
Visual Recognition and Inference Using

Dynamic Overcomplete Sparse Learning

Joseph F. Murray

Massachusetts Institute of Technology

Brain and Cognitive Sciences Department

77 Massachusetts Ave. 46-5065

Cambridge, MA 02139

and

Kenneth Kreutz-Delgado

University of California, San Diego

Electrical and Computer Engineering Department

9500 Gilman Dr. Dept 0407

La Jolla, Ca 92093-0407

Email: murrayjf@mit.edu, kreutz@ece.ucsd.edu ∗

April 8, 2007

Abstract

We present a hierarchical architecture and learning algorithm for visual recognition and
other visual inference tasks such as imagination, reconstruction of occluded images, and expect-
ation-driven segmentation. Using properties of biological vision for guidance, we posit a sto-
chastic generative world model and from it develop a simplified world model (SWM) based
on a tractable variational approximation that is designed to enforce sparse coding. Recent de-
velopments in computational methods for learning overcomplete representations (Lewicki and
Sejnowski, 2000; Teh et al., 2003) suggest that overcompleteness can be useful for visual tasks,
and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado et al., 2003) as a
preprocessing stage to produce accurate, sparse codings ofimages.

Inference is performed by constructing a dynamic multilayer network with feedforward,
feedback and lateral connections, which is trained to approximate the SWM. Learning is done
with a variant of the backpropagation-through-time algorithm, which encourages convergence
to desired states within a fixed number of iterations. Visiontasks require large networks and, to
make learning efficient, we take advantage of the sparsity ofeach layer to update only a small
subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated
objects demonstrate various types of visual inference, andshow that increasing the degree of

∗Webpages: J.F. Murray: www.jfmurray.org, K. Kreutz-Delgado: dsp.ucsd.edu/∼kreutz

1

jfmurray
Preprint: To appear, Neural Computation, 2007

overcompleteness improves recognition performance in difficult scenes with occluded objects
in clutter.

1 Introduction

Vision, whether in the brain or computer, can be characterized as the process of inferring certain unknown

quantities using an input image and predictions or expectations based on prior exposure to the environ-

ment. Visual inference includes tasks such as recognizing objects, reconstructing missing or occluded fea-

tures, imagining previously learned or entirely novel objects, and segmentation (finding which features in

a cluttered image correspond to a particular object). Performing these inference tasks requires combining

information about the current image (bottom-up processing) and abstract concepts of objects (top-down

processing). These tasks can naturally be placed into the framework of Bayesian probabilistic models, and

determining the structure and priors for such models is a great challenge both for understanding vision in

the brain and for application-oriented computer vision. A primary goal of this paper is to derive an effective

probabilistic model of visual inference consistent with current understanding of biological vision.

A number of important properties have emerged from neuroscience: 1) Vision in the brain is ahierar-

chical process with information flowing from the retina to the lateral geniculate nucleus (LGN), occipital

and temporal regions of the cortex (Kandel et al., 2000). 2) This hierarchy has extensiverecurrencewith

reciprocal connections between most regions (Felleman andVan Essen, 1991). 3) There is also extensive

recurrence within cortical regions, as typified bylateral inhibition which is a mechanism for how sparse

coding can arise (Callaway, 2004). 4) The primary visual cortex (V1) is strikingly overcomplete, mean-

ing there are many more cells than are needed to represent theretinal information. In humans, there are

over 200-300 V1 neurons per each LGN neuron, and a lesser degree of overcompleteness in other primates

(Stevens, 2001; Ejima et al., 2003). 5) The firing patterns ofcortical neurons gives evidence forsparse

distributed representations, in which only a few neurons are active out of a large population, and that in-

formation is encoded in these ensembles (Vinje and Gallant,2000; Quiroga et al., 2005). 6) Finally, even

though there are differences between various areas, the basic structure of the cortex is qualitatively similar,

and the notion ofcortical similarity states that the underlying cortical operation should be similar from area

to area (Mountcastle, 1978; Hawkins and Blakeslee, 2004). Since these six properties are present in animals

with high visual acuity, it is reasonable to assume they are important for inference, and we will adopt them

in a network model.

While many computational models of vision have been developed which incorporate some of the above-

listed properties (Fukushima and Miyake, 1982; Rao and Ballard, 1997; Riesenhuber and Poggio, 1999;

Rolls and Milward, 2000; Lee and Mumford, 2003; Fukushima, 2005), we propose a model which takes into

account all six properties. For example, the recognition models of Rolls and Milward (2000) and Riesenhu-

ber and Poggio (1999) do not use feedback (and so are incapable of inference tasks such as reconstruction

or imagination), and the dynamic system of Rao and Ballard (1997) does not use overcomplete representa-

tions. The use oflearnedovercomplete representations for preprocessing is a new and largely unexplored

approach for visual recognition and inference algorithms.Recent developments in learning overcomplete

dictionaries (Lewicki and Sejnowski, 2000; Kreutz-Delgado et al., 2003; Teh et al., 2003) and the associated

2

methods for sparse image coding (Murray and Kreutz-Delgado, 2006) now make possible the investigation

of their utility for visual inference.

Real world images are high-dimensional data that can be explained in terms of a much smaller number of

causes, such as objects and textures. Each object, in turn, can appear in many different orientations but in fact

is seen in only one particular orientation. For each orientation, an object can be represented with a concise

set features, such as lines, arcs and textures. The key feature of these various types of image descriptions

is that they can be represented assparse vectors, where only a few of the many possibly choices suffice to

explain the scene. While pixel values of images have non-sparse distributions (they are unlikely to be zero),

these more abstract representations are very sparse (each component is likely to be zero), and only a few non-

zero components at a time succinctly describe the scene. This intuition, along with the biological evidence

for sparsity, is the justification for our use of sparse priordistributions. Other advantages of sparsity include

reduced metabolic cost and increased storage capacity in associative memories (Olshausen and Field, 1997).

1.1 Overview and Organization

Beginning with a hypothetical hierarchicalgenerative world model(GWM) that is presumed to create im-

ages of objects seen in the world, we discuss how the GWM can beused for visual inference (Section 2).

The GWM requires the selection of a probability distribution, and a suitable choice is required to create

practical algorithms. As a first move, we consider a Boltzmann-like distribution which captures the desired

top-down, bottom-up and lateral influences between and within layers, but it is computationally intractable.

Then, asimplified world model(SWM) distribution is created based on a variational approximation to the

Boltzmann-like distribution, and which is specifically designed to model sparse densities (Section 2.4).

By designing a dynamic network that rapidly converges to a self-consistency condition of the SWM,

we can perform inference tasks if we have the weights that parameterize the network (Section 3). The

dynamic network arises as a way of estimating the fixed-pointstate of the SWM. Although we consider

only the problem of estimating static world-models, generalization to dynamic worlds is also possible. To

determine the unknown weights, we develop a learning algorithm based on the backpropagation-through-

time algorithm (Williams and Peng, 1990) which operates on the pre-activation state and includes a sparsity-

enforcing prior (Section 4). This algorithm can be seen as a natural extension of the sparse-coding principles

that are useful in modeling V1 response properties (Olshausen and Field, 1997) to the full visual inference

task.

We demonstrate experimentally several types of visual inference including recognition, reconstruction,

segmentation and imagination. These simulations show thatovercomplete representations can provide bet-

ter recognition performance than complete codes when used in the early stages of vision (Section 6). A

discussion of the biological motivations and comparison toprior work is given in Section 7, and conclusions

are drawn in Section 8.

1.2 Notation

a Activation function parameters

B Error-related term in learning algorithm

3

c(m) Object code for objectm, (sparse binary code)

D Sparsity-enforcing term in learning algorithm

f(·) Sigmoid activation function

I{·} Indicator function, 1 if expression is true, 0 otherwise

JPA Cost function on pre-activation state, minimized by learning rule

K Number of images in training setY

Ll Lateral weights between units in layerl

M Number of unique objects in training set

n Number of layers in network

N Number of elements in state vectorX

r Number of non-zero elementsr = [r1, . . . , rn], whererl is the

number of non-zero elements in layerl (diversity×n)

s Size of layers,s = [s1, . . . , sn], wheresl is the size of layerl

Ut Network input at timet

v,v Unit weight sumv (for entire layervl), pre-activation function

V Pre-activation state of all layers

V̂t Certainty-equivalence approximation of pre-activation values

Wlm Weights from layerm to layerl

W Complete weight matrix for all layers (including allWlm andLl), W ∈ R
N×N

xl Activation vector at layerl, expected values ofP (zl|zl−1, zl+1)

X State vector of all layers,X = [xT
1 , . . . ,xT

n]T

Y̌ Training data,̌Y = [y̌T
1 , 0, . . . , 0, y̌T

n]T , wherey̌1 is a sparsely-coded image

andy̌n is an object code

Yt Dynamic network output at timet

Y, V, U Sets of multiple state vectorsY, V , e.g.Y = {Y (1), . . . , Y (K)}

zl True state of generative model at layerl, binary random vector∈ {0, 1}sl

Z True state of generative model, all layers,Z = [zT
1 , . . . , zT

n]T , binary random

vector∈ {0, 1}N

βt Indicator vector of whether target values are available foreach element ofVt

ε Error between variational approximation and true state

ε̂ Error between data set and network approximationV̂t

ζ Normalization constant (partition function)

η Learning rate

λ Regularization parameter

µ Target mean for hidden layers

Φ Error between true and approximate state,Φ = Z − X = [φT
1 , . . . ,φT

n]T

ξ Energy-like function

τ Number of time steps network is run for (maximum value oft)

GWM Generative world model (Boltzmann-like distribution)

NLCP Neighboring-layer conditional probability

4

SWM Simplified world model, variational approx. to Boltzmann-like distribution

DN Dynamic network that settles to the self-consistency condition of the SWM

2 Generative Models for Visual Inference

In this section, we postulate a hierarchical generative visual-world model (GWM) and discuss its properties,

particularly that of independence of one layer given its immediately neighboring layers. We then discuss

how the GWM can be used for visual inference tasks such as recognition, imagination, reconstruction, and

expectation-driven segmentation. Specific forms of the probability distribution in the model must be chosen,

and as a starting point we posit a Boltzmann-like distribution. Since inference with the Boltzmann-like

distribution is generally intractable, a variational approximation is developed leading to a simplified world

model (SWM). The key assumption of sparsely-distributed activations (prior distributions) is enforced and

used extensively. In this section we consider static world-models; in Section 3.1 we will use dynamic

networks to implement inference by settling to the fixed points of the SWM.

2.1 Hierarchical Generative Visual-World Model

Images of objects seen in the world can be thought of as being created by a hierarchical, stochastic generative

model (thegenerative world model, GWM). While it cannot be rigorously claimed that the real world uses

such a model to generate images, the idea of the GWM is a usefulfiction that guides the development of

learning algorithms (Hinton and Ghahramani, 1997).

For the GWM, we assume a hierarchical binary-state model of the form shown in Figure 1. The number

of layers is somewhat arbitrary, though there should be enough layers to capture the structure of the data

to be modeled, and four to five appears to be reasonable for images of objects (Riesenhuber and Poggio,

1999; Lee and Mumford, 2003; Hinton et al., 2006). The arrowsin Figure 1 indicate that each layer, given

the layer directly above it, is independent of higher layers. At the highest level, the vectorz5 is a sparse

binary coding of the object in the image, and its value is drawn from the prior distributionP (z5). The

representation of the particular orientationz4 of an object depends only on the object representationz5. The

invariant, composite and local features,z3, z2 andz1, likewise depend only on the layer immediately above

them, e.g.P (z3|z4, z5) = P (z3|z4), and the local featuresz1 model the imageI. The sequence can be

summarized,

z5
P (z4|z5)
−−−−−→ z4

P (z3|z4)
−−−−−→ z3

P (z2|z3)
−−−−−→ z2

P (z1|z2)
−−−−−→ z1

P (I|z1)
−−−−→ I . (2.1)

The joint distribution of the image and generative stateszl is,

P (I, z1, z2, z3, z4, z5) = P (I|z1)P (z1|z2)P (z2|z3)P (z3|z4)P (z4|z5)P (z5) , (2.2)

where each layerzl is a binary vector of sizesl.

We postulate that thezl aresparse, i.e., they have very few non-zero components (Olshausen and Field,

1997). For example, in every image only a few of all possible objects will be present, and each object

will only be in one of its possible orientations, and so forth. Sparsity is proportional to the number of zero

5

Objects

0

1

0

0

 
 
 
 
 
 
 
 
  

⋮

⋮

“Cup”

“Blocks”

“Car”

“Zebra”

⋮

Oriented objects

0

0

1

0

0

 
 
 
 
 
 
 
 
  

⋮

0

1

0

1

0

 
 
 
 
 
 
 
 
  

⋮
⋮

Image

I

Composite features

1

0

0

1

0

 
 
 
 
 
 
 
 
  

⋮

Local features

1

0

0

1

1

0

0

 
 
 
 
 
 
 
 
 
 
 
  

⋮

Position/scale
invariant features

z1z2

z3z4z5

Figure 1: Hierarchical generative visual-world model (GWM) for objects. At each layerzl, the image can

be represented by a large (possibly overcomplete) sparse vector. In this generative model, each layer is a

binary random vector which, given only the layer immediately above it in the hierarchy, is independent of

other higher layers.

components in a vectorz ∈ R
n, sparsity ≡ #{zi = 0}/n. A related quantity,diversity, is proportional

to the number of non-zero components,diversity ≡ #{zi 6= 0}/n = 1 − sparsity. Many studies

have confirmed that natural images can be represented accurately by sparse vectors, corresponding toz1

(Olshausen and Field, 1996; Kreutz-Delgado et al., 2003; Murray and Kreutz-Delgado, 2006). These studies

have mainly dealt with small patches of images (on the order of 8x8 to 16x16 pixels), and it is clear that

features larger than such patches will be represented non-optimally. This further redundancy in larger-scale

features can be reduced at higher levels, which can also havethe property of sparseness.

Neighboring Layer Conditional Probability (NLCP). For a middle layerzl given all the other layers,

we find thatzl conditioned on its immediate neighborszl−1, zl+1 is independent of all the remaining layers.

For example,

P (z2|I, z1, z3, z4, z5) =
P (I|z1)P (z1|z2)P (z2|z3)P (z3|z4)P (z4|z5)P (z5)

P (I|z1)P (z1|z3)P (z3|z4)P (z4|z5)P (z5)

=
P (z1|z2)P (z2|z3)

P (z1|z3)
. (2.3)

For an arbitrary layer we can find theneighboring layer conditional probability(NLCP),

P (zl|zl−1, zl+1) =
P (zl−1|zl)P (zl|zl+1)

P (zl−1|zl+1)
(NLCP) . (2.4)

6

This important independence assumption is equivalent to saying that each layer learns about the world

only through its neighboring layers (Lee and Mumford, 2003).1 Returning to the joint distribution and

substituting in the NLCPs,

P (I, z1, z2, z3, z4, z5) = P (I|z1) · P (z1|z2)P (z2|z3) · P (z3|z4)P (z4|z5) · P (z5)

= P (I|z1) · P (z2|z1, z3)P (z1|z3) · P (z4|z3, z5)P (z3|z5) · P (z5) (2.5)

So, the joint can be recovered given the NLCP and additional terms. Of course, other factorizations of the

joint are possible, but these are also consistent with the NLCP for their respective layers (Brook, 1964).2

Properties of Generative World Model (GWM). We now summarize the four properties of our gener-

ative world model (GWM). (1) There is a hierarchy ofn hidden-layer vectorsz1, . . . , zn that model each im-

ageI. (2) Each layer is independent of all higher layers given theneighboring layer above,P (zl|zl+1, . . . , zn)

= P (zl|zl+1). (3) Each layer is independent of all lower layers given the neighboring layer below,P (zl|

zl−1, . . . , z1) = P (zl|zl−1) (as shown in Murray, 2005, pg. 28). (4) Given its immediate neighboring layers,

a layerzl is independent of all other higher and lower layers,P (zl|I, z1, . . . , zn) = P (zl|zl−1, zl+1) .

2.2 Types of Inference: Recognition, Imagination, Reconstruction and Expectation-Driven
Segmentation

For object recognition, the goal is to infer the highest layer representationzn given an imageI. However,

recognition is only one type of inference that might be required. Another type is running a model genera-

tively using a high-level object representation toimaginean image of that object. In the brain, imagining

a particular instance of an object will not correspond to thelevel of detail in the retinal representation, but

there is evidence of activity in many of the lower visual areas (such as medial temporal, V1 and V2) during

imagination (Kosslyn et al., 1997).

Certain types of inference involve the use of top-down influences interacting with bottom-up inputs. For

example, given a partially occluded image that has been recognized by higher layers, top-down influences

can be used toreconstructthe hidden parts of the object (i.e. those features that are most likely given the

input). Another type of inference isexpectation-driven segmentation, where a prediction is presented at a

higher level which may be used to explain cluttered, incomplete or conflicting inputs at the lowest layer,

and the desired output is the segmented object at the first layer (Grossberg, 1976; Rao and Ballard, 1997;

Hecht-Nielsen, 1998). The expectation input (higher-layer, top-down) must come from a source external to

the visual system, which in the brain could be higher cortical areas or other senses, and in computer vision

could be dependent on the task or provided by a user. If we wishto find which objects are in a cluttered

1The NLCP is closely related to theMarkov blanket, which is defined for a single node in a Bayesian network as that node’s

parents, children and children’s parents. The NLCP is defined over all the units in a given layer.
2Brook (1964) proves that any system specified by the NLCP,P (zj |zi, i 6= j) = P (zj |zj−1, zj+1), has a joint distribution

that can be factored asP (z1, . . . , zn) = Πn+1

i=1 Qi(zi, zi−1), which is the joint factorization of a simple Markov chain. This proof

is for the case of scalarz, but since ourzl are binary vectors, they can be equivalently represented asscalar integer variables

∈ {1 . . . 2sl}. Thus, any system defined by the vector NLCP is consistent with a joint distribution that can be specified as the

product of neighboring-layer factors, i.e. the Markov assumption in eq. (2.2).

7

Table 1: Types of inference that can be performed with the hierarchical generative world model (GWM) and

the types of information flow required (bottom-up or top-down). We wish to find a good approximation to the

layerzl of interest. The approximation used is the expected value ofzl under the variational approximation,

EQ[zl] = xl as discussed in Section 2.4.

Requires

Type of Inference Inputs Outputs Bottom-up Top-down

Recognition (I → z1) zn Y N

Imagination zn (z1 → I) N Y

Reconstruction (I → z1) (z1 → I) Y Y

Exp.-driven seg. (I → z1), zn (z1 → I) Y Y

Exp.-driven det. (I → z1), zn zn Y Y

scene (i.e., the desired output is the highest-layer objectrepresentation) based on prior knowledge of what

might be there (higher-layer input), we performexpectation-driven detection. If the high-level prediction

about the scene is consistent with the input, the system converges with the expectation at the highest layer

and the prediction is confirmed. If the system converges to a different pattern, this indicates that the expected

object is not present (which could be considered a state of surprise). Table 1 shows types of inference and

the necessary information flow (top-down or bottom-up) needed in the model. As discussed below, we

use a sparse-coding algorithm to transform the image into the first layer representation,z1, and vice versa

(denoted by→ in the table).

2.3 Boltzmann-like Distributions for Layer-Conditional P robabilities

Our next task is to postulate a form for the GWM distributionsP that is powerful enough to generate

the images seen in the world. A common choice in probabilistic modeling is theBoltzmann distribution,

P (z) = ζ−1 exp(−βξ(z)), where the probabilities are related to a functionξ that assigns an energy to each

state,ζ is a normalizing function, andβ is a constant (which is a degree-of-randomness parameter related

to temperature in physical systems,β ∝ T−1) (Hopfield, 1982; Hinton and Sejnowski, 1983; Hertz et al.,

1991). In thermodynamics and physical systems such as magnetic materials, the energy function captures

the influence of each particle on its neighbors, where lower-energy states are more probable. The energy

function usually has the formξ(z) = −1
2

∑
ij wijzizj , wherewij is the symmetric interaction weight

(wij = wji) betweenzi andzj. In the context of associative memories, the weights of the energy function

are adjusted so that learned patterns form low-energy basins of attraction (e.g. using the Boltzmann machine

learning rule, Ackley et al., 1985).

The Boltzmann distribution requires the weightswij to be symmetric and have zero self-energywii = 0

(Kappen and Spanjers, 2000). Three main advantages of symmetric weights are: (1) A dynamic network

with symmetric interactions is guaranteed to be asymptotically stable and settle to a fixed point (the “zero-

temperature” solution) which minimizes the Boltzmann energy function (Mezard et al., 1987). (2) There

is a procedure (Gibbs sampling with simulated annealing) which generates samples from this distribution

8

at a given non-zero temperatureT . (3) Given a gradual enough annealing schedule for reducingT , Gibbs

sampling will track the global minimum-energy state (highest probability state) of the network and guarantee

convergence to the zero-temperature solution as the temperature is lowered (Geman and Geman, 1984).

While the above properties are attractive, and help explainthe wide interest in the Boltzmann distribu-

tion and the Boltzmann machine, they may be of limited use in practice. It often takes considerable time for

a stochastic network with symmetric weights to settle to an equilibrium state, possibly longer than a brain

or artificial network has to make a decision (Welling and Teh,2003), which accounts for the interest in sim-

plifying approximations such as mean-field annealing (Peterson and Anderson, 1987). Furthermore, it has

also been argued that the use of asymmetric weights can improve performance (such as by suppressing spu-

rious memory states) and has greater biological plausibility (Parisi, 1986; Crisanti and Sompolinsky, 1988;

Sompolinsky, 1988; Gutfreund, 1990; Apolloni et al., 1991;Kappen and Spanjers, 2000; Chengxiang et al.,

2000). An additional motivation for admitting asymmetric weights is the notion that in hierarchical networks

designed for invariant recognition, the relative strengths of the feedforward and feedback pathways will need

to be different. Since neurons in higher layers will tend to require inputs from multiple units to activate, the

relative strength of the feedback connections to those units must be stronger than the feedforward weights to

enable lower layer activity (i.e., generative ability). The primary deterrent to the use of asymmetric weights

is the difficulty associated with ensuring asymptotic stability of the resulting algorithms, which involves the

use of significantly more complex stability arguments (Apolloni et al., 1991).

We allow for asymmetric weights and sidestep the stability issue by working within a finite-time horizon

framework. The resulting simplicity of the finite horizon problem relative to the infinite horizon problem

is well-known in the dynamical systems literature (Bertsekas, 1995). In Appendix B we design a learning

rule that encourages convergence to the desired state within a small number of time stepsτ . Also, the use

of symmetric weights is merely sufficient for fixed points to exist, it is not a necessary condition.

We use the termsBoltzmann-likeandenergy-liketo distinguish our model (with asymmetric weights)

from the more strict Boltzmann distribution assumptions. The Boltzmann-like form of the NLCP is,

PB(zl|zl−1, zl+1) =
1

ζ(zl−1, zl+1)
exp (−ξ(zl, zl−1, zl+1)) (NLCP-B) , (2.6)

whereξ is the energy-like function andζ is a normalizing function, with

ξ(zl, zl−1zl+1) = −zT
l Wl,l−1zl−1 − zT

l Llzl − zT
l Wl,l+1zl+1 − θT

l zl

ζ(zl−1, zl+1) =
∑

zl

exp(−ξ(zl, zl−1, zl+1)) , (2.7)

whereWl,l+1 are top-down weights from layerl + 1 to l, Wl,l−1 are the bottom-up weights from the layer

l− 1 to l, Ll encodes the influence of units in layerl on other units in that layer (lateral weights), andθl is a

bias vector. The summation inζ is over all states of layerl. Note that if the properties of symmetric weights

are desired, they can be used without changes to the variational approximation developed below in Section

2.4.

An important question is whether the Boltzmann-like distribution (2.6)-(2.7) is adequate to model the

hierarchical sparse generative model of Figure 1. It is possible to construct densities that are not well

represented by any set of weightsW,L in (2.7). However, we do not need to model an arbitrary density,

9

only densities that are sparse and therefore have more limited forms of dependence. Algorithms related to

the Boltzmann machine have shown success on real-world vision tasks (Teh and Hinton, 2001; Hinton et al.,

2006) and tend to confirm that the Boltzmann-like distribution is a reasonable starting point.

2.4 Simplified World Model Developed With a Variational Method

The Boltzmann-like distribution (2.6)-(2.7) provides a reasonable form of the probabilities in the GWM

which allows feedforward, feedback and lateral influences.Unfortunately, exact inference onzl given

zl−1, zl+1 is intractable for reasonably sized models even when the parameters ofPB(zl|zl−1, zl+1) are

known because of the need to sum over every possible statezl in the normalizing functionζ. In this sec-

tion, we use a variational method that approximatesPB(zl| zl−1, zl+1) with a factorial distribution,PQ(zl|

zl−1, zl+1). By variational we mean that there are certain parametersxl = {xl,i} that are varied to make the

distributionPQ as close toPB as possible. The form ofPQ is taken to be ageneralized factorial Bernoulli

distribution,

PQ(zl|zl−1, zl+1) =

sl∏

i=1

[
xl,i − a4

a1

]� zl,i−a4

a1

� [
1 −

xl,i − a4

a1

]�1−
zl,i−a4

a1

�
, (2.8)

wherexl,i are the variational parameters anda = [a1, a2, a3, a4] are additional constant parameters (a2

anda3 will be introduced later) that are used to encourage sparsity-inducing densities (Section 2.5). The

dependence onzl−1, zl+1 will be introduced throughxl,i as derived below. A sufficient condition for (2.8)

to be a probability distribution is thatxl,i−a4

a1
+
(
1 −

xl,i−a4

a1

)
= 1 andxl,i−a4

a1
≥ 0, which is true fora1 > 0

andxl,i ≥ a4. The slightly generalized Bernoulli-distribution (2.8) is based on a shift in the logical values

of zl,i in the energy function from{0, 1} to {a4, a1 + a4} (the experiments below use{−0.05, 1.05}, which

improves computational efficiency). Our formulation encompasses the two common choices for logical

levels,{0, 1} and{−1, 1}, e.g. if logical levels of{−1, 1} are needed, thena4 = −1, a1 = 2. Collecting

the xl,i into vectorsxl of the same size aszl for each layer, it can be shown thatxl are the conditional

expected values for each layer,

xl = EQ[zl|zl−1, zl+1] . (2.9)

Note that the variational parameter vectorxl is the minimum-mean-squared-error (MMSE) estimate ofzl

given the values of its neighboring layers (Kay, 1993, pg. 313).

We now find thexl,i that minimize the Kullback-Leibler divergence (Cover and Thomas, 1991) between

the conditional probabilitiesPB(zl|zl−1, zl+1) andPQ(zl|zl−1, zl+1),

KL(PQ||PB) = EQ[log PQ(zl|zl−1, zl+1)] − EQ[log PB(zl|zl−1, zl+1)] , (2.10)

whereEQ is the expected-value operator with respect to the distribution PQ(zl|zl−1, zl+1). Using the ex-

pected valueEQ[zl,i] = xl,i, the first term is,

EQ[log PQ(zl|zl−1, zl+1)] =
∑

i

[
xl,i − a4

a1
log

(
xl,i − a4

a1

)

+

(
a1 − xl,i + a4

a1

)
log

(
1 −

xl,i − a4

a1

)]
. (2.11)

10

The second term in (2.10) can be expanded,

EQ[log PB(zl|zl−1, zl+1)] = EQ[− log(ζ) − ξ(zl, zl−1, zl+1)]

= EQ[− log(ζ) − zT
l Wl,l−1zl−1 − zT

l Llzl − zT
l Wl,l+1zl+1 − θT

l zl] .

(2.12)

Again using the expected valueEQ[zl,i] = xl,i,

EQ[log PB(zl|zl−1, zl+1)] = − log(ζ) −
∑

ik

W−
ik zl−1,k xl,i −

∑

ik

Lik xl,k xl,i

−
∑

ik

W+
ik zl+1,k xl,i −

∑

i

θl,i xl,i + cl , (2.13)

whereW+
ik ,W−

ik and Lik are elements of the weight matricesWl,l+1,Wl,l−1 and Ll respectively and,

definingφl = (zl − xl), the termcl = EQ[(zl − xl)
T Ll(zl − xl)] = EQ[φT

l Llφl], which is zero assuming

thatLii = 0. 3

Self-Consistency Conditions of the Variational Approximation. The variational parametersxl,i that

minimize the distance betweenPB andPQ (2.10) are found by solving,

∂KL(PQ||PB)

∂xl,i
= 0 = a2

(
∑

k

W−
ikzl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikzl+1,k

)

+ log

(
z1 − xl,i + a4

xl,i − a4

)
− a3 , (2.14)

using a constant terma3 for the biasθl,i,4 and factoring outa2 from W+,W− andL (with a slight abuse of

notation, including factoring1
a1

into a2, a3, see eq. 2.11). Setting (2.14) equal to zero and solving forxl,i,

xl,i = f (vl,i)

vl,i =
∑

k

W−
ikzl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikzl+1,k , (2.15)

wheref(·) is a sigmoid activation function parameterized bya = [a1, a2, a3, a4],

f(v) =
a1

1 + exp (−a2v + a3)
+ a4 . (2.16)

Definingφl,i = zl,i − xl,i to be the approximation error, the statez is equal tox plus a random noise

component,zl,i = xl,i + φl,i. This yields,

vl,i =
∑

k

W−
ik(xl−1,k + φl−1,k) +

∑

k

Likxl,k +
∑

k

W+
ik(xl+1,k + φl+1,k)

=
∑

k

W−
ikxl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikxl+1,k + εl,i , (2.17)

3The termcl = EQ[(zl − xl)
T
Ll(zl − xl)] = Tr[LlΣzl

], whereΣzl
is the covariance matrix ofzl underPQ. Sincezl

is assumed conditionally independent underPQ, the non-diagonal elements of the covariance matrix are zero. We will disallow

self-feedback (i.e.,Lii = 0), so that Tr[LlΣzl
] is zero. However it is straightforward to handle the case when Lii 6= 0 given the

factorial form ofPQ.
4For simplicity we setθl,i = a3 for all l, i. However this assumption can be relaxed.

11

where theφ terms have been collected intoεl,i. By collecting all the terms for each layer into a vector we

obtain the single equation,





x1

x2

x3

...

xn





= f









L1 W12 0 · · · 0

W21 L2 W23
...

0 W32 L3 W34
...

...
.

...

0 · · · 0 Wn,n−1 Ln









x1

x2

x3

...

xn





+





ε1

ε2

ε3

...

εn









, (2.18)

which is theself-consistency conditionfor the variational approximation. The self-consistency condition

(2.18) is a necessary condition for the factorial NLCP (2.8)of the SWM to have been optimally fit to the

GWM NLCP of (2.6).

Simplified World Model Forms. Further collecting all the estimates for each layer into a single vector

X = [xT
1 , . . . ,xT

n]T and all the weights into a global weight matrixW, equation (2.18) can be written

concisely,

X = f(WX + ε) (SWM-E) , (2.19)

which is called thesimplified world model on the expected values(SWM-E), and where the vector forms of

the errors are,

Φ = Z − X

ε = (W − L)Φ . (2.20)

The errorε is generally unobservable, and later we will have to make approximations to perform inference

and learn the weightsW. In particular, for inference and learning we will neglectε and use acertainty

equivalence approximation(see Section 4). The SWM can be written equivalently in termsof the binary

stateZ,

Z = f(WZ − LΦ) + Φ (SWM-B) , (2.21)

and which is called theSWM on the binary state(SWM-B). The SWM can also be written in an equivalent

dual form on the pre-activation state. Collected thevl,i into a state vectorV ≡ WX + ε (andX = f(V)),

we have,

V = Wf(V) + ε (SWM-P) , (2.22)

which is called theSWM on the pre-activation state(SWM-P). Equations (2.19), (2.21) and (2.22) are self-

consistency conditions for the SWM. We will return to these key results in Section 3.1 where we discuss

how to find solutions to these conditions through evolution of updates in time. Note that with a slight abuse

of notation we refer to the self-consistency conditions themselves as the SWMs.

12

Relation to Other Variational Methods. Our approach is based on using a neighboring-layer conditional

probability model which is matched to the hierarchical NLCPGWM using a factorial variational approxi-

mation. The use of a factorial variational approximation isknown as amean-field (MF) approximationin the

statistical physics community (Peterson and Anderson, 1987), where the probabilities to be approximated

are either unconditional (as typically done in statisticalphysics), or else conditioned only on visible layers

(as in the Boltzmann machine). A distinguishing feature of our method is that the Boltzmann-like NLCP ad-

mits the use an approximating distributionPQ that isfactorial when conditioned on its neighboring layers,

and the resulting approximation is not factorial when conditioned only on the visible layers. This modeling

assumption removes less randomness (and allows more generative capability) than the MF approximation

conditioned on the visible layers (as in the deterministic Boltzmann machine, Galland, 1993). This is a richer

model than the deterministic Boltzmann machine as our conditional expectations,xl = Eq[zl|zl−1, zl+1],

retain more randomness than the non-hidden expectationsxl = Eq[zl|visible layers] of the deterministic

Boltzmann machine. Our factorial approximation is reasonable as it is equivalent to saying that the mean-

ingful information about the world contained in any layer isprovided by its immediate neighboring layers,

so if we condition on neighboring layers then only random (“meaningless”) noise remains. The factorial

Bernoulli distribution is one of the most tractable and commonly used variational approximations (Jordan

et al., 1998), however if more accurate approximations are desired, other distributions may be used such as

the second-order methods described by Welling and Teh (2003) and Kappen and Spanjers (2000), although

at higher computational cost.

2.5 Activation Functions Can Encourage Sparse Distributions

The parameterized sigmoid activation function (2.16) can be used to encourage sparse activation by ap-

propriate choice of parametersa. Figure 2 shows the activation function (2.16) when parameterized with

a = [1.1, 2.0, 4.0,−0.05], which was chosen so that small levels of activation do not lead to positive values

of f(v). Parametersa2, a3 can be viewed as prior constraints on the network weights. Theoretically these

weight scaling and bias terms could be learned, but from a practical standpoint, our networks are quite large

and the critical property of sparsity that makes learning tractable must be enforced from the early epochs, or

else too many extra weights would be updated.

We can reasonably assume thatv = vl,i as given by (2.15) is a normally distributed random variable

due to the central limit theorem (Johnson, 2004) becausev is the sum of (nearly) independent, identically

distributed values with bounded variance.5 The densityP (x;a) can then be found by transforming the

normal densityP (v) = N (µ, σ2) by the activation function (2.16), see eq. (1.2.26) of Murray (2005). For

the values ofa given above and forµ = 0, σ2 = 1, Figure 2b shows thatP (x;a) is indeed a sharply-peaked

5There will be dependence inv between units which all represent the same feature or object, however since all network layers

are constrained to be sparse, these dependencies will be much less than the typical pixel-wise dependencies in the original images.

Central limit theorems (CLT) that relax the independence assumptions have been developed (Johnson, 2004), and while these

extensions are not strictly valid here, they give some levelof credence to the belief that CLT-like results should hold in environments

with statistical dependencies. The approximate normalityof v is confirmed by simulations in Figure 8. Thus, we conclude that

assuming normality ofv is a reasonable and useful modeling assuming; and one which has been made in other work on large,

layered networks (Saul and Jordan, 1998; Barber and Sollich, 2000).

13

0

1

–1 1 2 3 4 5 6

A)

v

f
(v

)

vhvl

a1 + a4

a4
0

1

–0.5 0.5 1 1.5

B)

P
(x

;a
)

x
0

1

–0.5 0.5 1 1.5

C)

P
(x

;a
′)

x

Figure 2: (A) Activation functionf(v) with parametersa = [1.1, 2.0, 4.0, −0.05] (see equation 2.16). The

limits of the activation function are[a4, a1 +a4] = [−.05, 1.05], and the slope is set bya2 and the bias is set

by a3. The shape of the activation function encourages sparsity by ensuring that small input activitiesv < vl

do not produce any positive output activity. In the simulations, the values ofx = f(v) are thresholded so that

x = [f(v)] ∈ [0, 1], however the values off ′(v) are kept for use in the weight updates (see Appendix B).

(B) The probability densityP (x;a) of a normal random variable (µ = 0, σ2 = 1) after being transformed by

the activation function,f(v) in equation 2.16, is a sparsity-inducing density if the parametersa are chosen

properly. The parameters used area = [1.1, 2.0, 4.0,−0.05]. (C) ProbabilityP (x;a′) is not sparsity-

inducing with the standard set of parameters for sigmoid activation functions,a′ = [1, 1, 0, 0].

sparsity-inducing distribution. In contrast, Figure 2c showsP (x;a′) after being transformed by the sigmoid

activation function with parametersa′ = [1, 1, 0, 0], which does not lead to a sparsity-inducing distribution.

The choice of parametersµ, σ2 is also important for the transformed distributions to be sparse. For example,

if µ = 0, the variance must be less than about 2.0 or else the resulting density will be bimodal. However,

with the proper choice of initial conditions, we are able to ensure these conditions are met (see Section 5).

3 Recurrent Dynamic Network

Recognizing that solutions to important inferencing problems correspond to solutions of the self-consistency

conditions derived in Section 2.4, we generalize these condition into a dynamic network capable of converg-

ing to a solution satisfying (2.18) in order to estimate the statesxl. We introduce a time indext for the

iterations of this dynamic network, while our goal remains to estimate the state of the static SWM.

There aren layers in the network and the vector of activations for thel-th layer at timet is denoted

xl,t, l = 1 . . . n, with layer sizess = [s1 . . . sn]. The network is designed to enforce rapid convergence to

the self-consistency conditions (2.18) forxl, such thatxl,t → xl. The state vector of all the layers at timet

is denoted,

Xt =
[
xT

1 , xT
2 , . . . , xT

n

]T
∈ R

N , (3.1)

whereN is the size of the state vector (dropping the time index onxl inside the vector for clarity). The

activity in all layersxl, is enforced to be sparse and the number of non-zero elementsof the layers is

denotedrt = [r1 . . . rn]. Figure 3 shows the four-layer network structure used for the experiments in this

14

paper. Dotted lines indicate inputs and connections that are not used here, but are allowed in the model.

Inputs and Outputs The layers used for input and output depend on the type of inference required. In the

present work, inputs are usually injected at either the highest or lowest layer (although in general, we may

have inputs at any layer if additional types of inference arerequired). We define an input vectorUX
t (again

dropping the time index inside the vector),

UX
t =

[
uT

1 , uT
2 , . . . , uT

n

]T
, (3.2)

whereu1 is a sparsely coded input image (see Appendix A) andun is anm-out-of-n binary code called

the object codewhich represents the classification of the object. The advantage of using anm-out-of-n

object code is that it allows more objects to be represented than the sizen of the highest layer, which is the

limitation of 1-out-of-n codes. The object code provides a high representational capacity and robustness

to the failure of any individual unit/neuron, both of which are desirable from a biological perspective. In

addition, we can represent new objects without adjusting the size of the highest layer,un, by creating new

random object codes.

For recognition and reconstruction, the inputu1 is the coded image, and the object code input is zero,

un = 0. When the network is used for imagination, the input is the object code presented at the highest

layerun and random noise atu2, and the output is the reconstructed image the lowest layer.For expectation-

driven segmentation, bothu1 andun inputs are used. Table 1 shows the layers used for input and output for

each type of inference.

3.1 Dynamic Network Form

The recurrent dynamic network (DN-E) is the time-dependentgeneralization of the self-consistency condi-

tions (2.18) of the SWM-E given by





x1

x2

x3

...

xn





t+1

= f









L1 W12 0 · · · 0

W21 L2 W23
...

0 W32 L3 W34
...

...
. . .

. . .
...

0 · · · 0 Wn,n−1 Ln









x1

x2

x3

...

xn





t

+





ε1

ε2

ε3

...

εn





t





+





u1

u2

u3

...

un





t+1

, (3.3)

which can be written in the compact form,

Xt+1 = f(WXt + εt) + UX
t+1 (DN-E) , (3.4)

whereUX
t is the input to the network which can include a sparsely-coded input imageu1 and/or a top-down

un consisting of an object code.

Our goal will be to learn aW such that the network (3.4) will rapidly converge to a steady-state, given

transient or constant inputsUX
t . We will attempt to enforce the steady-state self-consistency behavior at

finite time-horizont = τ , where the horizonτ is a design parameter chosen large enough to ensure that

15

information flows from top-to-bottom and bottom-to-top andsmall enough for rapid convergence. Because

of the block structure ofW, information can pass only to adjacent layers during one time stept. (We use the

termstime stepanditeration interchangeably.) For example, in a four layer network, it takes only four time

steps to propagate information from the highest to the lowest layer, while the network may require more

iterations to converge to an accurate estimate. A relatively small number of iterations will be shown to work

well, on the order of 8 to 15.

3.2 Pre-Activation State-Space Model

In the previous subsection we created a dynamic network on the state vectorXt based on the SWM-E. By

defining an equivalent model on the pre-activation vectorVt, we create another dynamic network which will

be used in deriving the learning algorithm (Section 4). Generalizing the pre-activation model (SWM-P, eq.

2.22) to a dynamic network,

Vt+1 = Wf(Vt) + εt+1 + UV
t+1 (DN-P) , (3.5)

whereVt is assumed to be a Gaussian vector as discussed in Section 2.5, andUV
t+1 is the input/inital condi-

tions for the pre-activation state (compare withUX
t+1 for the stateX). The DN-E and DN-P are equivalent

representations of a dynamic generative world model. Interpreting the layers ofVt as the hidden states of

the generative visual-world model, the visible world is found with the read-out map,

Yt = C g(Vt) + noise, (3.6)

whereg(·) is the output nonlinearity, andC = [1, 0, . . . , 0] hides the internal states. Table 2 summarizes

the moves made from the generative world model of Section 2 tothe dynamic networks of the present

section.

4 Finding a Cost Function for Learning the WeightsW

The dynamic networks of the previous section can perform visual inference by being forced to approximate

the self-consistency conditions of the simplified world model (SWM). This can be done assuming that the

weightsW are known. Now, we turn to the problem of learning these weights given a set of training data. In

this section we will proceed in a Bayesian framework assuming W is a random variable,6 and derive a cost

function after suitable approximations. The labeled training set is denoteďY = { Y̌ (1), . . . , Y̌ (K)}, where

thek-th elemenťY (k) is a vector with a sparse coding of imagek at its first layeřy(k)
1 and the corresponding

object coděy(k)
n at the highest layer and zero vectors at the other layers,

Y̌ (k) =
[

y̌T
1 0 . . . 0 y̌T

n

]T
, (4.1)

where the superscript index of the patternk for each layer (i.e.̌y(k)
n) has been omitted for clarity.

6If a non-informative prior onW is used, this reduces to the maximum likelihood approach.

16

Layer 1

Layer 2

Layer 4

 Image

Layer 3

Overcomplete

code

 (top-down expectation,

object code)

FOCUSS+

(non-overlapping

patches)

I

u1

u2

u3

u4

x1

x2

x3

x4

W23W32

W12W21

W34W43

L3

L2

L1

L4

Figure 3: Dynamic network used in the experiments. Inputs imagesI are first sparsely coded using the

FOCUSS+ algorithm, which operates on non-overlapping patches of the input image (Appendix A). This

sparse overcomplete codeu1 is used as bottom-up input to the four-layer hierarchical network. Dotted lines

indicate inputs (u3) and connections (L1) that are not used in the experiments in this paper, but whichare

allowed by the network.

17

Table 2: Progression of models developed in Sections 2 and 3.

Hierarchical Generative World Model (GWM)

Inference given neighboring layers:

P (zl|zl−1, zl+1) (GWM, eq. 2.6)

⇓

Simplified World Model (SWM) (Self-consistency conditions)

Variational approximationEQ[Z] = X leads to:

X = f(WX + ε) (SWM-E, eq. 2.19)

Binary state:

Z = f(WZ − LΦ) + Φ (SWM-B, eq. 2.21)

Equivalent pre-activation state:

V = Wf(V) + ε (SWM-P, eq. 2.22)

⇓

Dynamic Network (DN) (Discrete-time)

State update:

Xt+1 = f(WXt + εt) + UX
t+1 (DN-E, eq. 3.4)

Pre-activation state update:

Vt+1 = Wf(Vt) + εt+1 + UV
t+1 (DN-P, eq. 3.5)

The cost function forW is derived using the DN-P dynamics on the pre-activation stateVt (3.5). During

training, for each patternk we create an input time seriesUX
t from the data set as follows:UX

t = Y̌ (k)

for t = 1, 2, 3 andUX
t = 0 for 4 ≤ t ≤ τ . This choice ofUX

t starts the dynamic network in the desired

basin of attraction for the training patterňY (k) (UX
t = Y̌ (k) for t = 1, 2, 3). The network is then allowed to

iterate without input (UX
t = 0 for 4 ≤ t ≤ τ), which with untrained weightsW will in general not converge

to the same basin of attraction. The learning process attempts to update the weights so that the training

inputs are basins of attraction, and to create middle layer states consistent with that input. The set of inputs

for patternk for all the time steps is denotedU(k) = {U
(k)
1 . . . U

(k)
τ }, and for the entire data set we have

U = {U(1) . . . U
(K)}. Similarly, for each pattern in the pre-activation state wehaveV

(k) = {V
(k)
1 . . . V

(k)
τ },

and for the whole data set,V = {V(1) . . . V(K)}.

Assuming that the weightsW are random variables, their posterior distribution is found by Bayes’ rule,

P (W|V; U) =
P (V|W; U)P (W)

P (V; U)
. (4.2)

Our goal is to find the weightsW that are most likely given the data and the generative model,and we use

themaximum a posteriori(MAP) estimate,

W = arg max
W

P (W|V; U)

= arg min
W

− ln P (V|W; U) − ln P (W) , (4.3)

18

due to the denominator in (4.2) not depending onW. Correct assumptions aboutW are important for

successful learning, which requires some form of constraint such as prior normalization to use all of the

network’s capacity (see Section 5). Assuming patterns in the training set are independent,P (V|W; U) =
∏

k P (V(k)|W; U(k)),

W = arg min
W

[

−
∑

k

ln P (V(k)|W; U(k)) − ln P (W)

]

. (4.4)

Note that the dynamic system (3.5) is Markovian under our assumption thatεt are independent (Bertsekas,

1995). Then, the probability of the sequence of time steps can be factored (omitting the pattern indexk on

theVt for clarity),

P (V(k)|W; U(k)) = P (Vτ , Vτ−1, Vτ−2, . . . , V1|W; U(k))

=

τ∏

t=1

P (Vt|Vt−1, W; U(k)) , (4.5)

from the chain rule of probabilities. The pre-activation state at each timeVt can be expressed in terms of

each layervl,t,

P (V
(k)
t |V

(k)
t−1, W; U(k)) =

n∏

l=1

P (v
(k)
l,t |V

(k)
t−1, W; U(k)) , (4.6)

if we assume that the layers are conditionally independent of each other att given the state at the previous

timeVt−1. Combining (4.4), (4.5) and (4.6),

W = arg min
W

[
−
∑

k

τ∑

t=1

n∑

l=1

ln P (v
(k)
l,t |V

(k)
t−1, W; U(k)) − ln P (W)

]
. (4.7)

Sincevl,t is approximately normal (Section 2.5), for those layers where and when we have target values of

yl,t from the data set and corresponding target states forvl,t,7 the probability of the layer is,

Ptarg(vl,t|Vt−1, W; U) =
1

(2πσ2
v)

sl/2
exp

(
−

1

2σ2
v

εT
l,tεl,t

)
, (4.8)

whereσ2
v is the variance of each component (which is assumed identical). At other layers and times, the

state probabilitiesvl,t are approximately Gaussian, but we do not have a desired state and so we enforce

sparsity in these cases. We model the distributions at theselayers by independent Gaussians with fixed mean

µ and varianceσ2
s ,

Pspar(vl,t|Vt−1, W; U) =
1

(2πσ2
s)

sl/2
exp

(
−

1

2σ2
s

‖vl,t − µ‖2

)
, (4.9)

whereµ = [µ . . . µ]T with µ a design parameter of the appropriate size.

7We assume that noise = 0 in (3.6) and that givenYt we can solve for a corresponding value ofVt.

19

Introducing an indicator variableβ that selects betweenPspar andPtarg, we defineβl,t = 1 if we have

target values for layerl at t, βl,t = 0 otherwise. The probability of each layer becomes,

P (vl,t|Vt−1, W; U) = βl,tPtarg(·) + (1 − βl,t)Pspar(·) . (4.10)

Substituting (4.10) in (4.7) yields,

W = arg min
W

{
∑

k

τ∑

t=1

[
εT

t (εt ⊙ βt) + λ(Vt − µ)T [(Vt − µ) ⊙ (1 − βt)]
]
− ln P (W)

}

, (4.11)

whereβt ∈ R
N is the indicator vector for all elements ofVt,⊙ is the element-wise Hadamard vector product

and the constant terms depending onσ2
v , σ

2
s have been combined into a new constantλ (again omitting the

k inside the summation).

There are several things which should be noted about this formulation. First, the objective function is

derived in relation to the pre-activation vectorVt instead of the post-activation vectorXt. This is done to

use the Gaussian form of (4.8), and is reminiscent of the technique in the generalized linear model literature

of working with the “linear structure vector” of a nonlinearmodel (Gill, 2001). Secondly, the cost function

(4.11) is similar in form to those used in overcomplete coding algorithms, which are unsupervised, and are

designed to minimize the reconstruction error using as sparse a code as possible (Olshausen and Field, 1997;

Kreutz-Delgado et al., 2003).

The cost function forW (4.11) is a function of the true stateVt and the errorεt, which we generally

do not have access to. In practice, we will resolve this problem by generating estimates of the unknownVt

using a current estimate of the weights from the dynamic network (DN-P) under thecertainty equivalence

approximationthatεt = 0 (Bertsekas, 1995). Certainty equivalence is a standard technique in optimization

when certain variables are random. For example, an unknown random variable can be replaced by its mean

before optimizing the cost function. In our case, we estimate the unknown randomVt by the dynamic

network’s outputV̂t, which is then used to find theW that minimizes the cost function (4.11). For each

pattern in the data set, we run DN-P (3.5) using the input sequenceUV
t = vhUX

t , wherevh = f−1(1.0)

(Figure 2).8 Running the network with certainty equivalence gives estimated states,

V̂t = Wf(V̂t−1) + UV
t . (4.12)

The errorŝεt used for learning are then the difference betweenV̂t and the desired target states found from

the data set,

ε̂t = (V̂t − vhY̌ (k)) ⊙ βt , (4.13)

where layers with no target values are set to 0 due to the effect of βt.

Using the cost function in (4.11), we find a learning algorithm for weightsW (Appendix B) which

is closely related to the backpropagation-through-time-algorithm (BPTT) for training recurrent networks

(Williams and Peng, 1990). The main drawback of the BPTT algorithm is that it is computationally inef-

ficient due to the unrolling of the network for each time step.Our approach overcomes this drawback by

using a small number of time stepsτ and by taking advantage of the sparsity of every layer to onlyupdate

weights between units with some non-zero activity.
8This is an approximation toUV

t = f−1(UX
t) whenUX

t is binary, assuming elementsUV
j,t = 0 whenUX

j,t = 0.

20

5 Algorithm Implementation

This section summarizes the implementation details of the dynamic network and learning algorithm as used

in the experiments.

Preparing the Data Set. The data set consists ofK images representingM unique objects, where in

general we have many different views or transformations of each object, soK > M . For each objectm,

we generate a sparse object codec(m) ∈ R
sn (the size of the highest layer) withrn randomly-selected non-

zero elements, which is used as the desired value of the highest layer. Each imagek is preprocessed and

converted into a sparse code (Section 6), which is used as thefirst layer input,y1. The data set of all images

is Y̌ = {Y̌ (1), . . . , Y̌ (K)} where each pattern is,

Y̌ (k) =
[

y̌T
1 0 . . . 0 y̌T

n

]T
, (5.1)

and the highest layer is the object code,y̌T
n = cT (m).

Network initialization. The network weights are initialized with small random values uniformly dis-

tributed within certain ranges. The initial weight ranges are: feedforward and feedback weightsW ∈

[−0.01, 0.01], and lateral weightsL ∈ [−0.001, 0.000] (which enables only lateral inhibition, not excita-

tion). Self-feedback is not allowed,Lii = 0, and lateral weights are not used in layer 1 for computational

efficiency. Feedback weights are initialized to be the transpose of the corresponding feedforward weights,

Wlm = WT
ml but are not restricted to stay symmetric during training.

Performing Inference Given Known Weights W. To run the network for the experiments below, we

create an input time seriesUX
t from the images and object codes in the data setY̌. The input can include

y̌1 and/ory̌n as determined by the type of inference desired (see Table 1).For example, when the network

is run for recognition, the inputs for the first few time stepsare the coded imagěy1, so that(UX
t)T =

[y̌T
1 , 0, . . . , 0]T , t = 1, 2, 3, andUX

t = 0, t ≥ 4. When the network is run generatively, the object code is

used as input, such that(UX
t)T = [0 , . . . , y̌T

n]T , t = 1, . . . , τ , and the network is then run forτ steps, after

which the first layer contains a representation of an imagined image.

Given a sequence of inputsUX
t the network is run in certainty-equivalence mode (no added noise) for

a fixed number of discrete time steps,0 ≤ t ≤ τ , with τ being 8 to 15 for the experiments below. With an

initial stateX̂0 = 0, the network is run using,

V̂t = WX̂t

X̂t = f(V̂t−1) + UX
t 1 ≤ t ≤ τ . (5.2)

The stateX̂t is further restricted to be in the unit cube,X̂t ∈ [0, 1]N . To improve computational efficiency,

only a limited number of non-zero elements are allowed in each layer,r̄ = [r̄1, . . . , r̄n], which is enforced

onVt at each layer by only allowing the largestr̄l of them to remain non-zero.

21

Learning the Weights W. Training proceeds in an online epoch-wise fashion. In each epoch, a subset

of patterns is chosen from̌Y, and inputs are created with the coded-image in the first layer for the first 3

time steps, so thatUX
t = [y̌T

1 , 0, 0, y̌T
n] , t = 1, 2, 3, andUX

t = 0, t ≥ 4. Input patterns must be removed

at some point during training because otherwise there wouldbe no error gradient to enforce learning of

reconstruction. Presenting the input for 3 time steps was found to give better performance than other lengths

of input (see Section 6.1).

The stateX̂t and pre-activation statêVt from running the network (5.2) are saved for eacht ≤ τ . The

error vector for weight updates iŝεt = (V̂t − vhY̌ (k)) ⊙ βt (see eq. 4.13). Weight updates∆wji are given

by (B.14). In standard gradient-descent, weight updates will naturally become small when errors are small.

However, since we use an additional sparsity enforcing term, even if both the highest and lowest layer errors

are zero, weight updates will still occur in order to sparsify middle layers. Training stops after a certain

number of epochs have completed.

For computational efficiency when learning sparse patterns, only a small set of weightswji is updated for

each pattern. During our simulations,X̂t is found by thresholding the activation function outputf(V̂t−1) to

[0, 1], resulting in a sparsêXt given certain conditions (Section 2.5). Weights are then only updated between

units when the source unit̂Xi,t is active and when either the target unitX̂j,t is active or has non-zero error

ε̂j,t. 9 During the initial epochs of learning, there must be enough weight strength to cause activation

throughout the middle layers. As learning progress, the activity is reduced through the sparseness-enforcing

term.

Testing for Classification. To classify an input image once the network has settled into astable state, the

last layer’s activationxn is compared with the object codesc(m) to find the class estimate,

Class(xn) = arg min
m∈{1...M}

‖xT
n − c(m)‖ . (5.3)

Weight Normalization. In early experiments with the learning algorithm, we found that some units were

much more active than others, with corresponding rows in theweight matrices much larger than average.

This suggests that constraints need to be added to weight matrices to ensure that all units have reasonably

equal chances of firing. These constraints can also can be thought of as a way of avoiding certain units

being starved of connection weights. A similar issue arose in the development of our dictionary learning

algorithm (Kreutz-Delgado et al., 2003), and led us to enforce equality among the norms of each column

of the weight matrix. Here, both row and column normalization are performed on each weight matrix

(feedforward, lateral and feedback). Normalization values are set heuristically for each layer, with an initial

value of 1.0 and increasing layer normalization until sufficient activity can be supported by that layer. The

normalization values remain constant during network training, and are adjusted from trial to trial.

9In theory, the thresholding should not significantly effectthe learning. However, due to the size of the network it was not

practical to compare thresholded vs non-thresholded performance. Even with the smallest dictionary size (64x64, layer 1 input

size = 4096), there are about 5,570,000 weights. Thresholding reduces the actual number of weights updated to about 45,000 per

pattern, an increase in speed of over 100x.

22

6 Visual Recognition and Inference Experiments

In this section, we detail experiments with the learning algorithm developed above and demonstrate four

types of visual inference: recognition, reconstruction, imagination and expectation-driven segmentation.

A set of gray-scale images was generated using the Lightwavephotorealistic rendering software10. Each

of 10 objects was rotated360◦ through its vertical axis in2◦ increments, for a total of10 × 180 = 1800

images, of which 1440 were used for training and the 360 remaining were held out for testing (Figure 4).

All images were 64x64 pixels. Before images can be presentedto the network they must be sparsely coded

which is done with a sequence of preprocessing (Figure 5). First, each image is edge-detected11 to simulate

the on-center/off-center contrast enhancement performedby the retina and LGN. Edge-detected images are

then scaled by subtracting 128 and dividing by 256, so that pixel values are∈ [−0.5, 0.5]. Next, each image

is divided into 8x8 pixel patches and sparsely coded with FOCUSS+ using a dictionary learned by FOCUSS-

CNDL+ (as described in Appendix A). Dictionaries of size 64x64, 64x128 and 64x196 were learned to

compare the effect of varying degrees of overcompleteness on recognition performance. (Figures 6-14 in

this section are from experiments with the 64x196 dictionary.) Table 3 shows the accuracy and diversity of

the image codes. As dictionary overcompleteness increasesfrom 64x128 to 64x196, both mean-square-error

(MSE) and mean diversity decrease, i.e. images are more accurately represented using a smaller number

of active elements chosen from the larger overcomplete dictionary. As seen in the third row of Figure 5,

the reconstructed images accurately represent the edge information even though they are sparsely coded (on

average 192 of 12288 coefficients are non-zero). Finally, the non-negative sparse codes are thresholded to

{0, 1} binary values before being presented to the network; any value greater than 0.02 is set to 1. This

stage, however, does introduce errors in the reconstruction process (last row of Figure 5), and the fidelity of

the network’s reconstructions will be limited by the binarization. A histogram of coefficient values before

binarization is given in Figure 8.

6.1 Recognition with a Four-Layer Network

To test recognition performance, a four-layer network was trained using the data set described above. The

training parameters of the network are given in Table 4. Notethat all the lateral interactions were forced to

be inhibitory or 0, and that no lateral connections were usedin the first layer (as we assume the increase in

sparsity produced by the FOCUSS+ iterations model the layer1 lateral connections). Coded images were

presented to the first layer of the network for the initial three time steps. Random object codes withr4 = 10

non-zero elements were used on the highest layer. Training took between 11 and 22 hours depending on

dictionary size using an Intel Xeon 2.8 Ghz processor. Classification performance reached 100% accuracy

on the test set after 135 epochs, but training continued until 1000 epochs to increase the reconstruction

accuracy at the first layer. Figure 6 shows the iterations of the network stateXt during classification of a

test set image. The first row shows the FOCUSS+ coded input image and the original. The next rows show

the activity of each layer and the reconstructed image from the first layer. The object was presented for

10Available atwww.newtek.com/products/lightwave/
11Edge detection was done with XnView software (www.xnview.com) using the “edge detect light” filter which uses the3×3

convolution kernel
[
0 −1 0 ; −1 4 −1 ; 0 −1 0

]
.

23

A)

B)

Figure 4: A) Objects used in the experiments, showing one of the 180 views of each object. Images are

64x64 pixel gray-scale. B) Sample rotated object images in the data set.

three time steps and then removed, so that all activity on layer 1 for t ≥ 4 results from network feedback.

As the iterations proceed, the reconstruction completes the outline of the airplane and becomes stronger in

intensity. In layer 4, the marker shape indicates whether the unit is active and is part of the correct object

code (“� ”), or is part of the object code but inactive (“◦”), or is active but should not be (“×”). At t = 4, all

10 of the highest layer units in the object code for airplane are active (“� ”), so that the image is classified

correctly, however there are four other units active that should not be (“×”). At later iterations these extra

incorrect units are deactivated (or “sparsified away”) so that att ≥ 5 only those units in the object code are

active, demonstrating the importance of lateral connections in the highest layer. Activity in layers 2 and 3

also decreases with time.

Presenting rotated test-set views of the object shows that the network has learned basins of attraction for

the other orientations. Figure 7 shows the state of the network at t = 7 after presenting various rotations of

the airplane. The invariance of the representation is shownto increase from layer 1 (with nearly completely

different units active) through layer 3 (with many of the same units active) to layer 4 (which has identical

activity for all four orientations of the airplane).

Training on rotated objects gives the network some robustness to small translations. When tested on

images translated +/- 1 pixel in each direction, recognition accuracy is 96.9% on the test set. However, in

general, we make no claim that our network has learned transformations (such as translation or scaling) that

it has not seen.

The network includes many parameters (Table 4), and learning is more sensitive to some than others.

For example, the maximum activitȳr2, r̄3 for layers 3 and 4 can vary quite widely without noticeable effect

24

A)

B)

C)

D)

Figure 5: Several preprocessing steps are done before presentation to the network: edge detection, FO-

CUSS+ sparse coding, and binarization of coefficients. Original images (top row), edge detected images

(2nd row), reconstructions from FOCUSS+ codes using a learned overcomplete dictionary (3rd row), and

reconstructions from binarized FOCUSS+ codes.

on performance, while increasinḡr2 to 512 (from 100) increases the training time by more than an order

of magnitude. This is because weights are only updated between active units, and increasing the maximum

number of active units on layer 2 results in a very large number of weights to and from layer 1 that must be

updated. When the diversity penalty is turned off (λ = 0), the average diversity of the 2nd and 3rd layers

increases by about 30% and 60% respectively with no significant change in MSE or classification rates.

This demonstrates that using the diversity penalty resultsin more efficient representations (more sparse),

consistent with our sparse generative-world model.

We also experimented with different variations of the inputtime series, and these changes had more

dramatic effects on performance. Two experiments were donewith 12 time steps: 1) with input presented

for 6 time steps and turned off for 6 steps, 2) using a linear decay1 − t/6 (input presented at full strength

at the first time step and decaying to 0 at the 6th time step). The performance of both of these experiments

was worse than the original method (input presented for three steps). For the 6-step input, the recognition

accuracy only reached 85% on the test set, for the decaying 6-step input, the accuracy was 90% compared

with 100% using the original method. It is not clear why performance drops, but there seems to be a

reduction in middle layer activity. Perhaps adjusting normalization or other parameters could improve these

results.

To test the Gaussian assumptions made regardingVt and the errorsεt, we plot histograms and normal

curve fits of randomly chosen units in Figure 8B,C. From Figure 8B we can see that distribution of units

25

Table 3: Coding performance on 64x64 pixel images (blocked into 8x8 patches) using complete and over-

complete dictionaries. Mean-squared-error (MSE) is calculated over all 8x8 patches in the image, and

diversity= (#non-zero coefficients)/(layer 1 size).

Diversity

Dictionary size Layer 1 size MSE Max Mean Min

64x64 4096 0.00460 0.0449 0.0266 0.0103

64x128 8192 0.00398 0.0339 0.0240 0.0128

61x196 12288 0.00292 0.0221 0.0156 0.0085

in Vt is quite normal before training. In Figure 8, we see that after training the errorsεt for layer 1 are

less Gaussian, but still reasonably modeled as such. Also, there is more mass in the negative tail indicating

patterns where the target values are 1 but the network outputis much lower.

6.2 Reconstruction of Occluded Images

Using the same network trained in Section 6.1, reconstruction is demonstrated using occluded images from

the test set. Approximately 50% of pixels are set to black by choosing a random contiguous portion of the

image to hide. Figure 9 shows the network iterations during reconstruction, where an occluded image is pre-

sented for the first three time steps. Byt = 3, the feedback connections to the first layer have reconstructed

much of the outline of the copier object, showing that feedback from the second layer contains much of the

orientation-dependent information for this object. Further iterations increase the completion of the outline

particularly of the bottom corner and lower-right panel. Another example of reconstruction is shown in

Figure 1.13 of Murray (2005).

The network also performs well when recognizing occluded objects. Accuracy is 90% on the occluded

test-set objects with the complete dictionary (64x64) and 96-97% with the overcomplete dictionaries. Figure

9 shows that (as above) there are incorrectly activated units in layer 4 att = 4 which are suppressed during

later times. In contrast with Figure 6, in layer 2 here there is more activity as time progresses presumably

due to the activation of missing features during reconstruction.

More insight into reconstruction can be gained by examiningthe receptive and projective fields of units

in the middle layers. Considering layer 2 (Figure 10), we findthe receptive fields (top row) tend to learn

a large-scale representation of a particular orientation of an object. This is mainly because the receptive

fields are allowed to cover the entire first layer, and no topology is enforced on the weights. Some receptive

fields (such as the first column of Figure 10) are tuned to two very different objects, suggesting that units

are recruited to represent more than one object, as would be expected from an efficient distributed code.

The projective fields are not as clearly specific to a particular orientation and include strong noise, which

indicates there must be inhibitory feedback from other layer 2 units contributing to the cleaner version of

the layer 1 outputs when the full network is run.

26

Edges Object

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 2

t =
 3

t =
 4

t =
 5

t =
 6

t =
 7

t =
 8

In
pu

t p
re

se
nt

ed

Figure 6: Recognition of a test set object. Each row shows thenetwork activityXt at a time step. In layer

4, the marker “�” indicates that the unit is active and is part of the correct object code, “◦” that the unit is

in the object code but inactive, and “×” that the unit is active but should not be. Whent > 3, there is no

external input and the reconstructed image in layer 1 is due only to network feedback. Att = 4 in layer 4

there are four incorrectly activated units (“×”) but at later times, the dynamics of the network suppress these

incorrectly-active units.

27

Table 4: Network parameters for training the 4-layer network with 64x196 overcomplete dictionary, corre-

sponding to layer 1 size of 12288. For other sized dictionaries, the size of the first layer was 8192 (64x128

dictionary) and 4096 (64x64 dictionary), with all other parameters as listed below.

Network parameters

s (layer size) [12288, 512, 512, 256]

r̄ (maximum diversity of layer) [430, 100, 100, 100]

τ (time iterations per pattern) 8

η (learning rate) 0.002

λ (regularization parameter) 0.005

µ (target mean for hidden layers) -4.0

epoch size (number of patterns) 100

maximum number of epochs 1000

feedforward weight range [-5.0, 5.0]

feedback weight range [-5.0, 5.0]

lateral weight range [-5.0, 0.0]

layer 1 norms (FB) [12.0]

layer 2 norms (FF, L, FB) [12.0, 2.1, 2.1]

layer 3 norms (FF, L, FB) [5.9, 2.1, 1.5]

layer 4 norms (FF, L) [1.5, 1.5]

6.3 Imagination: Running the Network Generatively

Imagination is the process of running the network generatively with input given as an object code at the

highest layer. For this experiment, the network trained in Section 6.1 is used with an object code clamped

on the highest layer for all time steps. Random activity is added to the second layer att = 3 so that the

network has a means of choosing which view of the object to generate. It was found that increasing the

feedback strength (by multiplying feedback weights by 5.0)to the first and second layers increased the

activity and quality of the imagined image at the first layer.Without this increase, the layer 1 reconstruction

was very likely to settle to the 0 state. Figure 11 shows the results when the object code for the knight is

presented. Att = 4, the reconstruction is a superposition of many features from many objects but at later

times the outline of the object can be seen. The orientation of the generated image alternates between a front

view (t = 5, 7) and a side view (t = 6, 8), which is reminiscent of the bistable percept effect. Not all trials

of this experiment result in a bistable state, the majority converged to a single orientation. Interestingly,

some orientations of certain objects appear to be generatedmuch more often than other orientations. These

“canonical views” represent high probability (low energy)states of the network. A random sample of five

imagined objects is shown in Figure 12, showing that a superposition of states can also occur, which is

consistent with the projective field properties shown in Figure 10.

28

Reconstruction

t =
 7

Layer 1 Layer 2 Layer 3 Layer 4

t =
 7

t =
 7

t =
 7

Figure 7: Each row is the network stateXt at t = 7 after presenting various rotated images of the airplane

(test set images, views unseen during training), demonstrating that multiple basins of attraction can be

learned for each object. Higher layers show more invariant representations than lower layers, with layer 4

showing the fully-invariant representation of the airplane.

6.4 Expectation-Driven Segmentation: Out from Clutter

In expectation-driven inference, both an input image and a top-down expectation are presented to the net-

work, and the output can either be the highest-layer classification or the lowest-layer reconstructed image.

Here, we considered the later case where the desired output is a segmented image reconstructed from the first

layer. The same network trained in Section 6.1 is used here with increased feedback strength as described

in Section 6.3. Cluttered input images are created by combining many objects from the data set at random

translations, overlayed with a portion of the desired image(the same portion, 50%, used in the reconstruc-

tion experiment). This is a fairly difficult recognition problem as the clutter in each image is composed of

features from trained objects, so that competing features tend to confound recognition algorithms. Although

the features from the clutter objects are likely to be in different locations than seen during training, it is still

a more difficult task than segmentation from a randomly chosen (untrained) background.

The problem of expectation-driven segmentation is different from recognition in that we ask the network

not “what object is this?” but “assuming object x is here, what features in the image most likely correspond

to it?” For this experiment, we present att = 2, 3 the image of the occluded object in clutter and at

t = 1, . . . , 4 the expectation that the object is present at the highest layer. Figure 13 shows the network

states when presented with a cluttered image and top-level expectation of the knight object. The timing of

the inputs was arranged so that the feedback and feedforwardinput first interact att = 3 in layer 3. When

t = 4, the input image is no longer presented and the network feedback has isolated some features of the

object. Later time steps show a sharper and more accurate outline of the knight, including edges that were

occluded in the input image. At the highest layer, feedforward interactions from lower layers cause the

correct object code to degrade. Att = 12 all the units in the object code for knight were active, as well as

29

0 1 2
0

2000

4000

6000

8000

10000A)
C

ou
nt

s

−2 0 2
0

0.1

0.2

0.3

0.4

 B)

D
is

t.
v

−2 −1 0
0

0.2

0.4

0.6

0.8

1

1.2

 C)

D
is

t.
ε

Figure 8: A) Histogram of FOCUSS+ coefficient values before binarization. There2.9 × 106 elements in

the zero bin, and the maximum coefficient value is 2.9. B) Histogram and Gaussian fit of a randomly chosen

unit in the preactivation stateVt in layer 3 before training. C) Histogram and Gaussian fit of residualεt in

layer 1 after training.

four incorrectly active units, which still allows correct classification. To illustrate the need for the top-down

expectation input in this case, Figure 14 shows the states att = 1, 4, 8 when no object code is presented

at layer 4. The activity gradually decays and there is no reconstruction at layer 1. Comparing Figure 11

(imagination) and Figure 13 shows that the partial information provided in the cluttered image is enough

to keep the network at a stable estimate of segmentation, andin this case prevent oscillations between two

orientations (which occurred when only top-down input was present).

6.5 Overcompleteness Improves Recognition Performance

One of the central questions addressed in this work is how a sparse overcomplete representation in the early

stages of visual processing, e.g. V1 in primates (Sereno et al., 1995), could be useful for visual inference.

As described above, we trained networks using learned dictionaries of varying degrees of overcompleteness:

64x64, 64x128 and 64x196, and corresponding sizes of the first layer: 4096, 8192 and 12288. Performance

was compared on the test set objects, occluded objects, and objects in clutter. The cluttered images were

created by overlaying the entire object on a cluttered background, resulting in a somewhat easier problem

than the occluded-object-in-clutter images used in Section 6, although here no top-down expectations were

used to inform the recognition. Figure 15 shows the recognition accuracy on these three image sets. For

the test set (complete images), all three networks had performance at 99-100%, but for the occluded and

cluttered images there is a gain in accuracy when using overcomplete representations, and the effect is more

pronounced for the more difficult cluttered images. For occluded objects, accuracy was 90% (324/360)

for the complete dictionary and 97% (349/360) for the 3x overcomplete dictionary. The most significant

improvement was with the cluttered images; accuracy was 44%(160/ 360) for the complete dictionary, and

73% (263/360) for the 3x overcomplete dictionary. While theabsolute classification rate for the cluttered

images might appear low (44-73%), many of the misclassified objects were those of smaller size (e.g. the

airplane and fire-hydrant) which allowed more features fromother larger objects to be visible and confound

the recognition. In addition, neither the dictionary nor the network were trained on images with clutter, so

30

Edges Object

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 2

t =
 3

t =
 4

t =
 5

t =
 6

t =
 7

t =
 8

In
pu

t p
re

se
nt

ed

Figure 9: Reconstruction of an occluded input image. As early ast = 3, feedback from layer 2 results in

reconstruction of some of the outer edges of the objects. More detail is filled in at later time steps. Layer 4

legend: “�” = unit is active and in correct object code, “◦” = unit is in the object code but inactive, “×” =

unit is active but should not be (not in object code).

31

R
e
c
e
p
ti
v
e

P
ro

je
c
ti
v
e

Figure 10: Receptive and projective fields of four units in layer 2. For each unit, the top row shows the

receptive fields (feedforward weights from layer 1 to 2), andbottom row shows the projective field (feedback

weights from layer 2 to 1). The weight vectors are converted into images by multiplying by the learned

dictionary. The unit in the first column is tuned to respond toboth the plane and the table, while its projective

field appears to include many possible orientations of the plane.

the network had no previous experience with this particulartype of cluttered images.

7 Discussion

In this section we discuss the motivations for our network and compare it with other recurrent and proba-

bilistic models of vision. Additional discussion can be found in Murray (2005, Sec. 1.8).

7.1 Why Sparse Overcomplete Coding and Recurrence?

In the brain, early visual areas are highly overcomplete, with about 200-300 million neurons in V1 compared

to only about 1 million neurons that represent the retina in the lateral geniculate nucleus (LGN) of the

thalamus (Stevens, 2001; Ejima et al., 2003). As primate evolution has progressed, there has been an increase

in the ratio of V1 to lateral geniculate nucleus (LGN) size. While even the smallest of primates shows a high

degree of overcompleteness, the increase in higher primates is linked with increase in retinal resolution and

presumably improved visual acuity (e.g. 87x overcomplete for the tarsier monkey compared with 200-300x

for humans).

Mathematically, sparse coding strategies are necessary tomake efficient use of overcomplete dictionaries

because the dictionary elements are generically non-orthogonal. To provide a low-redundancy representa-

tion (Attneave, 1954; Barlow, 1959) a sparse set of elementsmust be chosen that accurately represents the

input. If we have faith in the generative model postulated inFigure 1, real-world images can be accurately

modeled as being caused by a small number of features and objects, supporting the choice of a sparse prior

(even in the case of complete coding). Other benefits of sparse coding include: making it easier to find cor-

respondences and higher order correlations, increasing the signal-to-noise ratio, and increasing the storage

and representational capacity of associative memories (Field, 1994). Biological evidence for sparse coding

ranges from the simple fact that average neural firing rates are low, 4-10 Hz (Kreiman et al., 2000), to exper-

iments that find sparseness in V1 increases as larger patchesof natural images are presented indicating that a

32

Edges Object

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 2

t =
 3

t =
 4

t =
 5

t =
 6

t =
 7

t =
 8

Figure 11: Imagination using the object code for the knight as the top-down input and the injection of

random activity in layer 2 att = 3. The reconstruction is a bistable (oscillating) pattern ofthe object from

the front and side views.

33

Figure 12: Imagination using random object codes as input tolayer 4 and att = 3, random activity at

layer 2. The images are the network’s layer 1 state att = 15 with top-layer objects codes of the fire-hydrant,

grill, knight, copier and airplane. For the first and last images, the network has settled into a superposition

of multiple objects (fire-hydrant and copier) or multiple orientations of the same object (airplane).

concise representation can be found by deactivating redundant features, presumably through the interaction

of lateral and feedback inhibition (Vinje and Gallant, 2000). One of the successes of sparse-coding theory

has been the learning of receptive fields that resemble the orientation and location selectivity of V1 neurons

(Olshausen and Field, 1997), and extensions have been made to model complex cells (Hoyer and Hyvärinen,

2002).

While overcompleteness and sparse-coding are important features of early vision in V1, perhaps the

most striking aspect of higher visual areas is the amount of lateral and feedback connections within and

between areas (Felleman and Van Essen, 1991). Even in V1, lateral and feedback input from other cortical

areas account for about 65% of activity, with only 35% of response directly due to feedforward connections

from the LGN (Olshausen and Field, 2005). We showed in Section 2 that feedback and lateral connections

are required for many types of inference. In some recognition tasks, there is evidence that the brain is fast

enough to complete recognition without extensive recurrent interaction (Thorpe et al., 1996). Consistent

with this, our model is capable of quickly recognizing objects in tasks such as Figure 6, where the correct

object code is found att = 5. However, more difficult tasks such as segmentation (Figure13) require

recurrence and would take longer for the brain (Lee et al., 1998).

7.2 Related Work: Biologically Motivated Models of Vision

There have been many hierarchical models created to explainvision, and these fall into two main categories:

feedforward-only or recurrent (which include various types of feedback and lateral connections between

layers). Some examples of the feedforward class are the Neocognitron model of Fukushima and Miyake

(1982); VisNet of Rolls and Milward (2000); and the invariant-recognition networks of Földiák (1991) and

Riesenhuber and Poggio (1999). While many of these models use sparsity with some form of winner-

take-all competition which is usually interpreted as lateral interaction, since they do not include feedback

connections they are not capable of the range of inference described in Section 2.2, and will not be discussed

further here.

One of the more closely related works is the dynamic network developed by Rao and Ballard (1997).

A stochastic generative model for images is presented and a hierarchical network is developed to estimate

the underlying state. Their network includes multiple layers with feedforward and feedback connections

which are interpreted as passing the residuals from predictions at higher levels back to lower levels (but

with no explicit learnable lateral connections, nor overcomplete representations). Experiments demonstrate

34

Input Correct

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 2

t =
 3

t =
 4

t =
 7

t =
 9

t =
 1

1
t =

 1
2

In
pu

t p
re

se
nt

ed

Figure 13: Expectation-driven segmentation using occluded objects over a cluttered background. The clutter

input is presented at the lowest layer fort = 2, 3. Top-down expectations (the object code for knight) are

presented at the highest layer fort = 1, . . . , 4. By t = 12, the network converges to a segmented outline

of the knight in the correct orientation at the first layer. Layer 4 legend: “�” = unit is active and in correct

object code, “◦” = unit is in the object code but inactive, “×” = unit is active but should not be (not in object

code).

35

Input Correct

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 4

t =
 8

In
pu

t p
re

se
nt

ed

Figure 14: Recognizing the occluded object in a cluttered background is difficult without top-down expec-

tations. The same input image used in Figure 13 is presented for t = 1, 2, 3, however no top-down inputs

are present. A few representative time steps show that the activity gradually decays over time, and no object

is reconstructed at layer 1. Layer 4 legend: “�” = unit is active and in correct object code, “◦” = unit is in

the object code but inactive, “×” = unit is active but should not be (not in object code).

recognition, reconstruction of occluded images, learningof biologically plausible receptive fields and ability

to tell that an object had not been seen during training. Perhaps because of the computational requirements,

only fairly limited recognition experiments were performed, using five objects (one orientation per object)

and rotation invariant recognition with two objects, each with 36 views used for training and testing (Rao,

1999).

Newer versions of the Neocognitron include feedback connections and are demonstrated for recognition

and reconstruction (Fukushima, 2005). The model posits twotypes of cells in each region of the system, S-

cells and C-cells in analogy with the simple and complex cells categorized by Hubel and Wiesel (1959). The

S-cells are feature detectors and the C-cells pool the output of S-cells to create invariant feature detectors.

To solve the reconstruction problem, further cell types andlayers are added, and many of the layers have

different learning rules. In contrast, our network is able to perform various inference types without changes

to the architecture or learning rule.

7.3 Related Work: Probabilistic Models in Computer Vision

Recent work in computer vision has investigated probabilistic generative models apart from direct biological

motivation (Hinton et al., 2006; Hinton and Salakhutdinov,2006; Fergus et al., 2007; Sudderth et al., 2005).

Most closely related to our work is the learning algorithm ofHinton et al. (2006) for hierarchical belief

networks. The network has multiple hidden layers followed by a much larger overcomplete associative

memory (whereas our overcomplete stage occurs at the secondlayer), and a highest layer with a 1-out-of-n

36

1 1.5 2 2.5 3
0

20

40

60

80

100

Overcompleteness ratio of layer 1 and dictionary

C
or

re
ct

 c
la

ss
ifi

ca
tio

n
(%

)

Full object
Occluded object
Object in clutter

Figure 15: Recognition performance on the test set (full object), occluded images (50% occlusion) and

cluttered images with three different degrees of overcompleteness in Layer 1 representation and learned dic-

tionaries. Recognition performance improves with increased overcompleteness, particularly in the difficult

cluttered scenes. Test set size is 360 images (36 views of 10 objects).

code for the object class. The first layer has real-valued inputs, while stochastic binary values are used at

higher layers. Feedforward and feedback weights are learned but no lateral connections are used, and during

testing only one forward-backward pass is made at each layer. When trained on a benchmark handwritten

digit data set, the accuracy is competitive with the best machine learning methods, showing that generative

hierarchical networks are promising for real-world visiontasks. Using a similar learning procedure with an

autoencoder network architecture, Hinton and Salakhutdinov (2006) show applications to data compression

and text classification.

While there are many differences between this work and our algorithm, they address the same basic ques-

tion of how to train hierarchical generative models. One important difference is that Hinton et al. (2006)

use stochastic units and Gibbs sampling for generative inference, while we use a nearest-layer conditional

variational approximation. We believe the factorial approximation of eq. (2.8) can be sufficiently accurate

in the case of sparse activations, and that enforcing a shortenough time-horizonτ makes learning compu-

tationally tractable. More experiments with known generative models will be needed to further evaluate the

differences between these algorithms.

Fergus et al. (2007) develop a model for classification of object categories in unsegmented images.

The first step is finding a small set of interesting features using a saliency detector. For each category,

a probabilistic model is learned for these features including their relative position and scale. Impressive

detection performance is achieved on real-world data sets.In contrast to our work which models all the

features in the image, Fergus et al. (2007) use only a small number of features (< 30), so that, if run

generatively, their model would only reconstruct a small subset of the features in each object. Using a

saliency detector improves position and scale invariance (which would benefit our network), however, using

only this small feature set reduces performance when features of a class model cannot be found.

In a related work, Sudderth et al. (2005) present a probabilistic model of object features and apply it to

object categorization in real-world scenes. Similar to ourmodel and in contrast with Fergus et al. (2007),

37

their model is a true multiclass classifier which allows features to be shared between models of different

objects, and allows for more rapid classification without the need to run multiple classifiers. As above, the

small feature set limits the potential detail of generativereconstruction. However, segmentation results show

that regions such as “building”, “car” and “street” can be detected in city scenes.

8 Conclusions

We have developed a framework and learning algorithm for visual recognition and other types of inference

such as imagination, reconstruction of occluded objects and expectation-driven segmentation. Guided by

properties of biological vision, particularly sparse overcomplete representations, we posit a stochastic gen-

erative world model. Visual tasks are formulated as inference problems on this model in which inputs can

be presented at the highest layer, lowest layer, or both depending on the task. A variational approximation

(the simplified world model) is developed for inference which is generalized into a discrete-time dynamic

network.

An algorithm is derived for learning the weights in the dynamic network, with sparsity-enforcing priors

and error-driven learning based on the pre-activated statevector. Experiments with rotated objects show

that the network dynamics quickly settle into easily-interpretable states. We demonstrate the importance of

top-down connections for expectation-driven segmentation of cluttered and occluded images. Four types

of inference were demonstrated using the same network architecture, learning algorithm and training data.

We show that an increase in overcompleteness directly leadsto improved recognition and segmentation in

occluded and cluttered scenes. Our intuition as to why thesebenefits arise is that overcomplete codes allow

the formation of more basins of attraction and higher representational capacity.

Acknowledgments

J.F.M. gratefully acknowledges support from the ARCS Foundation. This research was supported in part

by NSF cooperative agreement ACI-9619020 through computing resources provided by the National Part-

nership for Advanced Computational Infrastructure at the San Diego Supercomputer Center. Thanks also

to Virginia de Sa, Robert Hecht-Nielsen, Jason Palmer, Terry Sejnowski, Sebastian Seung, Tom Sullivan,

Mohan Trivedi, and David Wipf for comments and discussions.

A Sparse Image Coding with Learned Overcomplete Dictionaries

The dynamic network and learning algorithm presented aboverequire that the inputsul at each layer

be sparse vectors. To transform the input image into a suitable sparse vector, we use thefocal under-

determined-system-solver(FOCUSS) algorithm for finding solutions to inverse problems. The FOCUSS

algorithm represents data in terms of a linear combination of a small number of vectors from a dictionary,

which may be overcomplete. Other methods for sparsely-coding signals include matching pursuit, basis

pursuit, and sparse Bayesian learning, which were also evaluated for image coding (Murray and Kreutz-

Delgado, 2006). The overcomplete dictionary is learned using the FOCUSS-CNDL (column-normalized

38

dictionary learning) algorithm developed by Murray and Kreutz-Delgado (2001); Kreutz-Delgado et al.

(2003).

The problem that FOCUSS-CNDL addresses here is that of representing a small patch of an image

y ∈ R
m using a small number of non-zero components in the source vector x ∈ R

n under the linear

generative model,

y = Ax , (A.1)

where the dictionaryA may be overcomplete,n ≥ m. The algorithm updates and more discussion of

the FOCUSS-CNDL algorithm in this context are given in Murray (2005, Section 1.A). Parameters for

FOCUSS-CNDL are: data set size = 20000 image patches, block size N = 200, dictionary size = 64x64,

64x128, or 64x196, diversity measurep = 1.0, regularization parameterλmax = 2 × 10−4, learning rate

γ = 0.01, number of training epochs = 150, reinitialization every 50epochs. After each dictionary update,

A is normalized to have unit Frobenius norm,‖A‖F = 1 and equal column-norms. Figure 1.18 of Murray

(2005) shows the learned 64x196 dictionary after training on edge-detected patches of man-made objects

(the data set described in Section 6).

Once the dictionaryA has been learned, input images for the dynamic network (DN) are coded using

the FOCUSS+ algorithm (Murray and Kreutz-Delgado, 2006). The input images are divided into consecu-

tive non-overlapping patches of the same 8x8 size used for dictionary learning. The FOCUSS+ algorithm

consists of repeated iterations of eq. 6 from Murray and Kreutz-Delgado (2006) over an image patchyk to

estimatexk. Eachxk is updated for 15 iterations withp = 0.5.

B Derivation of Learning Algorithm for W

The learning algorithm for the weightsW is derived similarly to the backpropagation-through-time-algorithm

(BPTT) (Williams and Peng, 1990). Using the pre-activationcost function (4.11) for an individual pattern,

JPA =
1

2

τ∑

t=1

[
εT

t (εt ⊙ βt) + λ(Vt − µ)T [(Vt − µ) ⊙ (1 − βt)]
]

, (B.1)

which uses statesVt generated from running the network in certainty-equivalence mode. The effect of

the weight prior− ln P (W) will not be considered in this section, as it was found that enforcing periodic

weight normalization is more computationally efficient than using prior constraints in every weight update

(see Section 5).

To minimize the costJPA we update the weights using gradient descent,

∆wji = −η
∂JPA

∂wji
= −η

τ∑

t=1

∂JPA

∂Vj,t
·
∂Vj,t

∂wji
, (B.2)

wherewji is the element from thej-th row andi-th column ofW. The second term on the right is,

∂Vj,t

∂wji
=

∂

∂wji
Wj· Xt = Xi,t , (B.3)

39

whereWj· is thej-th row ofW. The first term on the right of (B.2) is divided into two parts,

∂JPA

∂Vj,t
= Bj,t + Dj,t

Bj,t =
∂

∂Vj,t



1

2

τ∑

ρ=1

εT
ρ (ερ ⊙ βρ)





Dj,t =
∂

∂Vj,t



λ

2

τ∑

ρ=1

(Vt − µ)T [(Vt − µ) ⊙ (1 − βt)]



 , (B.4)

whereB is related to reconstruction error andD increases sparsity on those layers without desired values.

Recursion expressions can now be found forBj,t andDt,j . First, some notation: thej-th row of the weight

matrix W is denotedWj· and the element from thej-th row andi-th column iswji. Beginning with the

reconstruction-enforcing termB (temporarily omitting the binary indicator variableβ for notational clarity),

Bj,t =
∂

∂Vj,t



1

2

τ∑

ρ=1

εT
ρ ερ



 . (B.5)

ForBj,t, at the last time step in (B.2) whent = τ only theρ = τ terms depend onVj,τ ,

Bj,τ =
∂

∂Vj,τ

[
1

2
εT

τ ετ

]
= εT

τ

∂

∂Vj,τ
ετ = εj,τ , (B.6)

whereεj,t is thej-th element of the error vectorεt. Whent = τ − 1,

Bj,τ−1 =
∂

∂Vj,τ−1

[
1

2
εT

τ ετ +
1

2
εT

τ−1ετ−1

]
. (B.7)

The second term on the right can be found to be−εj,τ−1 as in (B.6). For the first term,

∂

∂Vj,τ−1

1

2
εT

τ ετ = εT
τ

∂

∂Vj,τ−1
ετ = εT

τ W
∂

∂Vj,τ−1
f(Vτ−1)

= f ′(Vj,τ−1)
N∑

k=1

εk,τwkj . (B.8)

Substituting (B.8) and (B.6) into the expression forBj,τ−1 (B.7),

Bj,τ−1 = εj,τ−1 + f ′(Vj,τ−1)
N∑

k=1

Bk,τwkj . (B.9)

The general recursion forBt,j is (after reintroducing the indicator variableβ),

Bj,t =





εj,tβj,t t = τ

εj,tβj,t + f ′(Vj,t)
∑N

k=1 Bk,t+1wkj 1 ≤ t ≤ τ
. (B.10)

Turning to the sparsity-enforcing term (again omittingβ),

Dj,t =
∂

∂Vj,t



λ

2

τ∑

ρ=1

(Vt − µ)T (Vt − µ)



 . (B.11)

40

Following similarly to the derivation forB above, whent = τ ,

Dj,τ =
∂

∂Vj,τ

[
λ

2
(Vτ − µ)T (Vτ − µ)

]
= λ(Vτ − µ)

∂

∂Vj,τ
(Vτ − µ) = λ(Vj,τ − µ) . (B.12)

Whent < τ , we follow (B.7)-(B.9), and find the general recursion forDj,t (reintroducingβ),

Dj,t =





λ(Vj,t − µ)(1 − βj,t) t = τ

λ(Vj,t − µ)(1 − βj,t) + f ′(Vj,t − µ)
∑N

k=1 Dk,t+1wkj 1 ≤ t ≤ τ − 1
. (B.13)

The recursions (B.10) and (B.13) are used in the final weight update,

∆wji = −η

τ∑

t=1

(Bj,t + Dj,t)Xi,t , (B.14)

where the activation function derivative is,

f ′(v) =
a1a2 exp (−a2v + a3)

{1 + exp(−a2v + a3)}
2 . (B.15)

References

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.Cognitive

Science, 9(1):147–169, 1985.

B. Apolloni, A. Bertoni, P. Campadelli, and D. de Falco. Asymmetric Boltzmann machines.Biological

Cybernetics, 61:61–70, 1991.

F. Attneave. Informational aspects of visual perception.Psychological Review, 61:183–193, 1954.

D. Barber and P. Sollich. Gaussian fields for approximate inference in layered sigmoid belief networks. In

Advances in Neural Information Processing Systems 12 (NIPS*1999), Cambridge, MA, 2000. MIT Press.

H. B. Barlow. The Mechanisation of Thought Processes, chapter Sensory mechanisms, the reduction of

redundancy, and intelligence, pages 535–539. Her Majesty’s Stationery Office, London, 1959.

D. P. Bertsekas.Dynamic Programming and Optimal Control, Vols. I and II. Athena Scientific, Belmont,

MA, 1995.

D. Brook. On the distinction between the conditional probability and the joint probability approaches in the

specification of nearest-neighbor systems.Biometrika, 51(3/4):481–483, December 1964.

E. M. Callaway. Feedforward, feedback and inhibitory connections in primary visual cortex.Neural Net-

works, 17:625–632, 2004.

Z. Chengxiang, C. Dasgupta, , and M. Singh. Retrieval properties of a Hopfield model with random asym-

metric interactions.Neural Computation, 12:865–880, 2000.

41

T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley, New York, 1991.

A. Crisanti and H. Sompolinsky. Dynamics of spins systems with randomly asymmetric bonds: Ising spins

and Glauber dynamics.Physical Review A, 37(12):4865–4874, 1988.

Y. Ejima, S. Takahashi, H. Yamamoto, M. Fukunaga, C. Tanaka,T. Ebisu, and M. Umeda. Interindividual

and interspecies variations of the extrastriate visual cortex.Neuroreport, 14(12):1579–1583, August 2003.

D. J. Felleman and D. C. Van Essen. Distributed hierarchicalprocessing in the primate cerebral cortex.

Cerebral Cortex, 1:1–47, 1991.

R. Fergus, P. Perona, and A. Zisserman. Weakly supervised scale-invariant learning of models for visual

recognition.International Journal of Computer Vision, online:1–31, July 2006.

D. J. Field. What is the goal of sensory coding?Neural Computation, 6:559–601, 1994.

P. Földiák. Learning invariance from transformation sequences.Neural Computation, 3:194–200, 1991.

K. Fukushima. Restoring partly occluded patterns: a neuralnetwork model.Neural Networks, 18:33–43,

2005.

K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant of deforma-

tions and shifts in position.Pattern Recognition, 15(6):455–469, 1982.

C. C. Galland. The limitations of deterministic Boltzmann machine learning.Network, 4:355–379, 1993.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, November 1984.

J. Gill. Generalized Linear Models: A Unified Approach. Sage University Paper Series on Quantitative

Applications in the Social Scienes, 07-134, Thousand Oaks,CA, 2001.

S. Grossberg. Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction,

and illusions.Biological Cybernetics, 23:187–202, 1976.

H. Gutfreund.Neural Networks and Spin Glasses, chapter The Effect of Synaptic Asymmetry in Attractor

Neural Networks, pages 49–66. World Scientific Publishing Co., Teaneck, NJ, 1990.

J. Hawkins and S. Blakeslee.On Intelligence. Times Books, New York, 2004.

R. Hecht-Nielsen. A theory of the cerebral cortex. InProceedings of the 1998 International Conference on

Neural Information Processing (ICONIP’98), pages 1459–1464, October 1998. Kitakyushu, Japan.

J. A. Hertz, R. G. Palmer, and A. S. Krogh.Introduction to the theory of neural computation. Addison-

Wesley, Redwood City, CA, 1991.

G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse distributed representations.

Phil. Trans. R. Soc. Lond. B, 352:1177–1190, 1997.

42

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.Science,

313:504–507, 2006.

G. E. Hinton and T. J. Sejnowski. Optimal perceptual inference. InProceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 448–453, 1983.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.Neural Computation,

18:1527–1554, 2006.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.

Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

P. O. Hoyer and A. Hyvärinen. A multi-layer sparse coding network learns contour coding from natural

images.Vision Research, 42(12):1593–1605, 2002.

D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex.Journal of

Physiology, 148:574–591, October 1959.

O. Johnson.Information Theory and the Central Limit Theorem. Imperial College Press, London, 2004.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.Learning in Graphical Models, chapter An

Introduction to Variational Methods for Graphical Models,pages 105–161. MIT Press, Cambridge, MA,

1998.

E. R. Kandel, J. H. Schwartz, and T. M. Jessel.Principles of Neural Science. McGraw-Hill, fourth edition,

2000.

H. J. Kappen and J. J. Spanjers. Mean field theory for asymmetric neural networks.Physical Review E, 61

(5):5658–5661, 2000.

S. M. Kay. Fundamentals of Statistical Signal Processing. Prentice Hall, Upper Saddle River, NJ, 1993.

S. M. Kosslyn, W. L. Thompson, and N. M. Alpert. Neural systems shared by visual imagery and visual

perception: A positron emission tomography study.Neuroimage, 6:320–334, 1997.

G. Kreiman, C. Koch, and I. Fried. Category-specific visual responses of single neurons in the human medial

temproal lobe.Nature Neuroscience, 3(9):946–953, September 2000.

K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski. Dictionary learning

algorithms for sparse representation.Neural Computation, 15(2):349–396, February 2003.

T. S. Lee and D. Mumford. Hierarchical Bayesian inference inthe visual cortex.Journal of the Optical

Society of America A, 20(7):1434–1448, 2003.

T. S. Lee, D. Mumford, R. Romero, and V. A. F. Lamme. The role ofthe primary visual cortex in higher

level vision.Vision Research, 38:2429–2454, 1998.

43

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations.Neural Computation, 12(2):

337–365, February 2000.

M. Mezard, G. Parisi, and M. A. Virasoro.Spin Glass Theory and Beyond. World Scientific, Teaneck, NJ,

1987.

V. B. Mountcastle.The mindful brain, pages 7–50. MIT Press, Cambridge, MA, 1978.

J. F. Murray. Visual Recognition, Inference and Coding Using Learned Sparse Overcomplete Representa-

tions. PhD thesis, University of California, San Diego, 2005.

J. F. Murray and K. Kreutz-Delgado. An improved FOCUSS-based learning algorithm for solving sparse

linear inverse problems. InConference Record of the 35th Asilomar Conference on Signals, Systems and

Computers, volume 1, pages 347–351, Pacific Grove, CA, November 2001. IEEE.

J. F. Murray and K. Kreutz-Delgado. Learning sparse overcomplete codes for images.Journal of VLSI

Signal Processing, 45:97–110, 2006.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images.Nature, 381:607–609, June 1996.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by

V1? Vis. Res., 37:3311–3325, 1997.

B. A. Olshausen and D. J. Field.23 Problems in Systems Neuroscience, chapter What is the other 85% of

V1 doing? Oxford University Press, Oxford, 2005.

G. Parisi. Asymmetric neural networks and the process of learning. J. Phys. A: Math. Gen., 19:L675–680,

1986.

C. Peterson and J. R. Anderson. A mean field theory learning algorithm for neural networks.Complex

Systems, 1(5):995–1019, 1987.

R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single

neurons in the human brain.Nature, 435:1102–1107, June 2005.

R. P. N. Rao. An optimal estimation approach to visual perception and learning.Vision Research, 39(11):

1963–1989, June 1999.

R. P. N. Rao and D. H. Ballard. Dynamic model of visual recognition predicts neural response properties in

the visual cortex.Neural Computation, 4:721–763, 1997.

M. Riesenhuber and T. Poggio. Hierarchical models of objectrecognition in cortex.Nature Neuroscience,

2:1019–1025, 1999.

E. T. Rolls and T. Milward. A model of invariant object recognition in the visual system: Learning rules, ac-

tivation functions, lateral inhibition, and information-based performance measures.Neural Computation,

12(11):2547–2572, November 2000.

44

L. K. Saul and M. I. Jordan.Learning in Graphical Models, chapter A mean field algorithm for unsupervised

neural networks, pages 541–554. MIT Press, Cambridge, MA, 1998.

M. I. Sereno, A. M. Dale, J. B. Reppas, K. K. Kwong, J. W. Belliveau, T. J. Brady, B. R. Rosen, and R. B. H.

Tootell. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.

Science, 268(5212):889–893, May 1995.

H. Sompolinsky. Statistical mechanics of neural networks.Physics Today, 41(21):70–80, December 1988.

C. F. Stevens. An evolutionary scaling law for the primate visual system and its basis in cortical function.

Nature, 411:193–195, May 2001.

E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky.Learning hierarchical models of scenes,

objects and parts. InInternational Conference on Computer Vision (ICCV 2005), volume 2, pages 1331–

1338, 2005.

Y. W. Teh and G. E. Hinton. Rate-coded restricted boltzmann machines for face recognition. InAdvances

in Neural Information Processing Systems 13 (NIPS2000), pages 908–914, Cambridge, MA, 2001. MIT

Press.

Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse overcomplete

representations.Journal of Machine Learning Research, 4:1235–1260, 2003.

S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.Nature, 381(6):520–522,

June 1996.

W. E. Vinje and J. L. Gallant. Sparse coding and decorrelation in primary visual cortex during natural vision.

Science, 287(18):1273–1276, February 2000.

M. Welling and Y. W. Teh. Approximate inference in Boltzmannmachines.Artificial Intelligence, 143(1):

19–50, January 2003.

R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent network

trajectories.Neural Computation, 2:490–501, 1990.

45

