminimization algorithms

Noisy Case [Donoho et al 06]

Assume y = x + , ,

Then the solution
1

1 1
( 0) 1

4 ( )

m

i
i

I x2

Then the solution

*
2

1

argmin subject to
m

id
i

d d y d

satisfies

2
2* 4

d x
2

0

4
1 ( ) 4 1

d x
x

45



Empirical distribution of mutualEmpirical distribution of mutual
coherence (Gaussian matrices)coherence (Gaussian matrices)coherence (Gaussian matrices)coherence (Gaussian matrices)

Gaussian Matrices: N(0,1), normalize column norm to 1.
2000 random generated matrices
Histogram of mutual coherence
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Performance ofOrthogonalPerformance ofOrthogonal
hhMatching PursuitMatching Pursuit

Noiseless Case [Tropp 04]

If , thenOMP guarantees
1

1 1
( 0) 1

2 ( )

m

i
i

I x

recovery of x after iterations.
1

( 0)
m

i
i

I x

47



Performance ofOrthogonalPerformance ofOrthogonal
hhMatching PursuitMatching Pursuit

Noisy Case [Donoho et al]

Assume y = x + , , ,min 1
min ii m

x x

m

2

and .
1 min

1 1
( 0) 1

2 ( ) ( )

m

i
i

I x
x

StopOMPwhen residual error .

Then the solution ofOMP satisfies
2

48
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2
0

1 ( ) 1OMPx x
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RestrictedRestricted IsometryIsometry ConstantConstantRestrictedRestricted IsometryIsometry ConstantConstant
Definition [Candes et al]
For a matrix , the smallest constant k such that

2 2 2
(1 ) (1 )k kx x x

for any k sparse signal x.

2 2 2
( ) ( )k k

49



Performances ofPerformances of 11 diversitydiversity
l hl hmeasure minimization algorithmsmeasure minimization algorithms

[Candes 08]

Assume y = x + , x is k sparse, and .

Then, the solution
2 2 1k2

*
2

1

argmin subject to
m

id
i

d d y d

satisfies
*

2
d x C

where C only depends on 2k.

2

50



Performances ofPerformances of 11 diversitydiversity
l hl hmeasure minimization algorithmsmeasure minimization algorithms

[Candes 08]

Assume y = x + , and .

Then, the solution
2 2 1k2

*
2

1

argmin subject to
m

id
i

d d y d

satisfies
*

1 212

1
kd x C x x C

k
where C1, C2 only depend on 2k, and xk is the vector xwith

all but the k largest entries set to zero.

k
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Matrices withGood RICMatrices withGood RICMatrices withGood RICMatrices withGood RIC
It turns out that randommatrices can satisfy the
requirement (say ) with high probabilityrequirement (say, ) with high probability.

For a matrix n×m

Generate each element N(0 /n) i i d

2 2 1k

Generate each element ij ~N(0, 1/n), i.i.d.

[Candes et al] If , then P( ) 1.2 2 1k=O log
m

n k
k

Observations:
A large Gaussian random matrix will have good RIC with high
probability.p y

Similar results can be obtained using other probability ensembles:
Bernoulli, Random Fourier, �….

For 1 based procedure, number of measurements
required are n > k logm

52~



MoreGeneralQuestionMoreGeneralQuestionMoreGeneralQuestionMoreGeneralQuestion
What are limits of recovery in the presence
of noise?of noise?
No constraint on recovery algorithm

Information theoretic approaches are useful
in this case (Wainwright, Fletcher,
Akcaka a )Akcakaya, ..)

Can connect the problem of supportCan connect the problem of support
recovery to channel coding over the
Gaussian multiple access channel. Capacity

i b f l (Ji )regions become useful (Jin)
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Performance for Support RecoveryPerformance for Support Recovery
Noisy measurements: y = x + , i ~N(0, ), i.i.d.
Randommatrix , ij ~N(0, ), i.i.d.
Performance metric: exact support recovery

2
a

2

Performance metric: exact support recovery
Consider a sequence of problems with increasing sizes

k = 2: . (Two user MAC capacity)
2

2
,2{1 ,2}

1
( ) min log 1

2
a

nonzero iT
i T

c x x
T

Sufficient condition

If
l

Necessary condition

If there exists a sequence of

2 i TT

then there exists a sequence of

log
limsup ( )

m m

m
c x

n
support recovery methods
such that

�ˆlim supp( ) supp( ) 0P x x
support recovery methods (for
diff. problems resp.) such that

�ˆlim supp( ) supp( ) 0P x x

then
log

limsup ( )
m

c x
n

lim supp( ) supp( ) 0
m

P x x

The approach can deal with general scaling among (m, n, k).
54
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Network information theory perspectiveNetwork information theory perspective
C ti t h l di (C ti t h l di (KK ))Connection to channel coding (Connection to channel coding (KK = 1)= 1)

y x

xixi

this column is selectedthis column is selected

55



i

× x
y

× xi

y = xi i +

56



AdditiveWhiteGaussian Noise (AWGN)AdditiveWhiteGaussian Noise (AWGN)
Ch lCh lChannelChannel

e

a bh

a: channel input
h h l ih: channel gain
e: additive Gaussian noise
b: channel output b = ha + e

Recall
y = xi i +

b: channel output, b = ha + e

57
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ha b
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xi

e

ha b
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Connection to channel coding: (Connection to channel coding: (KK 1)1)

xy

x

xy

x s1

x sk

63



Multiple Access Channel (MAC)Multiple Access Channel (MAC)

ys1 sk

y = xs1 s1+�…+xsk sk+xs1 xsk

e

aK bhK b = h1a1+�…+hKaK+ eb

a1

h1

64
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Connection between two problemsConnection between two problems

y x

x a

e

hs1

x

aK

b

a

hK

h1

xsk a1

: dictionary, measurement matrix codebook

i: a column a codeword

d ffm different positions in x message set {1, 2, �…,m}

s1,�…,sk: indices of nonzer0s the messages selected

ti it h l i hxsi: source activity channel gain hi
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Differences between two problemsDifferences between two problems

Channel coding Support recovery

All �“ d �” h th
Each sender works with a

codebook designed only for that
sender.

All �“senders�” share the same
codebook A. Different senders
select different codewords.

(Common codebook)(Common codebook)

Capacity result available when
channel gain hi is known at

We don�’t know the nonzero signal
activities xi.

Proposed approach [Jin, Kim and Rao]

channel gain hi is known at
receiver.

activities xi.
(Unknown channel)

LeverageMAC capacity result to shed light on performance limit of exact
support recovery.

Conventional methods + customizedmethodsConventional methods + customizedmethods.
Distance decoding
Nonzero signal value estimation
Fano�’s Inequality 66
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Outline

1. Motivation:  Limitations of popular inverse methods

2. Maximum a posteriori (MAP) estimation

3. Bayesian Inference

4. Analysis of Bayesian inference and connections with MAP

5. Applications to neuroimaging



Section I:  

Motivation



Limitation I

♦ Most sparse recovery results, using either greedy methods 
(e.g., OMP) or convex !1 minimization (e.g., BP), place 
heavy restrictions on the form of the dictionary Φ.

♦ While in some situations we can satisfy these restrictions ♦ While in some situations we can satisfy these restrictions 
(e.g., compressive sensing), for many applications we 
cannot (e.g., source localization, feature selection).

♦ When the assumptions on the dictionary are violated, 
performance may be very suboptimal



Limitation II

♦ The distribution of nonzero magnitudes in the maximally 
sparse solution x0 can greatly affect the difficulty of 
canonical sparse recovery problems.

This effect is strongly algorithm-dependent …♦ This effect is strongly algorithm-dependent …



Examples: 
!!!!1 -norm Solutions and OMP

♦ With !1 -norm solutions, performance is independent of the 
magnitudes of nonzero coefficients [Malioutov et al., 2004].

♦ Problem: Performance does not improve when the ♦ Problem: Performance does not improve when the 
situation is favorable.

♦ OMP is highly sensitive to these magnitudes.

♦ Problem: Perform degrades heavily with unit magnitudes.



♦ If the magnitudes of the non-zero elements in x0 are highly 
scaled, then the canonical sparse recovery problem should 
be easier.

In General

♦ The (approximate) Jeffreys distribution produces sufficiently 
scaled coefficients such that best solution can always be 
easily computed.

uniform coefficients (hard)

x0

scaled coefficients (easy)

x0
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Empirical Example

♦ For each test case:

1. Generate a random dictionary Φ with 50 rows and 100 columns.

2. Generate a sparse coefficient vector x0. 

3. Compute signal via   y = Φ x (noiseless).3. Compute signal via   y = Φ x0 (noiseless).

4. Run BP and OMP, as well as a competing Bayesian method called 

SBL (more on this later) to try and correctly estimate x0.

5. Average over1000 trials to compute empirical probability of failure.

♦ Repeat with different sparsity values, i.e.,         ranging 
from 10 to 30. 

0 0
x



Sample Results (n = 50, m = 100)
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Limitation III

♦ It is not immediately clear how to use these methods to 
assess uncertainty in coefficient estimates (e.g., 
covariances) .  

♦ Such estimates can be useful for designing an optimal ♦ Such estimates can be useful for designing an optimal 
(non-random) dictionary Φ.

♦ For example, it is well known in and machine learning 
and image processing communities that under-sampled 
random projections of natural scenes are very 
suboptimal.



Section II:  

MAP Estimation Using 
the Sparse Linear Modelthe Sparse Linear Model



Overview

♦ Can be viewed as sparse penalized regression with 
general sparsity-promoting penalties (!1 penalty is special 
case). 

♦ These penalties can be chosen to overcome some 
previous limitations when minimized with simple, efficient previous limitations when minimized with simple, efficient 
algorithms.

♦ Theory is somewhat harder to come by, but practical 
results are promising.

♦ In some cases can guarantee improvement over !1
solution on sparse recovery problems.



♦ Linear generative model:

Sparse Linear Model

      = Φ +y x Observed 

n-dimensional

data vector Matrix of m

basis vectors

Unknown

Coefficients

Gaussian noise 

with variance λ

♦ Objective:  Estimate the unknown x given the following 
assumptions:

1. Φ is overcomplete, meaning the number of columns m is greater 

than the signal dimension n.

2. x is maximally sparse, i.e., many elements equal zero.

basis vectors



Sparse Inverse Problem

♦ Noiseless case (εεεε = 0):

0 0
     arg min s.t. = Φ

x
x x y x

!0 norm  =  # of nonzeros in x

♦ Noisy case (εεεε > 0):

( ) 2

0 2 0

21 1
2 22 0

arg min   

arg max  exp expλ

λ λ−Φ +

   = − −Φ −  

x

x

x y x x

y x x



likelihood prior



Difficulties

1. Combinatorial number of local minima

2. Objective is discontinuous

A variety of existing approximate methods can 
be viewed as MAP estimation using a flexible 
class of sparse priors.



Sparse Priors: 2-D Example

Gaussian Distribution Sparse Distribution

[Tipping, 2001]



Basic MAP Estimation

( )

( ) ( )

( )2

2

ˆ arg max |

arg min log | log

arg min
n

i

p

p p

g xλ
=

= − −

= −Φ + 

x

x

x

x x y

y x x

y x



2
1i=


x

data fit where h is a 
nondecreasing, 

concave function

( ) ( )2 ,i ig x h x=

Note: Bayesian interpretation will be useful later …



Example Sparsity Penalties

♦ With                             we have the canonical sparsity 
penalty and its associated problems. 

♦ Practical selections:

( ) ( )2
Chartrand and Yin, 2008log , [ ]i ig x x ε= +

( ) [ ]  I 0i ig x x= ≠

♦ Different choices favor different levels of sparsity.

( ) ( )
( ) ( )

( )

Candes et al., 2008

Rao et al., 2003

log , [ ]

log , [ ]

, [ ]

i i

i i

p

i i

g x x

g x x

g x x

ε

ε

= +

= +

=



Example 2-D Contours
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Which Penalty Should We Choose?

♦ Two competing issues:

1. If the prior is too sparse (e.g., p ≈ 0), then we may get stuck in a 
local minima:  convergence error.

If the prior is not sparse enough (e.g. p ≈ 1), then the global 2. If the prior is not sparse enough (e.g. p ≈ 1), then the global 

minimum may be found, but it might not equal x0 :  structural error.

♦ Answer is ultimately application- and algorithm-
dependent



Convergence Errors vs. Structural Errors
lo

g
 p

(x
|y

)

lo
g
 p
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Convergence Error (p ≈ 0) Structural Error (p ≈ 1)

x0x'

-l
o
g
 p

-l
o
g
 

x' =   solution we have converged to

x0 =   maximally sparse solution

x' x0



Desirable Properties of Algorithms

♦ Can be implemented via relatively simple primitives 
already in use, e.g., !1 solvers, etc.

♦ Improved performance over OMP, BP, etc.

♦ Naturally extends to more general problems:

1. Constrained sparse estimation (e.g., finding non-negative sparse 
solutions)

2. Group sparsity problems …



Extension: Group Sparsity

♦ Example :
♦ The simultaneous sparse estimation problem - the goal is to recover 

a matrix X, with maximal row sparsity [Cotter et al., 2005; Tropp, 2006] , given 

observation matrix Y produced via

Optimization Problem:

Y X E= Φ +

♦ Optimization Problem:

♦ Can be efficiently solved/approximated by replacing 
indicator function with alternative function g.

( ) 2

0
X

1

X   arg min  Y X I 0
m

iF
i

λ λ ⋅
=

= −Φ +  ≠   x

# of nonzero rows in X



Reweighted !!!!2 Optimization

♦ Assume: 

♦ Updates:

( )

2( 1) ( ) 2

2

1
( ) ( )

arg min  k k

i i

i

k T k T

w x

W I W

λ

λ

+

−

→ −Φ +

= Φ +Φ Φ


x

x y x

y 

( ) ( )2 ,    concavei ig x h x h=

♦ Based on simple 1st order approx. to             [Palmer et al., 2006].

♦ Guaranteed not to increase objective function.

♦ Global convergence assured given additional assumptions.

( ) 1( 1) ( 1) ( 1)

2
( 1)

    ,   diagik k k

i

i k
i ix x

g x
w W

x

−+ + +

+=

∂
 → →  ∂
w

( )ig x



Examples

1. FOCUSS algorithm [Rao et al., 2003]:

♦ Penalty:

♦ Weight update:

♦ Properties:  Well-characterized convergence rates; very susceptible 

to local minima when p is small.

( )   ,   0 2
p

i ig x x p= ≤ ≤

2( 1) ( 1)    
pk k

i iw x
−+ +→

2. Chartrand and Yin (2008) algorithm:

♦ Penalty:

♦ Weight update:

♦ Properties:  Slowly reducing  ε to zero smoothes out local minima 
initially allowing better solutions to be found; very useful for 
recovering scaled coefficients …

( ) ( )2  log ,   0i ig x x ε ε= + ≥

( )
12( 1) ( 1)    k k

i iw x ε
−

+ + → +  



Empirical Comparison

♦ For each test case:

1. Generate a random dictionary Φ with 50 rows and 250 columns

2. Generate a sparse coefficient vector x0. 

3. Compute signal via   y = Φ x (noiseless).3. Compute signal via   y = Φ x0 (noiseless).

4. Compare Chartrand and Yin’s reweighted !2 method with !1 norm 

solution with regard to estimating x0.

5. Average over 1000 independent trials.

♦ Repeat with different sparsity levels and different nonzero 
coefficient distributions.



Empirical: Unit Nonzeros
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Results: Gaussian Nonzeros
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Reweighted !!!!1 Optimization

♦ Assume:

♦ Updates: 2( 1) ( )

2
arg min  k k

i ii
w xλ+ → −Φ + 

x
x y x

( )( 1)     ik g x
w + ∂

→

( ) ( ) ,    concavei ig x h x h=

♦ Based on simple 1st order approximation to             [Fazel et al., 2003]

♦ Global convergence given minimal assumptions [Zangwill, 1969].

♦ Per-iteration cost expensive, but few needed (and each are sparse). 

♦ Easy to incorporate alternative data fit terms or constraints on x.

( 1)

( 1)

    k

i

i k
i ix x

w
x +=

→
∂

( )ig x



Example [Candes et al., 2008]

♦ Penalty:

♦ Updates:

( ) ( )log ,   0i ig x x ε ε= + ≥

2( 1) ( )

2
arg min  k k

i ii
w xλ+ → −Φ + 

x
x y x

1
( 1) ( 1)    k k

i iw x ε
−

+ + → + 

♦ When nonzeros in x0 are scaled, works much better than 

regular !1, depending on how ε is chosen.

♦ Local minima exist, but since each iteration is sparse, 
local solutions are not so bad (no worse than regular !1
solution).



Empirical Comparison

♦ For each test case:

1. Generate a random dictionary Φ with 50 rows and 100 columns.

2. Generate a sparse coefficient vector x0 with 30 truncated 
Gaussian, strictly positive nonzero coefficients.

Compute signal via  y = Φ x (noiseless).3. Compute signal via  y = Φ x0 (noiseless).

4. Compare Candes et al.’s reweighted !1 method (10 iterations) with 
!1 norm solution, both constrained to be non-negative to try and 

estimate x0.

5. Average over 1000 independent trials.

♦ Repeat with different values of the parameter ε .
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Conclusions

♦ In practice, MAP estimation addresses some limitations 
of standard methods (although not Limitation III, 
assessing uncertainty). 

♦ Simple updates are possible using either iterative 
reweighted ! or ! minimization.reweighted !1 or !2 minimization.

♦ More generally, iterative reweighted f minimization, 
where f is a convex function, is possible.



Section III:  

Bayesian Inference Using 
the Sparse Linear Modelthe Sparse Linear Model



Note

♦ MAP estimation is really just standard/classical penalized 
regression.

♦ So the Bayesian interpretation has not really contributed 
much as of yet …much as of yet …



Posterior Modes vs. Posterior Mass

♦ Previous methods focus on finding the implicit mode of 
p(x|y) by maximizing the joint distribution

♦ Bayesian inference uses posterior information beyond 
the mode, i.e., posterior mass:

( ) ( ) ( ), |p p p=x y y x x

♦ Examples:

1. Posterior mean:  Can have attractive properties when used as a 
sparse point estimate (more on this later …).

2. Posterior covariance:  Useful assessing uncertainty in estimates, 
e.g., experimental design, learning new projection directions for 
compressive sensing measurements.



Posterior Modes vs. Posterior Mass

Mode

y
)

Probability Mass

p
(x

|y

x



Problem

♦ For essentially all sparse priors, cannot compute 
normalized posterior

( )
( ) ( )

( ) ( )
|

|
|

p p
p

p p d
=


y x x
x y

y x x x

♦ Also cannot computer posterior moments, e.g.,

♦ So efficient approximations are needed …

[ ]
[ ]

E |

Cov |

x

x

µ =

Σ =

x y

x y



Approximating Posterior Mass

♦ Goal: Approximate p(x,y) with some distribution              that    

1. Reflects the significant mass in p(x,y).

2. Can be normalized to get the posterior p(x|y).

Has easily computable moments, e.g., can compute E[x|y] or Cov[x|y].

( )ˆ ,p x y

3. Has easily computable moments, e.g., can compute E[x|y] or Cov[x|y].

♦ Optimization Problem:  Find the               that minimizes the 
sum of the misaligned mass:

( ) ( ) ( ) ( ) ( )ˆ ˆ, , |p p d p p p d− = − x y x y x y x x x x

( )ˆ ,p x y



Recipe

1. Start with a Gaussian likelihood

2. Pick an appropriate prior p(x) that encourages sparsity

( ) ( ) ( )2

2

21

22
| 2 exp

n

p
σ

πλ
−

= − −Φy x y x

3. Choose a convenient parameterized class of 
approximate priors 

4. Solve:

5. Normalize:

ˆ arg min ( | ) ( ) ( ; )p p p d= −


 y x x x  x

( ) ( )ˆ ;p p=x x 

( )
( ) ( )

( ) ( )

ˆ| ;
ˆ| ;

ˆ| ;

p p
p

p p d
=


y x x 
x y 

y x x  x



Step 2: Prior Selection

♦ Assume a sparse prior distribution on each coefficient:

( ) ( )2log ( ) ,     concave, non-decreasing.i i ip x g x h x h− ∝ =

2-D example

Gaussian Distribution Sparse Distribution

[Tipping, 2001]



Step 3:  Forming Approximate Priors p(x;γγγγ)

♦ Any sparse prior can be expressed via the dual form [Palmer et al., 2006]:

♦ Two options:

1. Start with          and then compute           via convexity results, or 

2. Choose            directly and then compute          ; this procedure will always 
produce a sparse prior  [Palmer et al. 2006].        

( ) ( )
2

1/2

0
( ) max 2 exp

2i

i
i i i

i

x
p x

γ
πγ ϕ γ

γ

−

≥

  
= −  

  

( )iϕ γ
( )iϕ γ

( )ip x

( )ip x
produce a sparse prior  [Palmer et al. 2006].        

♦ Dropping the maximization gives the strict variational lower bound

♦ Yields a convenient class of scaled Gaussian approximations:

( ) ( )
2

1/2
( ) ( ; ) 2 exp

2
i

i i i i i

i

x
p x p x γ πγ ϕ γ

γ
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≥ = − 

 

( ) ( ); ;i i

i

p p x γ=∏x 



Example: Approximations to Sparse Prior

p(xi)

p(xi;γi)

xi



Step 4:  Solving for the Optimal γγγγ

♦ To find the best approximation, must solve

♦ By virtue of the strict lower bound, this is equivalent to

0

ˆ arg min ( | ) ( ) ( ; )p p p d
≥

= −


 y x x x  x

( )

0

1

0
1

ˆ arg max ( | ) ( ; )

arg min log 2 log
m

T

y y i
i

p p d

ϕ γ

≥

−

≥
=

=

= Σ + Σ −









 y x x  x

y y

where ( )diagT

y IλΣ = +ΦΓΦ Γ = 



How difficult is finding the optimal 
parameters γ?γ?γ?γ?

♦ If original MAP estimation problem is convex, then so is 
Bayesian inference cost function [Nickisch and Seeger, 2009].

♦ In other situations, Bayesian inference cost is generally ♦ In other situations, Bayesian inference cost is generally 
much smoother than associated MAP estimation (more 
on this later …). 



Step 5: Posterior Approximation

♦ We have found the approximation

♦ By design, this approximation reflects significant mass in 
the full distribution p(x,y).

( ) ( ) ( ) ( )ˆ ˆ| ; , ; ,p p p p= ≈y x x  x y  x y

the full distribution p(x,y).

♦ Also, it is easily normalized to form

( ) ( )ˆ| ; ,x xp N µ= Σx y 

[ ] ( )
[ ] ( )
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ˆ ˆˆE | ;

ˆ ˆ ˆ ˆˆCov | ;

T T
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T T
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I

µ γ λ

γ λ

−

−

= = ΓΦ +ΦΓΦ

Σ = = Γ −ΓΦ +ΦΓΦ ΦΓ

x y y

x y



Applications of Bayesian Inference

1. Finding maximally sparse representations
♦ Replace MAP estimate with posterior mean estimator.

♦ For certain prior selections, this can be very effective (next section)

2. Active learning, experimental design



Experimental Design

♦ Basic Idea [Shihao Ji et al., 2007, Seeger and Nickisch, 2008]:  
Use the approximate posterior

to learn new rows of the design matrix Φ such that 
uncertainty about x is reduced.

( ) ( )ˆ| ; ,x xp N µ= Σx y 

uncertainty about x is reduced.

♦ Choose each additional row to minimize the differential 
entropy H:

( )
1

1
2

ˆ ˆ ˆ ˆlog , T T

x xH Iλ
−

= Σ Σ =Γ −ΓΦ +ΦΓΦ ΦΓ



Experimental Design Cont.

♦ Drastic improvement over random projections is possible 
in a variety of domains.

♦ Examples:

♦ Reconstructing natural scenes [Seeger and Nickisch, 2008]♦ Reconstructing natural scenes [Seeger and Nickisch, 2008]

♦ Undersampled MRI reconstruction [Seeger et al., 2009]



Section IV:  

Analysis of Bayesian 
Inference and Inference and 

Connections with MAP



Overview

♦ Bayesian inference can be recast as a general form of 
MAP estimation in x-space.

♦ This is useful for several reasons:

1. Allows us to leverage same algorithmic formulations as with iterative 
reweighted methods for MAP estimation.reweighted methods for MAP estimation.

2. Reveals that Bayesian inference can actually be an easier 
computational task than searching for the mode as with MAP.

3. Provides theoretical motivation for posterior mean estimator when 
searching for maximally sparse solutions.

4. Allows modifications to Bayesian inference cost (e.g., adding 
constraints), and inspires new non-Bayesian sparse estimators.



Reformulation of Posterior Mean Estimator

( ) ( )1  min     log  2 logT Tg Iλ ϕ γ−= Γ + +ΦΓΦ − x x x

Theorem

[ ] ( )2

infer2
ˆ    E | , arg minx gλ= = −Φ +

x
 x y  y x x

with Bayesian inference penalty function

( ) ( )1

infer
0

  min     log  2 logT T

ii
g Iλ ϕ γ−

≥
= Γ + +ΦΓΦ − 

x x x

[Wipf and Nagarajan, 2008]

 So the posterior mean can be obtained by minimizing a 
penalized regression problem just like MAP

 Posterior covariance is a natural byproduct as well



Property I of Penalty ginfer(x)

♦ Penalty ginfer(x) is formed from a minimum of upper-
bounding hyperplanes with respect to each      .

♦ This implies:

2

ix

1. Concavity in for all i [Boyd 2004].

2. Can be implemented via iterative reweighted !2 minimization (multiple 
possibilities using various bounding techniques)  [Seeger, 2009; Wipf and 

Nagarajan, 2009]. 

3. Note: Posterior covariance can be obtained easily too, therefore entire 
approximation can be computed for full Bayesian inference. 

2

ix



Student’s t Example

♦ Assume the following sparse distribution for each 
unknown coefficient:

♦ When                     , prior approaches a Gaussian (not sparse)

( )
( )1/22

2

a

i
i

x
p x b

− +
 

∝ + 
 

a b= →∞

Note:

♦ When                     , prior approaches a Gaussian (not sparse)

♦ When                     , prior approaches a Jeffreys (highly sparse)

♦ Using convex bounding techniques to approximate the 
required derivatives, leads to simple reweighted !2
update rules [Seeger, 2009; Wipf and Nagarajan, 2009].

♦ Algorithm can also be derived via EM [Tipping, 2001]. 

a b= →∞
0a b= →



Reweighted !!!!2 Implementation Example

( )

2( 1) ( ) 2

2

1
( ) ( )

arg min  

,

k k

i i

i

k T k T

w x

W I W

λ

λ
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x y x
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( 1)     k

iw + → 1 2
 

a+

1( ) ( ) diagk kW
−

 =  w

• Guaranteed to reduce or leave unchanged objective function at each iteration

• Other variants are possible using different bounding techniques

• Upon convergence, posterior covariance is given by                                                  

    iw →

( ) ( ) ( ) ( )
12 1 2( 1) ( ) ( ) ( )

1 2
 

  2k k k T k T

i i i i i

a

x w w I W bφ λ φ
−− −+

+

+ − +Φ Φ +

11 ( ) ( ) ( ),     diagT k k k

x W Wλ
−−   Σ = Φ Φ+ =   w



Property II of Penalty ginfer(x)

If                     is concave in     , then:

1. ginfer(x) is concave in |xi| for all i sparsity-inducing

( )2log iϕ γ− iγ

2. The implies posterior mean will always have at least m – n 
elements equal to exactly zero as occurs with MAP.

3. Can be useful for canonical sparse recovery problems …

4. Can implement via reweighted !1 minimization

[Wipf, 2006; Wipf and Nagarajan, 2009]



Reweighted !!!!1 Implementation Example

♦ Assume

2( 1) ( )

2
   arg min  k k

i i

i

w xλ+ → −Φ + 
x

x y x

( )
1
21

( 1) 2 ( ) ( 1)    diagk T k k Tw I W aφ σ φ
−

+ +  → +Φ Φ + x

( )2log     ,    0i ia aϕ γ γ− = ≥

( )( 1) 2 ( ) ( 1)    diagk T k k T

i i iw I W aφ σ φ+ +  → +Φ Φ +   
x

 Guaranteed to converge to a minimum of the Bayesian 
inference objective function

 Easy to outfit with additional constraints

 In noiseless case, sparsity will not increase, i.e.,

( )1 -norm( 1) ( )

0 0 0
  k k+ ≤ ≤x x x





Property III of Penalty ginfer(x)

♦ Bayesian inference is most sensitive to posterior mass, 
therefore it is less sensitive to spurious local peaks as is 
MAP estimation.

♦ Consequently, in x-space, the Bayesian Inference ♦ Consequently, in x-space, the Bayesian Inference 
penalized regression problem

is generally smoother than associated MAP problem.

( )2

infer2
min gλ−Φ +

x
y x x



Student’s t Example

♦ Assume the Student’s t distribution for each unknown 
coefficient:

♦ When                     , prior approaches a Gaussian (not sparse)

( )
( )1/22

2

a

i
i

x
p x b

− +
 

∝ + 
 

a b= →∞
Note:

♦ When                     , prior approaches a Gaussian (not sparse)

♦ When                     , prior approaches a Jeffreys (highly sparse)

♦ Goal: Compare Bayesian inference and MAP for 
different sparsity levels to show smoothing effect.

a b= →∞
0a b= →



Visualizing Local Minima Smoothing

♦ Consider when                has a 1-D feasible region, i.e., 

m = n +1 

♦ Any feasible solution x will satisfy:   

     α= +x x v

= Φy x

♦ Can plot penalty functions vs. α to view local minima profile 
over the 1-D feasible region.

( )

true

ull

where        is a scalar  

 is the true generative coefficients

N

α

∈ Φv

x

true     α= +x x v



Empirical Example

♦ Generate an iid Gaussian random dictionary Φ with 10 
rows and 11 columns.

♦ Generate a sparse coefficient vector xtrue with 9 nonzeros
and Gaussian iid amplitudes. 

♦ Compute signal y = Φ x0.

♦ Assume a Student’s t prior on x with varying degrees of 
sparsity.

♦ Plot MAP/Bayesian inference penalties vs. α to compare 
local minima profiles over the 1-D feasible region.
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Local Minima Smoothing Example #1

Low Sparsity

Student’s t
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Local Minima Smoothing Example #2

Medium Sparsity

Student’s t
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Local Minima Smoothing Example #3

High Sparsity

Student’s t
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Property IV of Penalty ginfer(x)

♦ Non-separable, meaning

♦ Non-separable penalty functions can have an advantage 
over separable penalties (i.e., MAP) when it comes to 

( ) ( )infer   i i

i

g g x≠ x

over separable penalties (i.e., MAP) when it comes to 
canonical sparse recovery problems [Wipf and Nagarajan, 2010].



Example
♦ Consider original sparse estimation problem

♦ Problem: Combinatorial number of local minima:

0 0
     arg min s.t. = Φ

x
x x y x

♦ Problem: Combinatorial number of local minima:

♦ Local minima occur at each basic feasible solution 
(BFS):

1
1 number of local minima

m m

n n

−   
+ ≤ ≤   

   

0
s.t.n≤ = Φx y x



Visualization of Local Minima in !!!!0 Norm

♦ Generate an iid Gaussian random dictionary Φ with 10 
rows and 11 columns.

♦ Generate a sparse coefficient vector xtrue with 9 nonzeros
and Gaussian iid amplitudes. 

♦ Compute signal via y = Φ x0.

♦ Plot          vs. α (1-D null space dimension) to view local 
minima profile of the !0 norm over the 1-D feasible region.

0
x
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Non-Separable Penalty Example

♦ Would like to smooth local minima while retaining same 
global solution as !0 at all times (unlike !1 norm)

♦ This can be accomplished by a simple modification of 
the !0 penalty.

!!!!♦ Truncated !!!!0 penalty:

♦ If  k < m, then there will necessarily be fewer local 
minima; however, the implicit prior/penalty function is 
non-separable.

0

 largest elements of 
ˆ   = arg min  s.t.

 

k=

= Φx

x x
x x

y x






Truncated !!!!0 Norm in 1-D Feasible Region
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Using posterior mean estimator for 
finding maximally sparse solutions

Summary of why this could be a good idea:

1. If                        is concave, then posterior mean will be 
sparse (local minima of Bayesian inference cost will also 
be sparse).

( )2log iϕ γ−

2. The implicit Bayesian inference cost function can be 
much smoother than the associated MAP objective.

3. Potential advantages of non-separable penalty functions.



♦ For sparsity, require that                     is concave.

♦ To avoid adding extra local minima (i.e., to maximally exploit 
smoothing effect), require that                       is convex.

♦ So                                            is well-motivated [Wipf et al. 2007].

Choosing the function ϕϕϕϕ

( )2log iϕ γ−

( )2log iϕ γ−

( )2log   ,   0a aϕ γ γ− = ≥♦ So                                            is well-motivated [Wipf et al. 2007].

♦ Assume simplest  case:                              , sometimes 
referred to as sparse Bayesian learning (SBL) [Tipping, 2001].

♦ We denote the penalty function in this case              . 

( )2log   ,   0i ia aϕ γ γ− = ≥

( )2log   0iϕ γ− =

( )SBLg x



Advantages of Posterior Mean Estimator

♦ In the low noise limit (λ → 0), and assuming                          
then the SBL penalty satisfies:

Theorem 

[ ]0 0
  <  spark 1,Φ −x

( )SBL 0: : 
arg min      arg min  g

=Φ =Φ
=

x y x x y x
x x

♦ No separable penalty                               satisfies this 
condition and has fewer minima than the SBL penalty in the 
feasible region.

( ) ( )  i ii
g g x= x

[Wipf and Nagarajan, 2008]

: : =Φ =Φx y x x y x



♦ Assume                                  .  If the magnitudes of the non-zero 

elements in x0 are sufficiently scaled, then the SBL cost (λ → 0) 

has a single minimum which is located at x0.  

Conditions For a Single Minimum

Theorem 

[ ]0 0
  <  spark 1Φ −x

♦ No possible separable penalty (standard MAP) satisfies this 
condition.

uniform coefficients (hard)

x0

scaled coefficients (easy)

x0

[Wipf and Nagarajan, 2009]



Empirical Example

♦ Generate an iid Gaussian random dictionary Φ with 10 
rows and 11 columns.

♦ Generate a maximally sparse coefficient vector x0 with 9 
nonzeros and either
1. amplitudes of similar scales, or1. amplitudes of similar scales, or

2. amplitudes with very different scales.

♦ Compute signal via  y = Φ x0.

♦ Plot MAP/Bayesian inference penalty functions vs. α to 
compare local minima profiles over the 1-D feasible 
region to see the effect of coefficient scaling.



Smoothing Example: Similar Scales
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Smoothing Example: Different Scales
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Always Room for Improvement

♦ Consider the noiseless sparse recovery problem.

♦ Under very mild conditions, SBL with reweighted !1

Theorem

0 0
     arg min s.t. = Φ

x
x x y x

♦ Under very mild conditions, SBL with reweighted !1
implementation will:

1. Never do worse than the regular !1-norm solution

2. For any dictionary and sparsity profile, there will always be 
cases where it does better.

[Wipf and Nagarajan, 2010]



Empirical Example:
Simultaneous Sparse Approximation

♦ Generate data matrix via Y = ΦX0 (noiseless):

♦ X0 is 100-by-5 with random nonzero rows.

♦ Φ is 50-by-100 with Gaussian iid entries

♦ Check if X0 is recovered using various algorithms:

1. Generalized SBL , reweighted !2 implementation [Wipf and 

Nagarajan, 2010]

2. Candes et al. (2008) reweighted !1 method

3. Chartrand and Yin (2008) reweighted !2 method

!" !1 solution via Group Lasso [Yuan and Lin, 2006]



Empirical Results (1000 Trials)
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Conclusions

♦ Posterior information beyond the mode can be very 
useful in a wide variety of applications.

♦ Variational approximation provides useful estimates of 
posterior means and covariances, which can be 
computed efficiently using standard iterative reweighting computed efficiently using standard iterative reweighting 
algorithms.

♦ In certain situations, posterior mean estimate can be 
effective substitute for !0 norm minimization.

♦ In simulation tests, out-performs a wide variety of MAP-
based algorithms [Wipf and Nagarajan, 2010]...



Section V:  

Application Examples in 
NeuroimagingNeuroimaging



Applications of Sparse Bayesian Methods

1. Recovering fiber track geometry from diffusion weighted MR 
images [Ramirez-Manzanares et al. 2007].

2. Multivariate autoregressive modeling of fMRI time series for 
functional connectivity analyses [Harrison et al. 2003].functional connectivity analyses [Harrison et al. 2003].

3. Compressive sensing for rapid MRI [Lustig et al. 2007].

4. MEG/EEG source localization [Sato et al. 2004; Friston et al. 2008].



MEG/EEG Source Localization

Maxwell’s eqs.

?

source space (X) sensor space (Y)



The Dictionary ΦΦΦΦ

♦ Can be computed using a boundary element brain model 
and Maxwell’s equations.

♦ Will be dependent on location of sensors and whether we 
are doing MEG, EEG, or both.

♦ Unlike compressive sensing domain, columns of Φ will be 
highly correlated regardless of where sensors are placed.



Source Localization

♦ Given multiple measurement vectors Y, MAP or 

Bayesian inference algorithms can be run to estimate X.

♦ The estimated nonzero rows should correspond with the 
location of active brain areas (also called sources).location of active brain areas (also called sources).

♦ Like compressive sensing, may apply algorithms in 
appropriate transform domain where row-sparsity
assumption holds.



Empirical Results

1. Simulations with real brain noise/interference:
♦ Generate damped sinusoidal sources

♦ Map to sensors using Φ and apply real brain noise, artifacts

2. Data from real-world experiments:
♦ Auditory evoked fields from binaurally presented tones (which produce ♦ Auditory evoked fields from binaurally presented tones (which produce 

correlated, bilateral activations)

Compare localization results using MAP estimation and 

SBL posterior mean from Bayesian inference



MEG Source Reconstruction Example

Ground Truth SBL Group Lasso



Real Data: 
Auditory Evoked Field (AEF)

SBL    Beamformer

sLORETA Group Lasso



Conclusion

♦ MEG/EEG source localization demonstrates the 
effectiveness of Bayesian inference on problems where 
the dictionary is:

♦ Highly overcomplete, meaning                 e.g.,,m n
275  and  100,000.n m= =

♦ Very ill-conditioned and coherent, i.e., columns are highly 
correlated.

275  and  100,000.n m= =



Final Thoughts

♦ Sparse Signal Recovery is an interesting area with many 
potential applications.

♦ Methods developed for solving the Sparse Signal Recovery 
problem can be valuable tools for signal processing practitioners.

♦ Rich set of computational algorithms, e.g.,
♦ Greedy search (OMP)
! norm minimization (Basis Pursuit, Lasso)♦ !1  norm minimization (Basis Pursuit, Lasso)

♦ MAP methods (Reweighted !1  and !2  methods)
♦ Bayesian Inference methods like SBL (show great promise)

♦ Potential for great theory in support of performance guarantees 
for algorithms. 

♦ Expectation is that there will be continued growth in the 
application domain as well as in the algorithm development.



Thank 
You


