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Abstract

We present a hierarchical architecture and learning dhgurifor visual recognition and
other visual inference tasks such as imagination, reaart&in of occluded images, and expect-
ation-driven segmentation. Using properties of biololgidsion for guidance, we posit a sto-
chastic generative world model and from it develop a simgaifivorld model (SWM) based
on a tractable variational approximation that is desigmeenforce sparse coding. Recent de-
velopments in computational methods for learning overdeteprepresentations (Lewicki and
Sejnowski, 2000; Teh et al., 2003) suggest that overcommpdsis can be useful for visual tasks,
and we use an overcomplete dictionary learning algorithmekz-Delgado et al., 2003) as a
preprocessing stage to produce accurate, sparse codimgagds.

Inference is performed by constructing a dynamic multitagetwork with feedforward,
feedback and lateral connections, which is trained to apymrate the SWM. Learning is done
with a variant of the backpropagation-through-time aldpon, which encourages convergence
to desired states within a fixed number of iterations. Vidasks require large networks and, to
make learning efficient, we take advantage of the sparsigaoh layer to update only a small
subset of elements in a large weight matrix at each iteratibxperiments on a set of rotated
objects demonstrate various types of visual inference,stwoiv that increasing the degree of
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overcompleteness improves recognition performance ficdif scenes with occluded objects
in clutter.

1 Introduction

Vision, whether in the brain or computer, can be chara&dris the process of inferring certain unknown
guantities using an input image and predictions or expec®tbased on prior exposure to the environ-
ment. Visual inference includes tasks such as recognizijgcts, reconstructing missing or occluded fea-
tures, imagining previously learned or entirely novel abge and segmentation (finding which features in
a cluttered image correspond to a particular object). Pmifay these inference tasks requires combining
information about the current image (bottom-up procegsargl abstract concepts of objects (top-down
processing). These tasks can naturally be placed into éneefivork of Bayesian probabilistic models, and
determining the structure and priors for such models is atgreallenge both for understanding vision in
the brain and for application-oriented computer vision.riyyary goal of this paper is to derive an effective
probabilistic model of visual inference consistent withreat understanding of biological vision.

A number of important properties have emerged from neueosei. 1) Vision in the brain is laierar-
chical process with information flowing from the retina to the latggeniculate nucleus (LGN), occipital
and temporal regions of the cortex (Kandel et al., 2000). 2 hierarchy has extensivecurrencewith
reciprocal connections between most regions (FellemarvVandessen, 1991). 3) There is also extensive
recurrence within cortical regions, as typified lageral inhibition which is a mechanism for how sparse
coding can arise (Callaway, 2004). 4) The primary visuateo(V1) is strikingly overcomplete mean-
ing there are many more cells than are needed to represergtihal information. In humans, there are
over 200-300 V1 neurons per each LGN neuron, and a lessezalefjovercompleteness in other primates
(Stevens, 2001; Ejima et al., 2003). 5) The firing patternsasfical neurons gives evidence feparse
distributed representationsn which only a few neurons are active out of a large popoiatand that in-
formation is encoded in these ensembles (Vinje and GalkAtt); Quiroga et al., 2005). 6) Finally, even
though there are differences between various areas, tiedtagture of the cortex is qualitatively similar,
and the notion otortical similarity states that the underlying cortical operation should béairftom area
to area (Mountcastle, 1978; Hawkins and Blakeslee, 200AxeShese six properties are present in animals
with high visual acuity, it is reasonable to assume they mgortant for inference, and we will adopt them
in a network model.

While many computational models of vision have been dewslaphich incorporate some of the above-
listed properties (Fukushima and Miyake, 1982; Rao andaB#ll1997; Riesenhuber and Poggio, 1999;
Rolls and Milward, 2000; Lee and Mumford, 2003; Fukushin@)%), we propose a model which takes into
account all six properties. For example, the recognitionl@®of Rolls and Milward (2000) and Riesenhu-
ber and Poggio (1999) do not use feedback (and so are ineaphiniference tasks such as reconstruction
or imagination), and the dynamic system of Rao and Balla®®T) does not use overcomplete representa-
tions. The use ofearnedovercomplete representations for preprocessing is a nevlaagely unexplored
approach for visual recognition and inference algorithiRecent developments in learning overcomplete
dictionaries (Lewicki and Sejnowski, 2000; Kreutz-Delgaat al., 2003; Teh et al., 2003) and the associated



methods for sparse image coding (Murray and Kreutz-Delg2@06) now make possible the investigation
of their utility for visual inference.

Real world images are high-dimensional data that can beimaa in terms of a much smaller number of
causes, such as objects and textures. Each object, in &urappear in many different orientations but in fact
is seen in only one particular orientation. For each ort@raan object can be represented with a concise
set features, such as lines, arcs and textures. The keydaatthese various types of image descriptions
is that they can be representedspgarse vectorswhere only a few of the many possibly choices suffice to
explain the scene. While pixel values of images have norsegdistributions (they are unlikely to be zero),
these more abstract representations are very sparse (@apbient is likely to be zero), and only a few non-
zero components at a time succinctly describe the scens.ifthition, along with the biological evidence
for sparsity, is the justification for our use of sparse pdistributions. Other advantages of sparsity include
reduced metabolic cost and increased storage capacitgasiave memories (Olshausen and Field, 1997).

1.1 Overview and Organization

Beginning with a hypothetical hierarchicgénerative world moddilGWM) that is presumed to create im-
ages of objects seen in the world, we discuss how the GWM carsd&e for visual inference (Section 2).
The GWM requires the selection of a probability distribati@nd a suitable choice is required to create
practical algorithms. As a first move, we consider a Boltzmbke distribution which captures the desired
top-down, bottom-up and lateral influences between andmiitlyers, but it is computationally intractable.
Then, asimplified world mode{SWM) distribution is created based on a variational apnation to the
Boltzmann-like distribution, and which is specifically dgsed to model sparse densities (Section 2.4).

By designing a dynamic network that rapidly converges tolacemsistency condition of the SWM,
we can perform inference tasks if we have the weights thadrpaterize the network (Section 3). The
dynamic network arises as a way of estimating the fixed-pstitie of the SWM. Although we consider
only the problem of estimating static world-models, gelestion to dynamic worlds is also possible. To
determine the unknown weights, we develop a learning alyorbased on the backpropagation-through-
time algorithm (Williams and Peng, 1990) which operateshare-activation state and includes a sparsity-
enforcing prior (Section 4). This algorithm can be seen aataral extension of the sparse-coding principles
that are useful in modeling V1 response properties (Oldraasd Field, 1997) to the full visual inference
task.

We demonstrate experimentally several types of visuatémige including recognition, reconstruction,
segmentation and imagination. These simulations showotr@Etomplete representations can provide bet-
ter recognition performance than complete codes when us#tkiearly stages of vision (Section 6). A
discussion of the biological motivations and comparisoprior work is given in Section 7, and conclusions
are drawn in Section 8.

1.2 Notation
a Activation function parameters
B Error-related term in learning algorithm



c(m)

f0)
I{-}

Jpa

T2 zE =

92}

i)

t

N M TE >SS A @) e

GWM
NLCP

Object code for objectn, (sparse binary code)
Sparsity-enforcing term in learning algorithm

Sigmoid activation function

Indicator function, 1 if expression is true, 0 otherwise

Cost function on pre-activation state, minimized by leagniule
Number of images in training s&t

Lateral weights between units in layker

Number of unique objects in training set

Number of layers in network

Number of elements in state vect&r

Number of non-zero elements= [r,...,r,], wherer, is the
number of non-zero elements in laygdiversity xn)

Size of layerss = [s1, ..., sn], Wheres; is the size of layet
Network input at time

Unit weight sumw (for entire layerv;), pre-activation function
Pre-activation state of all layers

Certainty-equivalence approximation of pre-activatiatues
Weights from layem to layer!

Complete weight matrix for all layers (including aV;,,, andL;), W € RV*N
Activation vector at layet, expected values dP(z;|z;_1,2z;11)
State vector of all layersy = [xI,... xI|"

Training datay = [§7,0,...,0,77]7, wherey, is a sparsely-coded image
andy,, is an object code

Dynamic network output at time

Sets of multiple state vectot§ V, e.g.Y = {Y (D . Yy}
True state of generative model at layebinary random vectog {0, 1}
True state of generative model, all layets= [z, ..., z.]7, binary random

vectore {0, 1}V

Indicator vector of whether target values are availableefmrh element of;
Error between variational approximation and true state

Error between data set and network approximafi’pn

Normalization constant (partition function)

Learning rate

Regularization parameter

Target mean for hidden layers

Error between true and approximate stdter Z — X = [¢7,..., 1]
Energy-like function

Number of time steps network is run for (maximum value)of
Generative world model (Boltzmann-like distribution)
Neighboring-layer conditional probability



SWM Simplified world model, variational approx. to Boltznmalike distribution
DN Dynamic network that settles to the self-consistencydd@n of the SWM

2 Generative Models for Visual Inference

In this section, we postulate a hierarchical generativealisvorld model (GWM) and discuss its properties,
particularly that of independence of one layer given its edimately neighboring layers. We then discuss
how the GWM can be used for visual inference tasks such agmémm, imagination, reconstruction, and

expectation-driven segmentation. Specific forms of thégldity distribution in the model must be chosen,
and as a starting point we posit a Boltzmann-like distriinuti Since inference with the Boltzmann-like

distribution is generally intractable, a variational appmation is developed leading to a simplified world
model (SWM). The key assumption of sparsely-distributetilvaitons (prior distributions) is enforced and

used extensively. In this section we consider static wortiels; in Section 3.1 we will use dynamic

networks to implement inference by settling to the fixed poof the SWM.

2.1 Hierarchical Generative Visual-World Model

Images of objects seen in the world can be thought of as be@aderl by a hierarchical, stochastic generative
model (thegenerative world modelGWM). While it cannot be rigorously claimed that the realrldaises
such a model to generate images, the idea of the GWM is a usefah that guides the development of
learning algorithms (Hinton and Ghahramani, 1997).

For the GWM, we assume a hierarchical binary-state modéieofdrm shown in Figure 1. The number
of layers is somewhat arbitrary, though there should be gmdayers to capture the structure of the data
to be modeled, and four to five appears to be reasonable fagesnaf objects (Riesenhuber and Poggio,
1999; Lee and Mumford, 2003; Hinton et al., 2006). The arrowSigure 1 indicate that each layer, given
the layer directly above it, is independent of higher layeks the highest level, the vectar; is a sparse
binary coding of the object in the image, and its value is drdwm the prior distributionP(z5). The
representation of the particular orientatinof an object depends only on the object representatjoffhe
invariant, composite and local features, z> andz,, likewise depend only on the layer immediately above
them, e.q. P(z3|z4,25) = P(z3|z4), and the local features; model the imagd. The sequence can be
summarized,

2 P(z4|z5) - P(z3|24) 23 P(z2|z3) Z P(z1]22) 7 P(l]z1) I. (2.1)

The joint distribution of the image and generative stajds,
P(I, Z1,22,723,7Z4, Z5) = P(I|Z1)P(Z1|Z2)P(Z2|Z3)P(Z3|Z4)P(Z4|Z5)P(Z5) s (22)

where each layez; is a binary vector of size;.

We postulate that the, aresparsegi.e., they have very few non-zero components (Olshauserietd,
1997). For example, in every image only a few of all possibidgects will be present, and each object
will only be in one of its possible orientations, and so for8parsity is proportional to the number of zero
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Figure 1: Hierarchical generative visual-world model (GYvidr objects. At each layet;, the image can
be represented by a large (possibly overcomplete) spacdervén this generative model, each layer is a
binary random vector which, given only the layer immediatbove it in the hierarchy, is independent of
other higher layers.

components in a vecter € R", sparsity = #{z; = 0}/n. A related quantitydiversity, is proportional

to the number of non-zero component8persity = #{z; # 0}/n = 1 — sparsity. Many studies
have confirmed that natural images can be represented talguny sparse vectors, correspondingzio
(Olshausen and Field, 1996; Kreutz-Delgado et al., 2003raéfuand Kreutz-Delgado, 2006). These studies
have mainly dealt with small patches of images (on the orf@&x8 to 16x16 pixels), and it is clear that
features larger than such patches will be represented piomally. This further redundancy in larger-scale
features can be reduced at higher levels, which can alsothaywoperty of sparseness.

Neighboring Layer Conditional Probability (NLCP). For a middle layek; given all the other layers,
we find thatz; conditioned on its immediate neighbets 1, z;1; is independent of all the remaining layers.
For example,

P(I’Zl)P(Zl ‘ZQ)P(ZQ ’Zg)P(Zg‘Z4)P(Z4‘Z5)P(Z5)

P(I|z1)P(z1|23)P(23|z4) P(24|25) P(25)
_ P(zi|z2) P(z2|z5)

P(z3|1,21,23,24,25) =

2.3
P(z1]z3) @3
For an arbitrary layer we can find tileighboring layer conditional probabilitf{NLCP),
P(z;_1|z;)P(z;|z
Plala 1) = D EPElaa) gy opy. (2.9)

P(z;_1|z141)



This important independence assumption is equivalent ymmgahat each layer learns about the world
only through its neighboring layers (Lee and Mumford, 2003Returning to the joint distribution and
substituting in the NLCPs,

P(I,21,22,23,24,25) = P(I|21) - P(z1|22) P(22|23) - P(23|24)P(24|25) - P(25)
= P(I|zy) - P(z2|z1,23)P(z1|23) - P(z4|23,25)P(23|25) - P(25) (2.5)

So, the joint can be recovered given the NLCP and additi@rais. Of course, other factorizations of the
joint are possible, but these are also consistent with theNfor their respective layers (Brook, 1964).

Properties of Generative World Model (GWM). We now summarize the four properties of our gener-
ative world model (GWM). (1) There is a hierarchyrohidden-layer vectors,, . . . , z, that model each im-
agel. (2) Each layer is independent of all higher layers givemisighboring layer above? (z;|z; 11, . . . , Zy)

= P(z]z;+1). (3) Each layer is independent of all lower layers given thggimboring layer belowpP(z;|
Zi_1,...,21) = P(z]z;—1) (as shown in Murray, 2005, pg. 28). (4) Given its immediatglmeoring layers,

a layerz, is independent of all other higher and lower laydréz, |1, z1, ..., z,) = P(z|zi—1,2;+1)

2.2 Types of Inference: Recognition, Imagination, Recongiction and Expectation-Driven
Segmentation

For object recognition, the goal is to infer the highest taypresentatiom,, given an imagd. However,
recognition is only one type of inference that might be reepli Another type is running a model genera-
tively using a high-level object representationiritaginean image of that object. In the brain, imagining
a particular instance of an object will not correspond toléwel of detail in the retinal representation, but
there is evidence of activity in many of the lower visual aréauch as medial temporal, V1 and V2) during
imagination (Kosslyn et al., 1997).

Certain types of inference involve the use of top-down inflies interacting with bottom-up inputs. For
example, given a partially occluded image that has beergnéped by higher layers, top-down influences
can be used teeconstructthe hidden parts of the object (i.e. those features that ast likely given the
input). Another type of inference expectation-driven segmentatjomhere a prediction is presented at a
higher level which may be used to explain cluttered, incatgbr conflicting inputs at the lowest layer,
and the desired output is the segmented object at the first ({8rossberg, 1976; Rao and Ballard, 1997;
Hecht-Nielsen, 1998). The expectation input (higherdlai@-down) must come from a source external to
the visual system, which in the brain could be higher coritaas or other senses, and in computer vision
could be dependent on the task or provided by a user. If we wisimd which objects are in a cluttered

1The NLCP is closely related to tHdarkov blanket which is defined for a single node in a Bayesian network asrtbde’s
parents, children and children’s parents. The NLCP is défower all the units in a given layer.

%Brook (1964) proves that any system specified by the NUBR,|z:,7 # j) = P(zj|zj—1, z;+1), has a joint distribution
that can be factored &(z1, . . ., z,) = 174 Qi(2i, zi—1), which is the joint factorization of a simple Markov chairhi proof
is for the case of scalaf, but since ourz; are binary vectors, they can be equivalently representestaar integer variables
€ {1...2%}. Thus, any system defined by the vector NLCP is consisteffit avjbint distribution that can be specified as the
product of neighboring-layer factors, i.e. the Markov asption in eq. (2.2).



Table 1: Types of inference that can be performed with thealhshical generative world model (GWM) and
the types of information flow required (bottom-up or top-adwMe wish to find a good approximation to the
layerz; of interest. The approximation used is the expected valug wider the variational approximation,
Eqlz;) = x; as discussed in Section 2.4.

Requires
Type of Inference| Inputs Outputs | Bottom-up Top-down
Recognition (I — z1) Zy, Y N
Imagination Zn, (z1 — 1) N Y
Reconstruction | (I — z1) (z1 — 1) Y Y
Exp.-drivenseq. | (I — z1),2z, (z1 — I) Y Y
Exp.-drivendet. | (I — z1),2, 2Zn Y Y

scene (i.e., the desired output is the highest-layer obggresentation) based on prior knowledge of what
might be there (higher-layer input), we perfoarpectation-driven detectiorf the high-level prediction
about the scene is consistent with the input, the systemecgas with the expectation at the highest layer
and the prediction is confirmed. If the system converges tfiexent pattern, this indicates that the expected
object is not present (which could be considered a staterpfisa). Table 1 shows types of inference and
the necessary information flow (top-down or bottom-up) eeeth the model. As discussed below, we
use a sparse-coding algorithm to transform the image irgditst layer representation;, and vice versa
(denoted by— in the table).

2.3 Boltzmann-like Distributions for Layer-Conditional P robabilities

Our next task is to postulate a form for the GWM distributiofisthat is powerful enough to generate
the images seen in the world. A common choice in proballistodeling is theBoltzmann distribution
P(z) = ("' exp(—B£(z)), where the probabilities are related to a functfahat assigns an energy to each
state,( is a normalizing function, an@ is a constant (which is a degree-of-randomness paraméatede
to temperature in physical systems< 7~1) (Hopfield, 1982; Hinton and Sejnowski, 1983; Hertz et al.,
1991). In thermodynamics and physical systems such as riagnaterials, the energy function captures
the influence of each particle on its neighbors, where loanargy states are more probable. The energy
function usually has the formj(z) = —3 >_ij Wijzizj, Wherew;; is the symmetric interaction weight
(wi; = wj;) betweenz; andz;. In the context of associative memories, the weights of tieegy function
are adjusted so that learned patterns form low-energy $amitraction (e.g. using the Boltzmann machine
learning rule, Ackley et al., 1985).

The Boltzmann distribution requires the weightg to be symmetric and have zero self-enetgy = 0
(Kappen and Spanjers, 2000). Three main advantages of symmweights are: (1) A dynamic network
with symmetric interactions is guaranteed to be asympalistable and settle to a fixed point (the “zero-
temperature” solution) which minimizes the Boltzmann ggeunction (Mezard et al., 1987). (2) There
is a procedure (Gibbs sampling with simulated annealingghvgenerates samples from this distribution



at a given non-zero temperatufe (3) Given a gradual enough annealing schedule for redu€ingibbs
sampling will track the global minimum-energy state (higtgrobability state) of the network and guarantee
convergence to the zero-temperature solution as the teupers lowered (Geman and Geman, 1984).

While the above properties are attractive, and help explarnwvide interest in the Boltzmann distribu-
tion and the Boltzmann machine, they may be of limited useaate. It often takes considerable time for
a stochastic network with symmetric weights to settle to @uilibbrium state, possibly longer than a brain
or artificial network has to make a decision (Welling and T#03), which accounts for the interest in sim-
plifying approximations such as mean-field annealing (RBeteand Anderson, 1987). Furthermore, it has
also been argued that the use of asymmetric weights canvwepearformance (such as by suppressing spu-
rious memory states) and has greater biological plausil§ifiarisi, 1986; Crisanti and Sompolinsky, 1988;
Sompolinsky, 1988; Gutfreund, 1990; Apolloni et al., 19B&ppen and Spanjers, 2000; Chengxiang et al.,
2000). An additional motivation for admitting asymmetrieights is the notion that in hierarchical networks
designed for invariant recognition, the relative streagththe feedforward and feedback pathways will need
to be different. Since neurons in higher layers will tendgquire inputs from multiple units to activate, the
relative strength of the feedback connections to those amitst be stronger than the feedforward weights to
enable lower layer activity (i.e., generative ability).€elprimary deterrent to the use of asymmetric weights
is the difficulty associated with ensuring asymptotic digbof the resulting algorithms, which involves the
use of significantly more complex stability arguments (Aqail et al., 1991).

We allow for asymmetric weights and sidestep the stab#isyie by working within a finite-time horizon
framework. The resulting simplicity of the finite horizongtem relative to the infinite horizon problem
is well-known in the dynamical systems literature (Bertsekl995). In Appendix B we design a learning
rule that encourages convergence to the desired statswitiinall number of time steps Also, the use
of symmetric weights is merely sufficient for fixed points tosg, it is not a necessary condition.

We use the termBoltzmann-likeand energy-liketo distinguish our model (with asymmetric weights)
from the more strict Boltzmann distribution assumptionke Boltzmann-like form of the NLCP is,

1

.z P (—&(2z1,21-1,2141))  (NLCP-B), (2.6)

Py(z|z1-1,2141) =
where¢ is the energy-like function anflis a normalizing function, with

T T T T
§(z1,21-12141) = —2) Wig—1zi—1 — 2; Lyzg —2p Wyzi00 — 0]

(1, z01) = Y exp(—E(z,m1,2141)) (2.7)

whereW; ;. ; are top-down weights from layér+ 1 to/, W;;_; are the bottom-up weights from the layer
[ —1tol, L; encodes the influence of units in layayn other units in that layer (lateral weights), &hds a
bias vector. The summation gnis over all states of laydr Note that if the properties of symmetric weights
are desired, they can be used without changes to the vaah@pproximation developed below in Section
2.4.

An important question is whether the Boltzmann-like disttion (2.6)-(2.7) is adequate to model the
hierarchical sparse generative model of Figure 1. It isiptis¢o construct densities that are not well
represented by any set of weigh¥€, L in (2.7). However, we do not need to model an arbitrary dgnsit
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only densities that are sparse and therefore have moretifitms of dependence. Algorithms related to
the Boltzmann machine have shown success on real-worldviasks (Teh and Hinton, 2001; Hinton et al.,
2006) and tend to confirm that the Boltzmann-like distribatis a reasonable starting point.

2.4 Simplified World Model Developed With a Variational Method

The Boltzmann-like distribution (2.6)-(2.7) provides asenable form of the probabilities in the GWM
which allows feedforward, feedback and lateral influencémfortunately, exact inference af) given
z;_1,Z;+1 IS intractable for reasonably sized models even when thenpeters ofPp(z;|z;—1,2;.1) are
known because of the need to sum over every possible gtatethe normalizing functior(. In this sec-
tion, we use a variational method that approxima®gsz;| z;—1, z;-1) with a factorial distribution Py (z|
z;-1,2;+1). By variational we mean that there are certain parameters {x; ;} that are varied to make the
distribution P as close taPg as possible. The form dfy is taken to be @eneralized factorial Bernoulli
distribution,

s (Zl,i*%) (1_21,1'*@4)
Ty — a4 a1 Ty — a4 a1
Po(zilzi1,m1) =[] [T] [1 - T]

i=1 ! !

; (2.8)

wherez; ; are the variational parameters aad= [a1, a2, a3, a4| are additional constant parametets (
andas will be introduced later) that are used to encourage spairsifucing densities (Section 2.5). The
dependence og;_1, ;41 Will be introduced througlr; ; as derived below. A sufficient condition for (2.8)
to be a probability distribution is that--—* + (1 - %) = land=—* >0, which is true fora; > 0
andz;; > ay4. The slightly generalized Bernoulli-distribution (2.8)based on a shift in the logical values
of z;; in the energy function fronf0, 1} to {a4, a1 + a4} (the experiments below uge-0.05,1.05}, which
improves computational efficiency). Our formulation enpa®ses the two common choices for logical
levels,{0,1} and{—1,1}, e.q. if logical levels of —1, 1} are needed, them; = —1,a; = 2. Collecting
the z; ; into vectorsx; of the same size ag for each layer, it can be shown that are the conditional
expected values for each layer,

x; = Eqlzi|zi—1,2141] - (2.9)

Note that the variational parameter vectgris the minimum-mean-squared-error (MMSE) estimate;of
given the values of its neighboring layers (Kay, 1993, pg)31

We now find ther; ; that minimize the Kullback-Leibler divergence (Cover arftbinas, 1991) between
the conditional probabilitie®s (z;|z;—1, z;+1) and Pg(z;|z;—1,2;+1),

KL (Pgl|Pp) = Eqllog Po(zi|zi—1,2111)] — Egllog Pr(zilz1-1,2141)] (2.10)

where Eg is the expected-value operator with respect to the distdbuPy(z;|z;_1,z;4+1). Using the ex-
pected valuerg [z ;] = x4, the first termis,

Ty, —a Ty, — @
Follog Po(aila-1,aa)] = 3 | ™= tog (221

- al al
i

. (w) log (1 - u)] . (2.11)
aq a1

10



The second term in (2.10) can be expanded,

Eqllog Pe(z|z1-1,21+1)] = Eq[—10g(C) — &(21, z1-1, Z141))]
= Egl—log(¢) — 2] Wi 1211 — 2] Lyzg — 2] Wy 12001 — 6] 7)) .

(2.12)
Again using the expected valugy[z; ;] = z,
Eqllog Pp(z|zi—1,2141)] = — log({) — Z W zi—1 k@i — Z Likxp x4
ik ik
- Z Wi, 211, 01,0 — Z Orix+ o, (2.13)

ik [
where WZ.*,;, W, and L;, are elements of the weight matric®¥;;,,, W;;_; and L; respectively and,
defininge; = (z; — x;), the terme; = Eg[(z — x;)"Ly(z — x;)] = Eg[¢? Li¢,], which is zero assuming
thatL;; = 0. 3

Self-Consistency Conditions of the Variational Approximaion. The variational parametets; ; that
minimize the distance betwedfi and P (2.10) are found by solving,

OKL (Ppl| P, B
# =0= a9 (Zk: Wikzl_lvk + Zk: Likxl’k + Zk: Wi—]i;_zl"'l,k)
— T+
s (%) — (2.14)

using a constant teriay for the biasﬁl,i,“ and factoring outi; from W+, W~ and L (with a slight abuse of
notation, including factoring% into az, ag, see eq. 2.11). Setting (2.14) equal to zero and solving;for

x; = f(v)
vi =Y Wizaeik+ Y Liczie + > Wikzie (2.15)
k K k

wheref(-) is a sigmoid activation function parameterizedaby- [a1, as, a3, a4],

f)

1+ exp(—agv + a3)

tayg. (2.16)

Defining ¢;; = 2; — @1, to be the approximation error, the statés equal tox plus a random noise
componenty; ; = x;; + ¢; ;. This yields,

v = Z Wi (xi—1k + dr—1k) + Z Ligxy ) + Z W@k + Gr1 k)
% % %

= Wiz + Y Lame + > Wik +eui (2.17)
2 K K

3The terme; = Eql(zi — xl)TLl(zl — x;)] = Tr[L;X;,], whereX,, is the covariance matrix of; under Py. Sincez;
is assumed conditionally independent undfer, the non-diagonal elements of the covariance matrix are. 2&fe will disallow
self-feedback (i.e.L.;; = 0), so that TfL;X,, ] is zero. However it is straightforward to handle the casennbg # 0 given the

factorial form of Pg.
4For simplicity we seb, ; = a3 for all [, i. However this assumption can be relaxed.
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where thep terms have been collected intp;. By collecting all the terms for each layer into a vector we
obtain the single equation,

_Xl_ Li Wy 0 0 _Xl_ _61_

X2 Wio Ly Wy E X2 €2

xs|=f|| 0 Wy L Wi | [|Xs|+]|es|], (2.18)
| Xn | i 0 R 0 Wn,n—l Ln_ | Xn | 1 En |

which is theself-consistency conditiofor the variational approximation. The self-consistenopdition
(2.18) is a necessary condition for the factorial NLCP (28)he SWM to have been optimally fit to the
GWM NLCP of (2.6).

Simplified World Model Forms. Further collecting all the estimates for each layer intorglsi vector
X = [x¥,...,xI)7 and all the weights into a global weight matfi¥, equation (2.18) can be written
concisely,

X=fWX+e) (SWM-E), (2.19)

which is called thesimplified world model on the expected val(®8/M-E), and where the vector forms of
the errors are,

d=7-X
e=(W-L)&. (2.20)

The errore is generally unobservable, and later we will have to makeamations to perform inference
and learn the weight8V. In particular, for inference and learning we will neglecand use aertainty
equivalence approximatio(see Section 4). The SWM can be written equivalently in teofihe binary
stateZ,

Z=f(WZ-L&)+® (SWM-B), (2.21)

and which is called th& WM on the binary staSWM-B). The SWM can also be written in an equivalent
dual form on the pre-activation state. Collected thgeinto a state vecto?V = WX + e (andX = f(V)),
we have,

V=W{V)+e (SWM-P), (2.22)

which is called thesWM on the pre-activation sta(€WM-P). Equations (2.19), (2.21) and (2.22) are self-
consistency conditions for the SWM. We will return to thesy kesults in Section 3.1 where we discuss
how to find solutions to these conditions through evolutibopmates in time. Note that with a slight abuse
of notation we refer to the self-consistency conditionsrikelves as the SWMs.
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Relation to Other Variational Methods. Our approach is based on using a neighboring-layer conditio
probability model which is matched to the hierarchical NLGWM using a factorial variational approxi-
mation. The use of a factorial variational approximatiokriewn as anean-field (MF) approximatiom the
statistical physics community (Peterson and Andersony7)}l98here the probabilities to be approximated
are either unconditional (as typically done in statistighysics), or else conditioned only on visible layers
(as in the Boltzmann machine). A distinguishing featurewfrmethod is that the Boltzmann-like NLCP ad-
mits the use an approximating distributié) that isfactorial when conditioned on its neighboring layers
and the resulting approximation is not factorial when ctaded only on the visible layers. This modeling
assumption removes less randomness (and allows more Gea@apability) than the MF approximation
conditioned on the visible layers (as in the deterministitBnann machine, Galland, 1993). Thisis aricher
model than the deterministic Boltzmann machine as our tondi expectationsx; = Eq[z;|z;—1,24+1],
retain more randomness than the non-hidden expectatiprs E, [z |visible layer$ of the deterministic
Boltzmann machine. Our factorial approximation is reabtmas it is equivalent to saying that the mean-
ingful information about the world contained in any layepmvided by its immediate neighboring layers,
so if we condition on neighboring layers then only random €amingless”) noise remains. The factorial
Bernoulli distribution is one of the most tractable and cooniyg used variational approximations (Jordan
et al., 1998), however if more accurate approximations asireld, other distributions may be used such as
the second-order methods described by Welling and Teh j20@8Kappen and Spanjers (2000), although
at higher computational cost.

2.5 Activation Functions Can Encourage Sparse Distributios

The parameterized sigmoid activation function (2.16) carubed to encourage sparse activation by ap-
propriate choice of parametess Figure 2 shows the activation function (2.16) when paranwtd with

a =[1.1,2.0,4.0,—0.05], which was chosen so that small levels of activation do red te positive values

of f(v). Parameterss, a3 can be viewed as prior constraints on the network weightgofétically these
weight scaling and bias terms could be learned, but from etiped standpoint, our networks are quite large
and the critical property of sparsity that makes learniagtable must be enforced from the early epochs, or
else too many extra weights would be updated.

We can reasonably assume that= v;; as given by (2.15) is a normally distributed random variable
due to the central limit theorem (Johnson, 2004) becausehe sum of (nearly) independent, identically
distributed values with bounded variarceThe densityP(z;a) can then be found by transforming the
normal densityP(v) = N(u, 02) by the activation function (2.16), see eq. (1.2.26) of Myi2005). For
the values of: given above and for = 0,02 = 1, Figure 2b shows tha®(x; a) is indeed a sharply-peaked

5There will be dependence inbetween units which all represent the same feature or glijeatever since all network layers
are constrained to be sparse, these dependencies will belasscthan the typical pixel-wise dependencies in the malgmages.
Central limit theorems (CLT) that relax the independencguasptions have been developed (Johnson, 2004), and wkfe th
extensions are not strictly valid here, they give some lefretedence to the belief that CLT-like results should haldnvironments
with statistical dependencies. The approximate normality is confirmed by simulations in Figure 8. Thus, we conclude tha
assuming normality of is a reasonable and useful modeling assuming; and one whilvden made in other work on large,
layered networks (Saul and Jordan, 1998; Barber and SpAR®0).
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Figure 2: (A) Activation functionf (v) with parametera = [1.1, 2.0,4.0, —0.05] (see equation 2.16). The
limits of the activation function argu4, a1 + a4] = [—.05, 1.05], and the slope is set hy and the bias is set
by as. The shape of the activation function encourages spargignburing that small input activities< v;

do not produce any positive output activity. In the simala$, the values of = f(v) are thresholded so that

x = [f(v)] € [0, 1], however the values of’(v) are kept for use in the weight updates (see Appendix B).
(B) The probability density”(x; a) of a normal random variable.(= 0, 02 = 1) after being transformed by
the activation functionf (v) in equation 2.16, is a sparsity-inducing density if the pstersa are chosen
properly. The parameters used are= [1.1,2.0,4.0,—0.05]. (C) Probability P(z;a’) is not sparsity-
inducing with the standard set of parameters for sigmoidaain functionsa’ = [1, 1,0, 0].

sparsity-inducing distribution. In contrast, Figure 20wk P(z; a’) after being transformed by the sigmoid
activation function with parameteeg = [1, 1, 0, 0], which does not lead to a sparsity-inducing distribution.
The choice of parameters o2 is also important for the transformed distributions to barsp. For example,

if 4 = 0, the variance must be less than about 2.0 or else the resdiinsity will be bimodal. However,
with the proper choice of initial conditions, we are able hs@re these conditions are met (see Section 5).

3 Recurrent Dynamic Network

Recognizing that solutions to important inferencing peois$ correspond to solutions of the self-consistency
conditions derived in Section 2.4, we generalize theseitiondnto a dynamic network capable of converg-
ing to a solution satisfying (2.18) in order to estimate tteesx;. We introduce a time index for the
iterations of this dynamic network, while our goal remaingstimate the state of the static SWM.

There aren layers in the network and the vector of activations for bk layer at timet is denoted
x40 = 1...n, with layer sizes = [s;...s,]. The network is designed to enforce rapid convergence to
the self-consistency conditions (2.18) for, such thats; ; — x;. The state vector of all the layers at tirhe
is denoted,

Xt:[xlT,xg,...,xg]TGRN, (3.1)

where N is the size of the state vector (dropping the time indexxpinside the vector for clarity). The
activity in all layersx;, is enforced to be sparse and the number of non-zero eleroétite layers is
denotedr; = [r;...7,]. Figure 3 shows the four-layer network structure used lierexperiments in this
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paper. Dotted lines indicate inputs and connections tleahar used here, but are allowed in the model.

Inputs and Outputs The layers used for input and output depend on the type afeiné required. In the
present work, inputs are usually injected at either thedsglr lowest layer (although in general, we may
have inputs at any layer if additional types of inferenceratpiired). We define an input vectty* (again
dropping the time index inside the vector),

T ..T T]T
n

UtX:[ul,uz,...,u ) (3.2)

whereu; is a sparsely coded input image (see Appendix A) apds anm-out-of-n binary code called
the object codewhich represents the classification of the object. The adgsnof using ann-out-of-n
object code is that it allows more objects to be represetiaal the size: of the highest layer, which is the
limitation of 1-out-of#» codes. The object code provides a high representationalcitgmand robustness
to the failure of any individual unit/neuron, both of whichealesirable from a biological perspective. In
addition, we can represent new objects without adjustiegstke of the highest layeu,,, by creating new
random object codes.

For recognition and reconstruction, the inputis the coded image, and the object code input is zero,
u, = 0. When the network is used for imagination, the input is theabcode presented at the highest
layeru,, and random noise ai,, and the output is the reconstructed image the lowest |&perexpectation-
driven segmentation, botly, andu,, inputs are used. Table 1 shows the layers used for input apdtdor
each type of inference.

3.1 Dynamic Network Form

The recurrent dynamic network (DN-E) is the time-dependemieralization of the self-consistency condi-
tions (2.18) of the SWM-E given by

x| Li Wi 0 e 0 [x €1 u;
X9 Wi La Wy : X9 €9 us
xs| =f|] 0 Wy Ly Wi G| |Xs| +|es| |+ |us . (33
R P | 0 0 Wyn1 Ly| [Xnly L&), R P
which can be written in the compact form,
Xit1 = f(WX; + &) + U, (DN-E), (3.4)

whereU;¥ is the input to the network which can include a sparsely-dadput imageu; and/or a top-down
u,, consisting of an object code.

Our goal will be to learn &V such that the network (3.4) will rapidly converge to a steatéite, given
transient or constant inputg;X. We will attempt to enforce the steady-state self-consistebehavior at
finite time-horizont = 7, where the horizom is a design parameter chosen large enough to ensure that
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information flows from top-to-bottom and bottom-to-top amdall enough for rapid convergence. Because
of the block structure oW, information can pass only to adjacent layers during one 8tept. (We use the
termstime stepanditeration interchangeably.) For example, in a four layer networlakes only four time
steps to propagate information from the highest to the loveg®r, while the network may require more
iterations to converge to an accurate estimate. A relgtswlall number of iterations will be shown to work
well, on the order of 8 to 15.

3.2 Pre-Activation State-Space Model

In the previous subsection we created a dynamic network @sttie vectoX; based on the SWM-E. By
defining an equivalent model on the pre-activation vetipwe create another dynamic network which will
be used in deriving the learning algorithm (Section 4). Galigng the pre-activation model (SWM-P, eq.
2.22) to a dynamic network,

Vis1 = WF(V,) + &1 +UY%y (DN-P), (3.5)

whereV; is assumed to be a Gaussian vector as discussed in Secti@m@(5', , is the input/inital condi-
tions for the pre-activation state (compare V\liiffrl for the stateX). The DN-E and DN-P are equivalent
representations of a dynamic generative world model. pnéting the layers oV, as the hidden states of
the generative visual-world model, the visible world isrfidwvith the read-out map,

Y; = C g(V;) + noise, (3.6)

whereg(-) is the output nonlinearity, an@ = [1, 0, ... ,0] hides the internal states. Table 2 summarizes
the moves made from the generative world model of Section theéadynamic networks of the present
section.

4 Finding a Cost Function for Learning the WeightsW

The dynamic networks of the previous section can performatimference by being forced to approximate
the self-consistency conditions of the simplified world rio(EWM). This can be done assuming that the
weightsW are known. Now, we turn to the problem of learning these wsigiven a set of training data. In
this section we will proceed in a Bayesian framework assgrifihis a random variablé, and derive a cost
function after suitable approximations. The labeled trajrset is denoted = {Y (™), ... Y5} where
the k-th element (¥) is a vector with a sparse coding of imalgat its first Iayery%k) and the corresponding
object code;;/g“) at the highest layer and zero vectors at the other layers,

T
YO =357 0 ... 0 y{] , (4.1)

where the superscript index of the pattérfor each layer (i.eyﬁf)) has been omitted for clarity.

8If a non-informative prior oftV is used, this reduces to the maximum likelihood approach.
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Figure 3: Dynamic network used in the experiments. Inputages/ are first sparsely coded using the
FOCUSS+ algorithm, which operates on non-overlappinghgstof the input image (Appendix A). This
sparse overcomplete codg is used as bottom-up input to the four-layer hierarchicéilvoek. Dotted lines
indicate inputs 3) and connectionsl(;) that are not used in the experiments in this paper, but wdiieh
allowed by the network.
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Table 2: Progression of models developed in Sections 2 and 3.

Hierarchical Generative World Model (GWM)
Inference given neighboring layers:
P(zl|zl_1, Zl—l—l) (GWM, ed. 26)

U
Simplified World Model (SWM) (Self-consistency condition$
Variational approximatiorEg[Z] = X leads to:

X =f(WX +¢) (SWM-E, eqg. 2.19)
Binary state:

Z=fWZ-1Lo)+ o (SWM-B, eq. 2.21)
Equivalent pre-activation state:

V=Wf(V)+e (SWM-P, eq. 2.22)

4

Dynamic Network (DN) (Discrete-time)
State update:

X1 = f(WX, + &)+ U, (DN-E, eq. 3.4)
Pre-activation state update:
Vigr = W) + e + UYL (DN-P, eq. 3.5)

The cost function folV is derived using the DN-P dynamics on the pre-activatiote$ta(3.5). During
training, for each patterd we create an input time seriég* from the data set as followd7X = y (%)
fort = 1,2,3 andUX = 0 for4 < t < 7. This choice ofU;* starts the dynamic network in the desired
basin of attraction for the training patte¥it*) (U;X = Y *) for t = 1,2, 3). The network is then allowed to
iterate without input ;¥ = 0 for 4 < t < 1), which with untrained weightsV will in general not converge
to the same basin of attraction. The learning process attetopupdate the weights so that the training
inputs are basins of attraction, and to create middle lagtes consistent with that input. The set of inputs
for patternk for all the time steps is denotdd®*) = {Ul(k) . UT('“)}, and for the entire data set we have
U = {UW ... UE)}. Similarly, for each pattern in the pre-activation statehaeeV®) = {V,® v Fy,
and for the whole data sé¥, = {V() .. V()1

Assuming that the weight®/ are random variables, their posterior distribution is iy Bayes’ rule,

P(V|W;U)P(W)

P(W|V;U) = PV )

(4.2)

Our goal is to find the weight8y that are most likely given the data and the generative madel we use
themaximum a posterioffMAP) estimate,

W = arg max P(W|V;U)

= arg mvgln —In P(V[W;U) — In P(W) , (4.3)
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due to the denominator in (4.2) not depending¥Wn Correct assumptions aboW are important for
successful learning, which requires some form of condtiaich as prior normalization to use all of the
network’s capacity (see Section 5). Assuming patternsertriining set are independeit(V|W; U) =

[T, PV®[W; U0,

_ | ®) - ®)y —
W = argmin Zk:lnP(V |W; U®)) —In P(W)| . (4.4)

Note that the dynamic system (3.5) is Markovian under ouwnragsgion thate; are independent (Bertsekas,
1995). Then, the probability of the sequence of time stepsesafactored (omitting the pattern indé&on
the V; for clarity),

P(V(k)|W7 [U(k)) = P(VT7 VT—17 VT—27 R VY1|W) U(k))

=[[PVilVier, w;U®) (4.5)
t=1

from the chain rule of probabilities. The pre-activatioatetat each timé; can be expressed in terms of
each layew; ;,

k k a k k
PP, wu®) = [T P v, wiu®) (4.6)
=1

if we assume that the layers are conditionally independeaach other at given the state at the previous
time V;_,. Combining (4.4), (4.5) and (4.6),

. o k k
W= argmin | — Zk: tz_; lz_;ln P(Vl(’t)]‘/;(_i,W;U(k)) — In P(W)

(4.7)

Sincev, ; is approximately normal (Section 2.5), for those layers igland when we have target values of
y1,+ from the data set and corresponding target stateslpr the probability of the layer is,

1 1
Piarg(vi,¢|Vi-1,W;U) = rodyiE exp ( E?jﬁl,t) , (4.8)

T 952
207

whereo? is the variance of each component (which is assumed idéntida other layers and times, the
state probabilities; , are approximately Gaussian, but we do not have a desiresl atat so we enforce
sparsity in these cases. We model the distributions at tagses by independent Gaussians with fixed mean
w and variancer?,

1 1
Pspar(Vl,t’W—hW?[U) = W €xp <—FHV1¢ - M”2> s (4.9)

wherep = [ii... u]” with 1 a design parameter of the appropriate size.

"We assume that noise = 0 in (3.6) and that gi¥emve can solve for a corresponding valuelgf
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Introducing an indicator variablg that selects betweeRsp,r and Parg, We defines; , = 1 if we have
target values for layeratt, 5, , = 0 otherwise. The probability of each layer becomes,

P(Vl,tﬂ/;t—l,W% U) = ﬁLtPtarg(‘) +(1- ﬁht)Pspal(‘) . (4.10)
Substituting (4.10) in (4.7) yields,

-
W = arg min {Z Y [l @ 0B) +AVi—w)T[(Vi—p)© (1-8,)]] - 1nP<W)} , (41
k t=1
whereg, € R¥ is the indicator vector for all elements 6f, ® is the element-wise Hadamard vector product
and the constant terms dependingsdno? have been combined into a new constariagain omitting the

k inside the summation).

There are several things which should be noted about thisulation. First, the objective function is
derived in relation to the pre-activation vectdrinstead of the post-activation vectdr,. This is done to
use the Gaussian form of (4.8), and is reminiscent of thenigale in the generalized linear model literature
of working with the “linear structure vector” of a nonlineanodel (Gill, 2001). Secondly, the cost function
(4.11) is similar in form to those used in overcomplete cgdifgorithms, which are unsupervised, and are
designed to minimize the reconstruction error using assgpacode as possible (Olshausen and Field, 1997;
Kreutz-Delgado et al., 2003).

The cost function fofW (4.11) is a function of the true staig¢ and the errog,, which we generally
do not have access to. In practice, we will resolve this mnobby generating estimates of the unknogn
using a current estimate of the weights from the dynamic ot{DN-P) under theertainty equivalence
approximationthate; = 0 (Bertsekas, 1995). Certainty equivalence is a standaluhigaee in optimization
when certain variables are random. For example, an unknamaom variable can be replaced by its mean
before optimizing the cost function. In our case, we estartae unknown randon¥; by the dynamic
network’s outpuﬂA/t, which is then used to find th& that minimizes the cost function (4.11). For each
pattern in the data set, we run DN-P (3.5) using the inputeecgl’} = v, U;%, wherev, = f~1(1.0)
(Figure 2)8 Running the network with certainty equivalence gives estéed states,

Vi=Wr(Vii)+UY . (4.12)

The errorse; used for learning are then the difference betweeand the desired target states found from
the data set,

g=Vi—uY®)egs,, (4.13)

where layers with no target values are set to O due to theteffes,.

Using the cost function in (4.11), we find a learning algaritfor weightsW (Appendix B) which
is closely related to the backpropagation-through-tinge#thm (BPTT) for training recurrent networks
(Williams and Peng, 1990). The main drawback of the BPTTritlgm is that it is computationally inef-
ficient due to the unrolling of the network for each time st€ur approach overcomes this drawback by
using a small number of time stepsand by taking advantage of the sparsity of every layer to aplyate
weights between units with some non-zero activity.

¥This is an approximation to7) = f~'(U;X) whenU;* is binary, assuming elemertt§’, = 0 whenU%, = 0.
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5 Algorithm Implementation

This section summarizes the implementation details of yimauchic network and learning algorithm as used
in the experiments.

Preparing the Data Set. The data set consists @f images representing/ unique objects, where in
general we have many different views or transformationsasheobject, sdX > M. For each objectn,
we generate a sparse object ceflé) € R*" (the size of the highest layer) with, randomly-selected non-
zero elements, which is used as the desired value of thegti¢dnger. Each image is preprocessed and
converted into a sparse code (Section 6), which is used dsghiayer input,y;. The data set of all images
isY ={Y®, ..., vy} where each pattern is,

vy =3 0 .. 0 yZ]T, (5.1)

and the highest layer is the object cogté, = c’(™).

Network initialization. The network weights are initialized with small random valuaiformly dis-
tributed within certain ranges. The initial weight rangee: afeedforward and feedback weightg <
[—0.01,0.01], and lateral weightd, € [—0.001, 0.000] (which enables only lateral inhibition, not excita-
tion). Self-feedback is not allowed,;; = 0, and lateral weights are not used in layer 1 for computationa
efficiency. Feedback weights are initialized to be the fpass of the corresponding feedforward weights,
Wi, = Wfd but are not restricted to stay symmetric during training.

Performing Inference Given Known Weights W. To run the network for the experiments below, we
create an input time serié&* from the images and object codes in the dataiseThe input can include
y1 and/ory,, as determined by the type of inference desired (see Tableot)example, when the network
is run for recognition, the inputs for the first few time stepe the coded imagg;, so that(U;¥)T =
[le,O, ...,0]T,t =1,2,3, andUX = 0,t > 4. When the network is run generatively, the object code is
used as input, such tha;X)” = [0,...,52]7,¢t = 1,...,7, and the network is then run fersteps, after
which the first layer contains a representation of an imapimage.

Given a sequence of input§® the network is run in certainty-equivalence mode (no adaese) for
a fixed number of discrete time stefis< ¢ < 7, with 7 being 8 to 15 for the experiments below. With an
initial state)?o = 0, the network is run using,

V, = WX,
Xi=fVie)+UX  1<t<r. (5.2)

The state)?t is further restricted to be in the unit cubﬁt c [0,1]V. To improve computational efficiency,
only a limited number of non-zero elements are allowed irhdager,t = [ry,...,7,], which is enforced
onV; at each layer by only allowing the largegtof them to remain non-zero.
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Learning the Weights W. Training proceeds in an online epoch-wise fashion. In eadtle, a subset
of patterns is chosen frofi, and inputs are created with the coded-image in the first fyethe first 3
time steps, so that;* = [y7,0,0,y1],t = 1,2,3, andU/X = 0, t > 4. Input patterns must be removed
at some point during training because otherwise there wbeldo error gradient to enforce learning of
reconstruction. Presenting the input for 3 time steps wasddo give better performance than other lengths
of input (see Section 6.1).

The state)?t and pre-activation staf@’t from running the network (5.2) are saved for each 7. The
error vector for weight updates & = (‘7; — th(’“)) © B, (see eq. 4.13). Weight updatésy;; are given
by (B.14). In standard gradient-descent, weight updatéshaturally become small when errors are small.
However, since we use an additional sparsity enforcingteuen if both the highest and lowest layer errors
are zero, weight updates will still occur in order to sparsifiddle layers. Training stops after a certain
number of epochs have completed.

For computational efficiency when learning sparse pattemy a small set of weights; is updated for
each pattern. During our simulation¥; is found by thresholding the activation function out[fqu/t_l) to
[0, 1], resulting in a sparsﬁ?t given certain conditions (Section 2.5). Weights are thdy opdated between
units when the source unﬁ'i,t is active and when either the target uﬁ?]},t is active or has non-zero error
€t 9 During the initial epochs of learning, there must be enouglfight strength to cause activation
throughout the middle layers. As learning progress, thigigcis reduced through the sparseness-enforcing
term.

Testing for Classification. To classify an input image once the network has settled istalfale state, the
last layer’s activatiorx,, is compared with the object code$™ to find the class estimate,

Clasgx,,) = arg mer{rii.?M} [xT —cm)| . (5.3)
Weight Normalization. In early experiments with the learning algorithm, we fouhdttsome units were
much more active than others, with corresponding rows inatbight matrices much larger than average.
This suggests that constraints need to be added to weighitesato ensure that all units have reasonably
equal chances of firing. These constraints can also can lbghhof as a way of avoiding certain units
being starved of connection weights. A similar issue arasihé development of our dictionary learning
algorithm (Kreutz-Delgado et al., 2003), and led us to esdazquality among the norms of each column
of the weight matrix. Here, both row and column normalizatere performed on each weight matrix
(feedforward, lateral and feedback). Normalization valaee set heuristically for each layer, with an initial

value of 1.0 and increasing layer normalization until sidfi¢ activity can be supported by that layer. The
normalization values remain constant during network inginand are adjusted from trial to trial.

®In theory, the thresholding should not significantly efféw learning. However, due to the size of the network it was no
practical to compare thresholded vs non-thresholded pedioce. Even with the smallest dictionary size (64x64, ddyaput
size = 4096), there are about 5,570,000 weights. Thresiwldiduces the actual number of weights updated to aboud@per
pattern, an increase in speed of over 100x.
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6 Visual Recognition and Inference Experiments

In this section, we detail experiments with the learningodthm developed above and demonstrate four
types of visual inference: recognition, reconstructionagination and expectation-driven segmentation.

A set of gray-scale images was generated using the Lightplav®realistic rendering softwdfe Each
of 10 objects was rotate8l0° through its vertical axis ir2° increments, for a total of0 x 180 = 1800
images, of which 1440 were used for training and the 360 neimgiwere held out for testing (Figure 4).
All images were 64x64 pixels. Before images can be presdottte network they must be sparsely coded
which is done with a sequence of preprocessing (Figure 8t, [ach image is edge-detecfetb simulate
the on-center/off-center contrast enhancement perfobigede retina and LGN. Edge-detected images are
then scaled by subtracting 128 and dividing by 256, so tha palues are= [—0.5, 0.5]. Next, each image
is divided into 8x8 pixel patches and sparsely coded with BE6+ using a dictionary learned by FOCUSS-
CNDL+ (as described in Appendix A). Dictionaries of size 64x 64x128 and 64x196 were learned to
compare the effect of varying degrees of overcompletenesgaognition performance. (Figures 6-14 in
this section are from experiments with the 64x196 dictignarable 3 shows the accuracy and diversity of
the image codes. As dictionary overcompleteness incréasas4x128 to 64x196, both mean-square-error
(MSE) and mean diversity decrease, i.e. images are moreadelyurepresented using a smaller number
of active elements chosen from the larger overcompletéodity. As seen in the third row of Figure 5,
the reconstructed images accurately represent the edgenaifion even though they are sparsely coded (on
average 192 of 12288 coefficients are non-zero). Finaleynitn-negative sparse codes are thresholded to
{0,1} binary values before being presented to the network; anyevgieater than 0.02 is set to 1. This
stage, however, does introduce errors in the reconstruptiocess (last row of Figure 5), and the fidelity of
the network’s reconstructions will be limited by the birzation. A histogram of coefficient values before
binarization is given in Figure 8.

6.1 Recognition with a Four-Layer Network

To test recognition performance, a four-layer network wameéd using the data set described above. The
training parameters of the network are given in Table 4. Nlwae all the lateral interactions were forced to
be inhibitory or 0, and that no lateral connections were lsdke first layer (as we assume the increase in
sparsity produced by the FOCUSS+ iterations model the layateral connections). Coded images were
presented to the first layer of the network for the initiabtntime steps. Random object codes with= 10
non-zero elements were used on the highest layer. Traioiigletween 11 and 22 hours depending on
dictionary size using an Intel Xeon 2.8 Ghz processor. @Gleagon performance reached 100% accuracy
on the test set after 135 epochs, but training continued LBE0 epochs to increase the reconstruction
accuracy at the first layer. Figure 6 shows the iterationd@fmetwork stateX; during classification of a
test set image. The first row shows the FOCUSS+ coded inpudraad the original. The next rows show
the activity of each layer and the reconstructed image frioenfirst layer. The object was presented for

Pavailable atwwy. newt ek. cont pr oduct s/ | i ght wave/
1Edge detection was done with XnView softwavewv. xnvi ew. com) using the “edge detect light” filter which uses the 3
convolution kernel[o 10 ; -1 4 -1 ;0 -1 o]

)
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A)

Figure 4: A) Objects used in the experiments, showing ond®fl80 views of each object. Images are
64x64 pixel gray-scale. B) Sample rotated object imagelerdata set.

three time steps and then removed, so that all activity oerlayfort > 4 results from network feedback.
As the iterations proceed, the reconstruction completestitline of the airplane and becomes stronger in
intensity. In layer 4, the marker shape indicates whetheuttit is active and is part of the correct object
code (‘W) or is part of the object code but inactiveo(), or is active but should not be £7). At ¢t = 4, all

10 of the highest layer units in the object code for airplareeaztive (l”), so that the image is classified
correctly, however there are four other units active thauthnot be (“<”). At later iterations these extra
incorrect units are deactivated (or “sparsified away”) st #it > 5 only those units in the object code are
active, demonstrating the importance of lateral connastia the highest layer. Activity in layers 2 and 3
also decreases with time.

Presenting rotated test-set views of the object showshkatdtwork has learned basins of attraction for
the other orientations. Figure 7 shows the state of the n&tata = 7 after presenting various rotations of
the airplane. The invariance of the representation is showmcrease from layer 1 (with nearly completely
different units active) through layer 3 (with many of the saumits active) to layer 4 (which has identical
activity for all four orientations of the airplane).

Training on rotated objects gives the network some robgstb@ small translations. When tested on
images translated +/- 1 pixel in each direction, recogniagcuracy is 96.9% on the test set. However, in
general, we make no claim that our network has learned tvemstions (such as translation or scaling) that
it has not seen.

The network includes many parameters (Table 4), and legiisimore sensitive to some than others.
For example, the maximum activiég, 75 for layers 3 and 4 can vary quite widely without noticeabletf
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Figure 5: Several preprocessing steps are done beforenpmen to the network: edge detection, FO-
CUSS+ sparse coding, and binarization of coefficients. i@algmages (top row), edge detected images
(2nd row), reconstructions from FOCUSS+ codes using a éehavercomplete dictionary (3rd row), and

reconstructions from binarized FOCUSS+ codes.

on performance, while increasing to 512 (from 100) increases the training time by more thanrdero

of magnitude. This is because weights are only updated legtaetive units, and increasing the maximum
number of active units on layer 2 results in a very large nurobeights to and from layer 1 that must be

updated. When the diversity penalty is turned off=€ 0), the average diversity of the 2nd and 3rd layers
increases by about 30% and 60% respectively with no significhange in MSE or classification rates.

This demonstrates that using the diversity penalty resualtaore efficient representations (more sparse),
consistent with our sparse generative-world model.

We also experimented with different variations of the inpote series, and these changes had more
dramatic effects on performance. Two experiments were @thel?2 time steps: 1) with input presented
for 6 time steps and turned off for 6 steps, 2) using a lineaagé — ¢/6 (input presented at full strength
at the first time step and decaying to 0 at the 6th time stepd. pEinformance of both of these experiments
was worse than the original method (input presented foetbteps). For the 6-step input, the recognition
accuracy only reached 85% on the test set, for the decaystgBnput, the accuracy was 90% compared
with 100% using the original method. It is not clear why pemfance drops, but there seems to be a
reduction in middle layer activity. Perhaps adjusting nalization or other parameters could improve these
results.

To test the Gaussian assumptions made regarndiramd the errorg;, we plot histograms and normal
curve fits of randomly chosen units in Figure 8B,C. From Feg8B we can see that distribution of units
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Table 3: Coding performance on 64x64 pixel images (blockénl 8x8 patches) using complete and over-
complete dictionaries. Mean-squared-error (MSE) is dated over all 8x8 patches in the image, and
diversity = (#non-zero coefficienig (layer 1 size.

Diversity
Dictionary size Layer 1 size MSE Max Mean Min
64x64 4096 0.00460 0.0449 0.0266 0.0103
64x128 8192 0.00398 0.0339 0.0240 0.0128
61x196 12288 0.00292 0.0221 0.0156 0.0085

in V4 is quite normal before training. In Figure 8, we see thatrdfi@ning the errors; for layer 1 are
less Gaussian, but still reasonably modeled as such. Alse s more mass in the negative tail indicating
patterns where the target values are 1 but the network oigtputich lower.

6.2 Reconstruction of Occluded Images

Using the same network trained in Section 6.1, reconstmiét demonstrated using occluded images from
the test set. Approximately 50% of pixels are set to blackgosing a random contiguous portion of the
image to hide. Figure 9 shows the network iterations duregnstruction, where an occluded image is pre-
sented for the first three time steps. By 3, the feedback connections to the first layer have recoristtuc
much of the outline of the copier object, showing that feetlfaom the second layer contains much of the
orientation-dependent information for this object. Farthierations increase the completion of the outline
particularly of the bottom corner and lower-right panel. oftrer example of reconstruction is shown in
Figure 1.13 of Murray (2005).

The network also performs well when recognizing occludegaib. Accuracy is 90% on the occluded
test-set objects with the complete dictionary (64x64) a@®% with the overcomplete dictionaries. Figure
9 shows that (as above) there are incorrectly activated imlayer 4 at = 4 which are suppressed during
later times. In contrast with Figure 6, in layer 2 here therenbre activity as time progresses presumably
due to the activation of missing features during reconstnc

More insight into reconstruction can be gained by examitimgreceptive and projective fields of units
in the middle layers. Considering layer 2 (Figure 10), we fimel receptive fields (top row) tend to learn
a large-scale representation of a particular orientatioanoobject. This is mainly because the receptive
fields are allowed to cover the entire first layer, and no togplis enforced on the weights. Some receptive
fields (such as the first column of Figure 10) are tuned to twy dédferent objects, suggesting that units
are recruited to represent more than one object, as wouldfgeced from an efficient distributed code.
The projective fields are not as clearly specific to a pawicotientation and include strong noise, which
indicates there must be inhibitory feedback from otherd&@yeanits contributing to the cleaner version of
the layer 1 outputs when the full network is run.
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Figure 6: Recognition of a test set object. Each row showsiéteork activity X; at a time step. In layer
4, the marker l” indicates that the unit is active and is part of the corrdgject code, 8" that the unit is
in the object code but inactive, anc™ that the unit is active but should not be. When- 3, there is no
external input and the reconstructed image in layer 1 is diieto network feedback. At = 4 in layer 4
there are four incorrectly activated units(*) but at later times, the dynamics of the network suppressdh
incorrectly-active units.

27



Table 4: Network parameters for training the 4-layer nekweith 64x196 overcomplete dictionary, corre-
sponding to layer 1 size of 12288. For other sized dicti@sarihe size of the first layer was 8192 (64x128
dictionary) and 4096 (64x64 dictionary), with all other ganeters as listed below.

Network parameters
s (layer size) [12288, 512,512, 256
r (maximum diversity of layer) [430, 100, 100, 100]
7 (time iterations per pattern) 8
7n (learning rate) 0.002
A (regularization parameter) 0.005
1 (target mean for hidden layers) -4.0
epoch size (number of patterns 100
maximum number of epochs 1000
feedforward weight range [-5.0,5.0]
feedback weight range [-5.0,5.0]
lateral weight range [-5.0,0.0]
layer 1 norms (FB) [12.0]
layer 2 norms (FF, L, FB) [12.0,2.1,2.1]
layer 3 norms (FF, L, FB) [5.9,2.1,1.5]
layer 4 norms (FF, L) [1.5,1.5]

6.3 Imagination: Running the Network Generatively

Imagination is the process of running the network genegBtiwith input given as an object code at the
highest layer. For this experiment, the network trainedeént®n 6.1 is used with an object code clamped
on the highest layer for all time steps. Random activity idemtito the second layer at= 3 so that the
network has a means of choosing which view of the object tegda. It was found that increasing the
feedback strength (by multiplying feedback weights by %djhe first and second layers increased the
activity and quality of the imagined image at the first lay&fithout this increase, the layer 1 reconstruction
was very likely to settle to the O state. Figure 11 shows tkelte when the object code for the knight is
presented. At = 4, the reconstruction is a superposition of many featuras fnwany objects but at later
times the outline of the object can be seen. The orientafitileqyenerated image alternates between a front
view (t = 5,7) and a side viewt(= 6, 8), which is reminiscent of the bistable percept effect. Nbtrels

of this experiment result in a bistable state, the majordagverged to a single orientation. Interestingly,
some orientations of certain objects appear to be genematteti more often than other orientations. These
“canonical views” represent high probability (low energyates of the network. A random sample of five
imagined objects is shown in Figure 12, showing that a sugs#tipn of states can also occur, which is
consistent with the projective field properties shown inuFey10.
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Figure 7: Each row is the network stalg att = 7 after presenting various rotated images of the airplane
(test set images, views unseen during training), demdimgjréhat multiple basins of attraction can be
learned for each object. Higher layers show more invariaptasentations than lower layers, with layer 4
showing the fully-invariant representation of the airgan

6.4 Expectation-Driven Segmentation: Out from Clutter

In expectation-driven inference, both an input image anopadown expectation are presented to the net-
work, and the output can either be the highest-layer claasidin or the lowest-layer reconstructed image.
Here, we considered the later case where the desired ospseigmented image reconstructed from the first
layer. The same network trained in Section 6.1 is used heteiméreased feedback strength as described
in Section 6.3. Cluttered input images are created by camdpimany objects from the data set at random
translations, overlayed with a portion of the desired im@ige same portion, 50%, used in the reconstruc-
tion experiment). This is a fairly difficult recognition golem as the clutter in each image is composed of
features from trained objects, so that competing featems to confound recognition algorithms. Although
the features from the clutter objects are likely to be inatiéht locations than seen during training, it is still
a more difficult task than segmentation from a randomly chdaatrained) background.

The problem of expectation-driven segmentation is diffefeom recognition in that we ask the network
not “what object is this?” but “assuming object x is here, wfeatures in the image most likely correspond
to it?” For this experiment, we present @at= 2,3 the image of the occluded object in clutter and at
t = 1,...,4 the expectation that the object is present at the highest.ldyigure 13 shows the network
states when presented with a cluttered image and top-lepelctation of the knight object. The timing of
the inputs was arranged so that the feedback and feedfoimpudfirst interact at = 3 in layer 3. When
t = 4, the input image is no longer presented and the network feddbas isolated some features of the
object. Later time steps show a sharper and more accurdieeoat the knight, including edges that were
occluded in the input image. At the highest layer, feedfodniateractions from lower layers cause the
correct object code to degrade. At 12 all the units in the object code for knight were active, asasl
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Figure 8: A) Histogram of FOCUSS+ coefficient values befdretization. There.9 x 10° elements in
the zero bin, and the maximum coefficient value is 2.9. B)ddjsgm and Gaussian fit of a randomly chosen
unit in the preactivation stati in layer 3 before training. C) Histogram and Gaussian fit sfdeale; in
layer 1 after training.

four incorrectly active units, which still allows corredassification. To illustrate the need for the top-down
expectation input in this case, Figure 14 shows the states=afl, 4,8 when no object code is presented
at layer 4. The activity gradually decays and there is nonsitaction at layer 1. Comparing Figure 11
(imagination) and Figure 13 shows that the partial infororaprovided in the cluttered image is enough
to keep the network at a stable estimate of segmentationinahts case prevent oscillations between two
orientations (which occurred when only top-down input wesspnt).

6.5 Overcompleteness Improves Recognition Performance

One of the central questions addressed in this work is hovassmvercomplete representation in the early
stages of visual processing, e.g. V1 in primates (Serenb, ét9®5), could be useful for visual inference.
As described above, we trained networks using learneddaties of varying degrees of overcompleteness:
64x64, 64x128 and 64x196, and corresponding sizes of thdayer: 4096, 8192 and 12288. Performance
was compared on the test set objects, occluded objects,ad®in clutter. The cluttered images were
created by overlaying the entire object on a cluttered backgl, resulting in a somewhat easier problem
than the occluded-object-in-clutter images used in Sedjalthough here no top-down expectations were
used to inform the recognition. Figure 15 shows the rec@mmiccuracy on these three image sets. For
the test set (complete images), all three networks had ipeaface at 99-100%, but for the occluded and
cluttered images there is a gain in accuracy when using ongstete representations, and the effect is more
pronounced for the more difficult cluttered images. For wdetl objects, accuracy was 90% (324/360)
for the complete dictionary and 97% (349/360) for the 3x owerplete dictionary. The most significant
improvement was with the cluttered images; accuracy was @48% 360) for the complete dictionary, and
73% (263/360) for the 3x overcomplete dictionary. While #tsolute classification rate for the cluttered
images might appear low (44-73%), many of the misclassiftgdats were those of smaller size (e.g. the
airplane and fire-hydrant) which allowed more features father larger objects to be visible and confound
the recognition. In addition, neither the dictionary noe tietwork were trained on images with clutter, so
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Figure 9: Reconstruction of an occluded input image. Asyeast = 3, feedback from layer 2 results in
reconstruction of some of the outer edges of the objectseMetall is filled in at later time steps. Layer 4
legend: W" = unit is active and in correct object codey™= unit is in the object code but inactivex” =
unit is active but should not be (not in object code).
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Receptive

Projective

Figure 10: Receptive and projective fields of four units ipela2. For each unit, the top row shows the
receptive fields (feedforward weights from layer 1 to 2), battom row shows the projective field (feedback
weights from layer 2 to 1). The weight vectors are convertgd images by multiplying by the learned
dictionary. The unit in the first column is tuned to respontdth the plane and the table, while its projective
field appears to include many possible orientations of thael

the network had no previous experience with this partictylpe of cluttered images.

7 Discussion

In this section we discuss the motivations for our networt aampare it with other recurrent and proba-
bilistic models of vision. Additional discussion can beadun Murray (2005, Sec. 1.8).

7.1 Why Sparse Overcomplete Coding and Recurrence?

In the brain, early visual areas are highly overcomplet#) about 200-300 million neurons in V1 compared
to only about 1 million neurons that represent the retinahim lateral geniculate nucleus (LGN) of the
thalamus (Stevens, 2001; Ejima et al., 2003). As primatkigeo has progressed, there has been anincrease
in the ratio of V1 to lateral geniculate nucleus (LGN) sizehil& even the smallest of primates shows a high
degree of overcompleteness, the increase in higher prnslieked with increase in retinal resolution and
presumably improved visual acuity (e.g. 87x overcompletate tarsier monkey compared with 200-300x
for humans).

Mathematically, sparse coding strategies are necessarghe efficient use of overcomplete dictionaries
because the dictionary elements are generically non-gotied. To provide a low-redundancy representa-
tion (Attneave, 1954; Barlow, 1959) a sparse set of elemmnitst be chosen that accurately represents the
input. If we have faith in the generative model postulate&igure 1, real-world images can be accurately
modeled as being caused by a small number of features anctglgapporting the choice of a sparse prior
(even in the case of complete coding). Other benefits of sgarding include: making it easier to find cor-
respondences and higher order correlations, increasmgiginal-to-noise ratio, and increasing the storage
and representational capacity of associative memorie$d(Fi994). Biological evidence for sparse coding
ranges from the simple fact that average neural firing ratebowy, 4-10 Hz (Kreiman et al., 2000), to exper-
iments that find sparseness in V1 increases as larger patthatiral images are presented indicating that a
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Figure 11: Imagination using the object code for the knightlse top-down input and the injection of
random activity in layer 2 at = 3. The reconstruction is a bistable (oscillating) patterthef object from
the front and side views.
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Figure 12: Imagination using random object codes as inplayer 4 and at = 3, random activity at
layer 2. The images are the network’s layer 1 state-atl5 with top-layer objects codes of the fire-hydrant,
grill, knight, copier and airplane. For the first and last ges, the network has settled into a superposition
of multiple objects (fire-hydrant and copier) or multipléemtations of the same object (airplane).

concise representation can be found by deactivating rethiridatures, presumably through the interaction
of lateral and feedback inhibition (Vinje and Gallant, 2R0One of the successes of sparse-coding theory
has been the learning of receptive fields that resemble tbetation and location selectivity of V1 neurons
(Olshausen and Field, 1997), and extensions have been maa&lel complex cells (Hoyer and Hyvarinen,
2002).

While overcompleteness and sparse-coding are importatirés of early vision in V1, perhaps the
most striking aspect of higher visual areas is the amounatefdl and feedback connections within and
between areas (Felleman and Van Essen, 1991). Even in #fallaind feedback input from other cortical
areas account for about 65% of activity, with only 35% of megge directly due to feedforward connections
from the LGN (Olshausen and Field, 2005). We showed in Se&ithat feedback and lateral connections
are required for many types of inference. In some recognitisks, there is evidence that the brain is fast
enough to complete recognition without extensive rectrirgeraction (Thorpe et al., 1996). Consistent
with this, our model is capable of quickly recognizing oligein tasks such as Figure 6, where the correct
object code is found at = 5. However, more difficult tasks such as segmentation (Fid®erequire
recurrence and would take longer for the brain (Lee et aB8)1.9

7.2 Related Work: Biologically Motivated Models of Vision

There have been many hierarchical models created to exptam, and these fall into two main categories:
feedforward-only or recurrent (which include various typd feedback and lateral connections between
layers). Some examples of the feedforward class are thedgadmon model of Fukushima and Miyake
(1982); VisNet of Rolls and Milward (2000); and the invatti@acognition networks of Foldiak (1991) and
Riesenhuber and Poggio (1999). While many of these modelsparsity with some form of winner-
take-all competition which is usually interpreted as lakemteraction, since they do not include feedback
connections they are not capable of the range of inferereaitted in Section 2.2, and will not be discussed
further here.

One of the more closely related works is the dynamic netwenelbped by Rao and Ballard (1997).
A stochastic generative model for images is presented anerarthical network is developed to estimate
the underlying state. Their network includes multiple Izyeith feedforward and feedback connections
which are interpreted as passing the residuals from piedgiat higher levels back to lower levels (but
with no explicit learnable lateral connections, nor ovenptete representations). Experiments demonstrate
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Figure 13: Expectation-driven segmentation using ocawidgects over a cluttered background. The clutter
input is presented at the lowest layer for 2,3. Top-down expectations (the object code for knight) are
presented at the highest layer foe= 1,...,4. By ¢t = 12, the network converges to a segmented outline
of the knight in the correct orientation at the first layeryen4 legend: B’ = unit is active and in correct
object code, &” = unit is in the object code but inactivex” = unit is active but should not be (not in object
code).
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Figure 14: Recognizing the occluded object in a clutterazk@ound is difficult without top-down expec-
tations. The same input image used in Figure 13 is preseated= 1,2, 3, however no top-down inputs
are present. A few representative time steps show that thvityagradually decays over time, and no object
is reconstructed at layer 1. Layer 4 legen®”‘= unit is active and in correct object codey™= unit is in
the object code but inactivex” = unit is active but should not be (not in object code).

recognition, reconstruction of occluded images, learwifigiologically plausible receptive fields and ability
to tell that an object had not been seen during training. &erbecause of the computational requirements,
only fairly limited recognition experiments were perforteising five objects (one orientation per object)
and rotation invariant recognition with two objects, eadthv@6 views used for training and testing (Rao,
1999).

Newer versions of the Neocognitron include feedback caimeand are demonstrated for recognition
and reconstruction (Fukushima, 2005). The model positsypes of cells in each region of the system, S-
cells and C-cells in analogy with the simple and complexsagdtegorized by Hubel and Wiesel (1959). The
S-cells are feature detectors and the C-cells pool the bofpb-cells to create invariant feature detectors.
To solve the reconstruction problem, further cell types kayers are added, and many of the layers have
different learning rules. In contrast, our network is alol@érform various inference types without changes
to the architecture or learning rule.

7.3 Related Work: Probabilistic Models in Computer Vision

Recent work in computer vision has investigated probadiulgenerative models apart from direct biological
motivation (Hinton et al., 2006; Hinton and Salakhutdin@906; Fergus et al., 2007; Sudderth et al., 2005).
Most closely related to our work is the learning algorithnHafiton et al. (2006) for hierarchical belief
networks. The network has multiple hidden layers followgdabmuch larger overcomplete associative
memory (whereas our overcomplete stage occurs at the skpmTy, and a highest layer with a 1-out-of-
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Figure 15: Recognition performance on the test set (fuleaj occluded images (50% occlusion) and
cluttered images with three different degrees of overceteplkess in Layer 1 representation and learned dic-
tionaries. Recognition performance improves with incegagvercompleteness, particularly in the difficult
cluttered scenes. Test set size is 360 images (36 views djj¢6ts).

code for the object class. The first layer has real-valuedtmpvhile stochastic binary values are used at
higher layers. Feedforward and feedback weights are ldduieno lateral connections are used, and during
testing only one forward-backward pass is made at each. [&yben trained on a benchmark handwritten

digit data set, the accuracy is competitive with the bestmmaclearning methods, showing that generative
hierarchical networks are promising for real-world vistasks. Using a similar learning procedure with an

autoencoder network architecture, Hinton and Salakhotd{2006) show applications to data compression
and text classification.

While there are many differences between this work and garithm, they address the same basic ques-
tion of how to train hierarchical generative models. Oneantgnt difference is that Hinton et al. (2006)
use stochastic units and Gibbs sampling for generativeenée, while we use a nearest-layer conditional
variational approximation. We believe the factorial apjmation of eq. (2.8) can be sufficiently accurate
in the case of sparse activations, and that enforcing a shorigh time-horizom makes learning compu-
tationally tractable. More experiments with known gernigeamodels will be needed to further evaluate the
differences between these algorithms.

Fergus et al. (2007) develop a model for classification o&dbgategories in unsegmented images.
The first step is finding a small set of interesting featuréagua saliency detector. For each category,
a probabilistic model is learned for these features indgdheir relative position and scale. Impressive
detection performance is achieved on real-world data datsontrast to our work which models all the
features in the image, Fergus et al. (2007) use only a smaibeu of features< 30), so that, if run
generatively, their model would only reconstruct a smabisat of the features in each object. Using a
saliency detector improves position and scale invariamtgch would benefit our network), however, using
only this small feature set reduces performance when fesatifra class model cannot be found.

In a related work, Sudderth et al. (2005) present a prolsticilmodel of object features and apply it to
object categorization in real-world scenes. Similar to madel and in contrast with Fergus et al. (2007),
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their model is a true multiclass classifier which allows @eas to be shared between models of different
objects, and allows for more rapid classification withowt tieed to run multiple classifiers. As above, the
small feature set limits the potential detail of generate@nstruction. However, segmentation results show

that regions such as “building”, “car” and “street” can béedted in city scenes.

8 Conclusions

We have developed a framework and learning algorithm faralisecognition and other types of inference
such as imagination, reconstruction of occluded objectsexpectation-driven segmentation. Guided by
properties of biological vision, particularly sparse am@nplete representations, we posit a stochastic gen-
erative world model. Visual tasks are formulated as infeegproblems on this model in which inputs can
be presented at the highest layer, lowest layer, or bothrdiapg on the task. A variational approximation
(the simplified world model) is developed for inference whis generalized into a discrete-time dynamic
network.

An algorithm is derived for learning the weights in the dyn@ametwork, with sparsity-enforcing priors
and error-driven learning based on the pre-activated stt®r. Experiments with rotated objects show
that the network dynamics quickly settle into easily-iptetable states. We demonstrate the importance of
top-down connections for expectation-driven segmematibcluttered and occluded images. Four types
of inference were demonstrated using the same networktactinie, learning algorithm and training data.
We show that an increase in overcompleteness directly laitisproved recognition and segmentation in
occluded and cluttered scenes. Our intuition as to why thesefits arise is that overcomplete codes allow
the formation of more basins of attraction and higher regreional capacity.
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A Sparse Image Coding with Learned Overcomplete Dictionames

The dynamic network and learning algorithm presented abegeire that the inputs; at each layer
be sparse vectors. To transform the input image into a deitgarse vector, we use tlecal under-
determined-system-solvéFOCUSS) algorithm for finding solutions to inverse probéenThe FOCUSS
algorithm represents data in terms of a linear combinatfca small number of vectors from a dictionary,
which may be overcomplete. Other methods for sparselyagpdignals include matching pursuit, basis
pursuit, and sparse Bayesian learning, which were alsa&ta for image coding (Murray and Kreutz-
Delgado, 2006). The overcomplete dictionary is learnedgutiie FOCUSS-CNDL (column-normalized
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dictionary learning) algorithm developed by Murray and #zeDelgado (2001); Kreutz-Delgado et al.
(2003).
The problem that FOCUSS-CNDL addresses here is that of geptiag a small patch of an image
y € R™ using a small number of non-zero components in the sourceece R™ under the linear
generative model,
y = Ax, (A.1)

where the dictionaryd may be overcomplete; > m. The algorithm updates and more discussion of
the FOCUSS-CNDL algorithm in this context are given in Myr(@005, Section 1.A). Parameters for
FOCUSS-CNDL are: data set size = 20000 image patches, bibekvs= 200, dictionary size = 64x64,
64x128, or 64x196, diversity measyve= 1.0, regularization paramete,,,, = 2 x 1074, learning rate

~ = 0.01, number of training epochs = 150, reinitialization everyeg@chs. After each dictionary update,
A is normalized to have unit Frobenius norfid || = 1 and equal column-norms. Figure 1.18 of Murray
(2005) shows the learned 64x196 dictionary after trainingedge-detected patches of man-made objects
(the data set described in Section 6).

Once the dictionaryd has been learned, input images for the dynamic network (D&lraded using
the FOCUSS+ algorithm (Murray and Kreutz-Delgado, 2006)e input images are divided into consecu-
tive non-overlapping patches of the same 8x8 size used étiodary learning. The FOCUSS+ algorithm
consists of repeated iterations of eq. 6 from Murray and r®elgado (2006) over an image patghto
estimater;. Eachx;, is updated for 15 iterations with= 0.5.

B Derivation of Learning Algorithm for W

The learning algorithm for the weight® is derived similarly to the backpropagation-through-tiaigorithm
(BPTT) (Williams and Peng, 1990). Using the pre-activaiost function (4.11) for an individual pattern,

T

Tpa =53 [ e ®B) + MV (Vi) © (1- 8] ®.1)
t=1

which uses state®; generated from running the network in certainty-equivedemode. The effect of
the weight prior— In P(W) will not be considered in this section, as it was found thdbeang periodic
weight normalization is more computationally efficientrihasing prior constraints in every weight update
(see Section 5).

To minimize the cost/p 4 we update the weights using gradient descent,

0Jpa 0Jpa avjt
- o Z DA (B.2)

wherew;; is the element from thg-th row andi-th column ofW. The second term on the right is,

Ve 0
8wji N 8wji

W, X = Xt (B.3)
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whereW;. is the j-th row of W. The first term on the right of (B.2) is divided into two parts,

dJpa '
8Vj,t = Djt+ Dg,t
o |1 o
Bji = v, 5;% (e, ©B,)
J |\
Dip==— |5 (Vi—-w((Vi—p) o (1-8)| . (B.4)
Vi |2 p

whereB is related to reconstruction error ahtlincreases sparsity on those layers without desired values.
Recursion expressions can now be foundsgy and D, ;. First, some notation: thgth row of the weight
matrix W is denotedW ;. and the element from thgth row andi-th column isw;;. Beginning with the
reconstruction-enforcing ter (temporarily omitting the binary indicator variakfefor notational clarity),

0 |1 o
Bj,t:avjvt §;€p€p : (B.5)

For B;;, at the last time step in (B.2) wheén= 7 only thep = 7 terms depend oW} -,

8 1 )
Bi,=—|=ele. | =~ 6. =¢;, B.6
T, {2} v, =

wheres; ; is the j-th element of the error vecta;. Whent = 7 — 1,

0 1 1
Bjr1= m [552& + 552—1&—1} . (B.7)
The second term on the right can be found to-ag ._; as in (B.6). For the first term,
o 1 p r 0 T 0
—ele = r=e,W V._
a‘/j,T—l 2ET € & aij;r—l € € aij;r—l f( 1)
N
= f'(Vir-1) D ekrwiy - (B.8)
k=1
Substituting (B.8) and (B.6) into the expression iy, _; (B.7),
N
Bjr1=¢jr-1+ f'(Vir-1) Z By rwy; (B.9)

k=1

The general recursion fds, ; is (after reintroducing the indicator variab,

€5.t05 t=
By = { . " (8.10)
gjtBit + ['(Vig) 2=y Brawrwe; 1<t <7
Turning to the sparsity-enforcing term (again omittisig
D=2 1A W - ) (B.11)
it = v, |24 t — K t— M . .
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Following similarly to the derivation foB above, whert = 7,

9 A T _ 0 — AV
Dj, = o §(VT —p) (Ve =p)| =AMV, = M)WN(VT —p) =AVjr—n) . (B.12)

Whent < 7, we follow (B.7)-(B.9), and find the general recursion foy; (reintroducingg),

A(Vjg = 1)1 = Bjz) t=7
Dj; = ! ! / N . (B.13)
AWVie =) = Bje) + f'(Vie — ) 2oy Dijprwgy 1<t <7-1
The recursions (B.10) and (B.13) are used in the final weigtate,
Awj;=-n> (Bjs+Dj)Xiy (B.14)
t=1
where the activation function derivative is,
() = ayag exp (—agv + ag) (B.15)

B {1+ exp(—agv + CL3)}2
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