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The “explaining away” effect and the need for lateral connecti@vwen if the
units in each layer of a top-down generative model (left) are indepénthen
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units in the corresponding layer of a bottom-up recognition model will not be,

requiring lateral interaction for accurate inference. . . . . . .. ... ...
(A) Activation functionf (v) and (B) derivativef’(v) with parametera = [1.1,
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2.0,4.0, —0.05], see Equations (1.2.19) and (1.2.27). The limits of the activation
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(A) The probability densityP(z;a) of a normal random variable after being
transformed by the activation functiori(v) in Equation 1.2.19, is a sparsity-
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We present a hierarchical architecture and learning algorithm for lviegagnition and
inference tasks such as imagination, reconstruction of occluded imagksxpectation-driven
segmentation. Certain characteristics of biological vision are used foamted such as exten-
sive feedback and lateral recurrence, a highly overcomplete eagly €¥d) and sparse distrib-
uted activity. Recent advances in computational methods for learningaetete dictionaries
are used to explore how overcompleteness can be useful for viskal tA&e posit a stochas-
tic, hierarchical generative-world-model (GWM) and develop a simplifiedid-model (SWM)
based on a variational approximation to the Boltzmann-like distribution. The $8\dsigned
to enforce sparsity and leads to a tractable dynamic network. Experimentallghow that
increasing the degree of overcompleteness results in improved recogmticsegmentation.

Critical to the success of this vision system is the sparse coding of imagesaukarned
overcomplete dictionary. An algorithm for performing dictionary learningntast FOCUSS-
CNDL is developed in Chapter 2. In tests with natural images, learnedametete dictionaries
are shown to have higher coding efficiency than complete dictionaries: snesgeded with an
overcomplete dictionary have both higher compression (fewer bits/pixdhayher accuracy
(lower mean-square error).

The vision algorithm of Chapter 1 requires non-negative sparse cothésh is discussed
in Chapter 3. A non-negative version of the FOCUSS algorithm is showe tuperior to a
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matching-pursuit variant. Also, the FOCUSS-CNDL algorithm is found tceHaetter image
coding performance than another overcomplete independent anayajsaligorithm.

The final chapter presents methods for detecting rare events in a time cfeni@sy and
nonparametrically-distributed data. These algorithms are tested on a diféatvorld prob-
lem: predicting failures in hard-drives. An algorithm is developed basdbdemultiple-instance
learning framework and the naive Bayesian classifier (mi-NB) which isiipally designed for
the low false-alarm case. Other methods compared are support vectinesw(SVMs), unsu-
pervised clustering, and non-parametric statistical tests. While not specifision tasks, the

mi-NB algorithm may find uses in semi-supervised image categorization tasks.
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Chapter 1

Visual Recognition and Inference
Using Overcomplete Sparse Learning

Abstract

We present a hierarchical architecture and learning algorithm for lviegagnition and
other visual inference tasks such as imagination, reconstruction ofdectimages, and expect-
ation-driven segmentation. Using properties of biological vision for quidawe posit a sto-
chastic generative world model and develop a simplified world model (SvélsBdbon a tractable
variational approximation that is designed to enforce sparsity. Receekgenents in compu-
tational methods for learning overcomplete representations (Lewicki emd8ski, 2000, Teh
et al., 2003) also suggest that overcompleteness can be usefuldaf tasks, and we use an
overcomplete dictionary learning algorithm (Kreutz-Delgado et al., 2003 preprocessing
stage to produce accurate, sparse codings of images.

Inference is performed by constructing a dynamic network which settleg t8\WiM. This
dynamic system is Gauss-Markov, and can be used to provide a prindgiisdtion of the hi-
erarchical extended Kalman filter model of vision (Rao and Ballard, 198[¢ Kalman filter
is computationally intensive however, and we alternatively develop a dynaetieork for in-
ference which is efficient for practical vision tasks. In particularpesing sparseness at each
layer leads to an efficient learning algorithm that updates only a smalltsobskEments in a

large weight matrix. Experiments on a set of rotated objects demonstrates/éyfmes of vi-



sual inference, and show that increasing the degree of overcongsstprovides an increase in
recognition performance in difficult scenes with occluded objects in clutter.

1.1 Introduction

Vision, whether in the brain or computer, can be characterized as thegsro€ inferring
certain unknown guantities using an input image and predictions or expesta@ased on prior
exposure to the environment. Visual inference includes tasks sucbagizing objects, recon-
structing missing or occluded features, imagining previously learned oebntiovel objects,
and segmentation (finding which features in a cluttered image correspongauieular ob-
ject). Performing these inference tasks requires combining informatiart #tecurrent image
(bottom-up processing) and abstract concepts of objects (top-daveegwing). These tasks
can naturally be placed into the framework of Bayesian probabilistic modedsgdetermining
the structure and priors for such models is a great challenge both ferstadding vision in
the brain and for application-oriented computer vision. A primary goal ofghjger is to de-
rive an effective probabilistic model of visual inference consistent witinent understanding of
biological vision.

A number of important principles have emerged from neuroscience thailv@ake use
of here:

1. Vision in the brain is dierarchical process with information flowing from the retina to
the lateral geniculate nucleus (LGN) of the thalamus, and through the ot¢ifiltav2,
V4, etc.) and temporal regions of the cortex (Kandel et al., 2000).

2. This hierarchy has extensivecurrencewith reciprocal connections between most re-
gions, e.g., from V1to V2, V2to V1, V1to V4, V4 to V1, etc. (Felleman and ¥ssen,
1991).

3. There is also extensive recurrence within cortical regions, as tyji¢ateral inhibition

which is a mechanism for how sparse coding can arise (Callaway, 2004).

4. The primary visual cortex (V1) is strikinglgvercompletemeaning that there are many

more cells than would be needed to represent the incoming retinal informitionmans,



there are over 200-300 V1 neurons per each LGN neuron, andea tesgree of overcom-
pleteness in other primates (Stevens, 2001, Ejima et al., 2003). Overcomesletaay be
a critical feature of how V1 can be used as a high-resolution buffer dteal., 1998) for

precision recognition and segmentation tasks.

5. The firing patterns of cortical neurons gives evidencesfmarse distributed representa-
tions in which only a few neurons are active out of a large population, antdtfesmation
is encoded in these ensembles (Vinje and Gallant, 2000).

6. Finally, the principle ofcortical similarity states that even though there are differences
between various areas, the basic structure is of the cortex is qualitaiivgigrsimplying
that the underlying cortical operation should be similar from area to areafMastle,
1978, Hawkins and Blakeslee, 2004).

Since these six properties are present in animals with high visual acuity, éagomable to
assume they are important for inference, and we will adopt all of them ietaank model
presented here.

While many computational models of vision have been developed which inedepome
of the above-listed properties (Fukushima and Miyake, 1982, Rao dfatdd 997, Riesenhu-
ber and Poggio, 1999, Rolls and Milward, 2000, Lee and Mumford32B0kushima, 2005), we
propose a model which takes into account all six properties. For exathplegcognition mod-
els of Rolls and Milward (2000) and Riesenhuber and Poggio (1999ptase feedback (and
so are incapable of inference tasks such as reconstruction or imag)natidrthe dynamic sys-
tem of Rao and Ballard (1997) does not use overcomplete represestalfiba use ofearned
overcomplete representations for preprocessing is a new and largatplared approach for
visual recognition and inference algorithms. Recent developments inrgaomercomplete
dictionaries (Lewicki and Sejnowski, 2000, Kreutz-Delgado et al., 2088 et al., 2003) and
the associated methods for sparse image coding (Murray and Kreutadoe@005) now make
possible the investigation of their utility for visual inference.

Real world images are high-dimensional data that can be explained in teransnath
smaller number of causes, such as objects and textures. Each objech, ioowid appear in
many different orientations but in fact is seen in only one particular otientaAt any given

angle, an object can be described with a concise set of lines and éba(en and Field, 1997).



The key feature of these various types of image descriptions is that theyecgepresented as

sparse vectorswhere only a few of the many possibly choices suffice to explain the scene

While pixel values of images have non-sparse distributions (they are iyniikbe zero), these
more abstract representations are very sparse (each componeriyitolike zero), and only a
few non-zero components at a time succinctly describe the scene. This mtaibag with the
biological evidence for sparsity, is the justification for our use of sparige distributions.

Beginning with a hypothetical hierarchicgenerative world modelGWM) that is pre-
sumed to create images of objects seen in the world, we discuss how the G\ caed for
visual inference. The GWM leaves arbitrary the selection of the probabiltyibution form,
and a suitable choice is required to create practical algorithms. As a firg, mevconsider a
Boltzmann-like distribution which captures the desired top-down, bottom-ddaderal influ-
ences between and within layers, but it is computationally intractable. Trempdified world
model(SWM) distribution is created based on a variational approximation to the Baltzihiiee
distribution, and which is specifically designed to be flexible enough to mpaess densities
(Section 1.2.4). The variational parameters are taken to be the expektead/the state at each
layer given its neighboring layers (immediately above and below). Solvintpése parameters
results in a binary state SWM with a flexibly-parameterized nonlinearity (theadictn func-
tion). The SWM can be considered in a dual form using the pre-activéttioetion state, which
by the central limit theorem is a normally distributed random vector. With thegoropoice
of activation function parameters, the distribution of the binary state cahdsensto be sparse
even though the pre-activation state is normally distributed. The normality @iréiactivation
state is used to show that a dynamic system on the pre-activation state issaNEalev sys-
tem. As such, it is amenable to solution with the extended Kalman filter (EKF, Aodemnd
Moore, 1979), and it shows a direct connection to the hierarchical lBKéel of vision of Rao
and Ballard (1997), Rao (1999) (Section 1.3.3).

By designing a dynamic network (alternative to the EKF) that rapidly cgaseto a self-
consistency condition in the simplified world model, we can perform infertasles if we have
the weights that parameterize the network (Section 1.3.2). To determine thewmkveights, a
learning algorithm that minimizes the error between the simplified world modekeecged state
and the data set. The learning algorithm is an extension of the backptigpataough-time-
algorithm (Williams and Peng, 1990) which operates on the normally-distrilpstedctivation
state and includes a sparsity-enforcing prior (Section 1.5). This cagelnes a hatural extension



of the sparse-coding principles that are useful in modeling V1 respmogerties (Olshausen
and Field, 1997) to the full visual inference task.

To show the efficacy of this approach, we demonstrate experimentallyabéyees of vi-
sual inference including recognition, reconstruction, segmentation arginateon. We show
that overcomplete representations provide an increase in recognitionmpance over complete
codes when used in the early stages of vision (Section 1.7).

1.1.1 Organization

The chapter is organized as follow: In Section 1.2, a generative visoiddhwodel (GWM)
is hypothesized, and its use for recognition and other types of visuatinde is discussed. In
Section 1.2.4, a variational approximation is used to construct a simplified wadie| (SWM)
which makes inference computationally tractable. Section 1.3 details a hiesdrdiinamic
network (DN), which settles to the self-consistency conditions of the SV sélving the
visual inference problems. Sections 1.4 and 1.5 establish a Bayesiaabjlisitt framework
and a learning algorithm for the network weights. Algorithm implementation is\giv&ection
1.6 and vision experiments on a set of rotated objects are described innSkgtichowing the
effect of increasing degrees of overcompleteness. A discussionr bfdlogical motivations and

comparison to prior work is given in Section 1.8, and conclusions arerdia®ection 1.9.

1.1.2 Notation

a Activation function parameters

B Error-related term in learning algorithm

c(m) Object code for objeat:, (sparse binary code)
D Sparsity-enforcing term in learning algorithm

Sigmoid activation function
I{-} Indicator function, 1 if expression is true, 0 otherwise
Number of images in training s&t

L; Lateral weights between units in layer
M Number of unique objects in training set
n Number of layers in network

Number of elements in state vect&r



L]

NN s > S W)

GWM
SWM
DN

Diversity (number of non-zero elements)—= [r1,...,r,]|, wherer; is the
diversity of layer]

Size of layerss = [s1,. .., s,], Wheres; is the size of layet

Network input at time

Unit weight sumw (for entire layerv;), pre-activation function
Pre-activation values of all layers

Certainty-equivalence approximation of pre-activation values

Weights from layern to layeri

Complete weight matrix for all layers (including aV;,,, andL;), W € RV*V
Activation vector at layet, expected values df(z;)

State vector of all layersY = [x7,...,x1]"

Training datay = [y7,0,...,0,7X]7, wherey, is sparsely-coded image
andy,, is an object code

Network output at time

Sets of multiple state vectoi§ V, e.g.Y = {y (D) .y ()

True state of generative model at layebinary random vectog {0, 1}*
True state of generative model, all layets= [z7, ..., z]7, binary random
vectore {0, 1}

Prior-shaping parameters

Indicator vector of whether target values are available for each elehé&nt
Error between variational approximation and true state

Error between data set and network approximatAi’pn

Normalization constant (partition function)

Learning rate

Regularization parameter

Error between true and approximate stdter Z — X = [¢7,...,¢1]"
Energy-like function

Number of time steps network is run for (maximum value)of

Generative world model

Simplified world model, variational approx. to Boltzmann-like distribution

Dynamic network that settles to the self-consistency condition of the SWM



1.2 Generative Models for Visual Inference

In this section, we postulate a hierarchical generative visual-world n{Gi&M) and dis-
cuss its properties, particularly that of independence of one layen gg/enmediately neighbor-
ing layers. We then discuss how the GWM can be used for visual infetasks such as recog-
nition, imagination, reconstruction, and expectation-driven segmentatpetifte forms of the
probability distribution in the model must be chosen, and as a starting poirgene Boltzmann-
like distribution. Since inference with the Boltzmann-like distribution is generathaatable,
a variational approximation is developed leading to a simplified world model (EVWie key
assumption of sparsely-distributed activations (prior distributions) isreefioand used exten-
sively. While this work deals with the visual world, it is conceivable that tihi&pdure could be

applied to generative auditory-, tactile-, or other sense-world modelglas w

1.2.1 Hierarchical Generative Visual-World Model

Images of objects seen in the world can be thought of as being createtibsaechical,
stochastic generative model (tenerative world modelGWM). While it cannot be rigorously
claimed that the real world uses such a model to generate images, the ide&u¥M is a useful
fiction that guides the development of learning algorithms (Hinton and Ghemia 1997).

For the GWM, we assume a hierarchical binary-state model of the formrshoFigure
1.1. The number of layers is somewhat arbitrary, though there shoulibogle layers to capture
the structure of the data to be modeled, and four to five appears to beoaabksnumber for
images of objects (Riesenhuber and Poggio, 1999, Lee and Mumfdi8).20he arrows in
Figure 1.1 indicate that each layer depends only on the layer directly @biovie hierarchy.

At the highest level, the vectar; is a sparse binary coding of the object in the image, and its
value is drawn from the prior distributiaR(z5). The representation of the particular orientation
z, Of an object depends only on the object representationThe invariant, composite and
local featureszs, zo andz;, likewise depend only on the layer immediately above them, e.qg.
P(z3|z4,25) = P(z3]z4), and the local features; model the imagd. The sequence can be
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Figure 1.1: Hierarchical generative visual-world model (GWM) for otge At each layeg;,
the image can be represented by a large (possibly overcomplete) spete kn this generative
model, each layer is a binary random vector which, given only the layer inatedgdabove it in
the hierarchy, is independent of other higher layers.

summarized,

25 P(z4|z5) 7 P(z3|24) 23 P(z2z3) 2 P(z1|z2) - P(I)z) I, (1.2.1)

where the probabilities represent certain visual transformations. Theedisimibution of the

image and generative statess,

P(1,21,29,23,24,25) = P(I|21, 22,23, 24,25) P (21,22, 23, 24, Z5)

= P(I|z1)P(z1|22) P(22|23) P(23|24) P(24]25) P(z5) . (1.2.2)

We postulate that the; are sparse i.e., they have very few non-zero components (Ol-
shausen and Field, 1997). For example, in every image only a few of sdiljge objects will
be present, and each object will only be in one of its possible orientatiodssaforth. Spar-
sity is measured by counting the number of zero components in a ve@dR"™, sparsity =
#{z; = 0}. A related quantitydiversity, is defined as the number of non-zero components,
diversity = #{z; # 0} = n — sparsity. Many studies, such as Olshausen and Field (1996)



and our own work (Kreutz-Delgado et al., 2003, Murray and KreugigBdo, 2005), have con-
firmed that natural images can be represented accurately by spatsesyedtich corresponds

to thez; representation of in our notation. These studies have mainly dealt with small patches
of images (on the order of 8x8 to 16x16 pixels), and it is clear that feafarger than such
patches will be represented non-optimally. This further redundancygenacale features can
be reduced at higher levels, and these will also have the property rsesgss.

Recognition. For object recognition, the problem is to infer the highest layer reptaten
z5 given an imagd, which can be seen as the statistical inverse of the world image generation
process (1.2.1),

7 P(z1|I) - P(z2|z1) 2 P(z3|z2) 23 P(z4]23) 74 P(zs|24) Z5 . (1.2.3)

Using the hierarchical assumption in the generative model that each lagerthe layer directly
above itis independent of other higher layers, we can show that egatgiaen the layer directly

below it is independent of all other lower layers. For example, starting wétthigphest layet:s,
P(Ia 71,722,723, 24, ZS) = P(Z5‘I7 Z1,722,73, Z4)P(Ia Z1,722,73, Z4) . (124)

where,

P(I|Z1)P(Z1 ‘ZQ)P(ZQ’Zg)P(Zg|Z4)P(Z4‘Z5)P(Z5)
P(I’Zl)P(Zl|Z2)P(Z2‘Zg)P(Zg’Z4)P(Z4)

_ P(z4|25)P(z5)

P(Z5|Ia 1,272,723, Z4) =

P(z4)
= P(z5|24) , (1.2.5)
Thus, dually to (1.2.2) we have,
P(I,21,2, 23,24, 25) = P(25|24) P(24|23) P(23|22) P(22|21) P(z:[I) P(I) .~ (1.2.6)

Neighboring Layer Conditional Probability (NLCP). For a middle layetz; given all the
other layers, we find tha; given its immediate neighbots_,z;,; is independent of all the
remaining layers. For example (proceeding as in eq. 1.2.5),
P(z3|23) P(23]24)

((z2,24)
= P(z3|z2,24) , (1.2.7)

P(z3|1,21,22,24,25) =
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where( is a normalization function to ensure thais a distribution. Generalizing to an arbitrary
layer, we find theneighboring layer conditional probabilittNLCP),

P(z|l,z,...,2,) = P(z)|21-1,2141) (NLCP). (1.2.8)

This important modeling assumption is equivalent to saying the each layer ofdtel learns
about the world only through its neighboring layers. More generally, i an exogenous input
to layerl, the NLCP isP(z;|z;—1, z;+1, u;), however in this section we suppragdor notational
clarity.

Properties of Generative World Model (GWM). We now summarizes the four properties of
our generative world model (GWM).

1. There is a hierarchy ot hidden-layer vectorg, ..., z, that model and explain each
imagel.

2. Each layer is independent of all higher layers given its next higteghboring layer, i.e.,

P(z|z111, .. . 20) = P(zi|2141).

3. Each layer is independent of all lower layers given its next lowerhteigng layer, i.e.,
P(zi|z1-1,...,21) = P(z]z1-1).

4. Given its immediate neighboring layers, a lageis independent of all other higher and
lower layers, i.e P(z|1,z1,...,2,) = P(z|zi-1,2;+1) (NLCP).

These properties of a hierarchical world model have been propgskdeband Mumford
(2003).

1.2.2 Imagination, Reconstruction and Expectation-Drive 8gmentation and De-
tection

Recognition is only one type of inference we might be required to perfornath¥er type
is running a model generatively in order to use a high-level object septation tamaginean
image of that object. In the brain, imagining a particular instance or orientaftam abject will
not correspond to the level of detail in the retinal representation, big thevidence of activity
in many of the same regions during vision and imagination including the medial tah{jpor),
V1 and V2 (Kosslyn et al., 1995, 1997).
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Table 1.1: Types of inference that can be performed with the hieratgj@narative world model
(GWM) and the types of information flow required (bottom-up or top-dowi. wish to find a
good approximation to the layey of interest. The approximation used is the expected value of
z; under the variational approximatioBz;] = x; as discussed in Section 1.2.4.

Requires
Type of Inference| Inputs Outputs | Bottom-up Top-down
Recognition (I — z1) Zn, Y N
Imagination Zn (z1 — 1) N Y
Reconstruction | (I — z1) (z1 — I) Y Y
Exp.-drivenseg. | (I — z1),2, (21— I) Y Y
Exp.-drivendet. | (I — 21),2, 2Zn Y Y

Certain types of inference involve the use of top-down influences irtbegawith bottom-
up inputs. For example, given a partially occluded image that has beegnieed by higher
layers, top-down influences can be usedemonstructthe hidden parts of the object (i.e. those
features that are most likely given the input). Another type of inferenespgectation-driven
segmentationwhere a prediction is presented at a higher level which may be used lrexp
cluttered, incomplete or conflicting inputs at the lowest layer, and the desittedt is the seg-
mented object at the first layer (or suitable early-layer representaGoa¥$berg, 1976, Rao and
Ballard, 1997, Hecht-Nielsen, 1998). The expectation input (highmrléop-down) must come
from a source external to the visual system, which in the brain could behigitical areas or
other senses, and in computer vision could be dependent on the taskioleprby a user. If we
wish to find which objects are in a cluttered scene (i.e., the desired output lisgtiest-layer
object representation) based on prior knowledge of what might be ¢higteer-layer input), we
performexpectation-driven detectionf the high-level prediction about the scene is consistent
with the input, the system converges with the expectation at the highest layeha predic-
tion is confirmed. If the system converges to a different pattern, this itedichat the expected
object is not present (which could be considered a state of surpfiable 1.1 shows types of
inference and the necessary information flow (top-down or bottom-wggjatkin the model. As
discussed below, we use a sparse-coding algorithm to transform the intagbe first layer
representatiory, and vice versa (denoted by in the table).



12

1.2.3 Boltzmann-like Distributions for Layer-Conditional Probabilities

Our next task is to postulate a reasonable form for the GWM distribuffothsit is tractable
for both inference and estimating the parameters, yet powerful enougeifierating the images
seen in the world. A common choice in probabilistic modeling isBloétzmann distribution
where the probabilities are related to a function that assigns an energghictade (Hopfield,
1982, Hinton and Sejnowski, 1983). In analogy with thermodynamics agdiqai systems
such as magnetic materials, the energy function captures the influencashoparticle on its
neighbors where lower-energy states are more probable. In the tohtessociative memories,
the energy function is adjusted (by observing the statistics of the envirdhsush that learned
patterns form low-energy basins of attraction. However, the energtin of the Boltzmann
distribution is required to be symmetric and have zero self-energy (KegopBpanjers, 2000).
We relax these restrictions and use the teBokzmann-likeandenergy-liketo distinguish our
model from the more strict Boltzmann distribution assumptions. The Boltzmanfelike of
the NLCP ist

1
Pp(zi|z1-1,2111) = j exP (=&(z1,21-1,2111)) (NLCP-B), (1.2.9)

C(z1-1, 2141
where( is the energy-like function and is the normalization function. The energy-like and

normalization functions are,

T T T T
§(2z1,21-12141) = —2; W1z — 2 Lyzg — 2 Wy 240 — 0) 7

C(Z1-1,2141) = ZGXP(—ﬁ(ZbZlfl,ZZH)) ; (1.2.10)

whereW; ;. are top-down weights from layér+- 1 to I, W;;_; are the bottom-up weights
from the layerl — 1 to I, L; encodes the influence of units in layesn other units in that layer
(lateral weights), and; is a bias vector. The summation §nis over all states of laydar The
energy-like function (1.2.10) is a simple functional form that encodes tih@eimces between
every pair of units with a linear weight. The dependencies between andgdm@rs captured
by the NLCP-B can be represented as a graphical model (Figure 1iéh stows a subset of
these connections for simplicity).

When the weights are symmetric and diagonally zero,We.= W', L = L7 L;; = 0,
thenPp (1.2.9) is the equilibrium distribution generated by the Boltzmann machine update r
(Ackley et al., 1985). However, more generally this is not true.
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Figure 1.2: Graphical model representation of the NLCP-B, which c#onpe recognition as
well as other types of inference such as reconstruction and imaginatiaghin\& layer, units
influence each other using lateral connectifps Bottom-up recognition weight$v,;;_; and
top-down generative weight®; ;,; connect adjacent layers (only some weights are shown).
External inputs can be included at the highest layer (expectations) esidayer (input images),
but both types of input are treated similarly in this graphical model. All the layeims the
hierarchy can be combined into a single vector

The NLCP-B is a special case of the non-layered energy-like distribfioa vector of
binary random variables. Although it is common to §8el} or {—1, 1} for the binary levels,
we will allow them to be arbitrary, which does not change the functionahfof Ps. In the ex-
periments below, we use values which are closgtd } so that conceptually we are envisioning
the {0, 1} case.

The need for the lateral connectiofisis related to the well-known “explaining away”
effect (Pearl, 1988). Consider the two-layer model in Figure 1.3 (Bay@99): in the top-down
generative model (left in Figure 1.3), the probabilities of unitgdrare independent (factorial)
and each is likely to activate the first unit4n, but the units inz, are each unlikely to be active

(i.e. they are sparsely distributed as in Figure 1.1). So, only one usitimlikely to generate
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Figure 1.3: The “explaining away” effect and the need for lateral eotions. Even if the units in
each layer of a top-down generative model (left) are independentnttseinithe corresponding
layer of a bottom-up recognition model will not be, requiring lateral interactar accurate
inference.

the activation of the unit i;. In the bottom-up recognition model (right in Figure 1.3), given
only z; and the feedforward weights from to z», we would infer that both units of, were
active. However, by including a negative lateral connection betweamiteinz, (the negative
arrow), the correct inference of only one active unitincan be made. Thus, the activity of one
unit in z, “explains away” the need for the second unit to be active. Straightfdreyaplication
of Bayes’ rule also shows that the distribution of unitszinis not independent givem even
with a factorial generative model. So, even if the independence assumjitiiamlayers is made
in the generative model, lateral connections are required for inference

Unfortunately, even when the parameters of Bigz;|z;_1, z;, 1) are known, exact infer-
ence org; givenz;_1,z;1 is intractable because of the need to sum over every possiblezstate

to calculate the normalization functign(Saul et al., 1996).

1.2.4 Simplified World Model Developed With a Variational Method

The Boltzmann-like distribution (1.2.9)-(1.2.10) provides a reasonaliedbthe probabil-
ities in the GWM that accounts for feedforward, feedback and laterakinfles. Unfortunately,
performing inference with this model is generally intractable. In this sectieuysg a variational
method that approximate3sz (z;| z;—1, z;41) with a factorial distributionPg(z;| z;—12;+1). By
variational we mean that there are certain parameigrs- {z;,} that are varied to make the
distribution P as close taPg as possible. The form dfy is ageneralized factorial Bernoulli
distribution,

i

M]() M}(l =)

1_ )
a

Po(zi|z1-1,2141) = H { ) (1.2.11)

. al
(2
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wherex; ; are the variational parameters ame: [a1, az, a3, a4] are additional constant parame-
ters @2 andas will be introduced later) that are used to encourage sparsity-inducimgjtibs
(see Section 1.2.6 below). A sufficient condition for (1.2.11) to be a fibtyadistribution is
that% + (1 — %) =1 and% > 0, which is true fora; > 0 andz;; > ay.
The slightly generalized Bernoulli-distribution (1.2.11) is based on a shiftenldgical val-
ues ofz;; in the energy function fror{0, 1} to {a4, a1 + a4} (in our experiments we will use
{-0.05,1.05}, which will be useful for computational efficiency). Our formulation emeo
passes the two common choices for logical levéls,l} and{—1, 1}, e.g. if logical levels of
{-1,1} are needed, them;y = —1,a; = 2. Collecting thez; ; into vectorsx; of the same size

asz; for each layer, we have the conditional expected values for each layer
x; = Eglzi|zi-1,2141] - (1.2.12)

Note thatx; is the minimum-mean-squared-error (MMSE) estimate; afiven the values of its
neighboring layers (Kay, 1993, pg. 313).

We now find the variational parameterg; that minimize the Kullback-Leibler diver-
gence (Cover and Thomas, 1991) between the conditional probabiitiés|z;_1,z;+1) and

Po(zi|zi-1,2141),
KL(Pg||Pg) = Egllog Py(zi|zi—1,2i1+1)] — Egllog Pp(zi|2i—1,21+1)] , (1.2.13)

whereEy, is the expected-value operator with respect to the distributiof; |z;—1, z;+1). Us-

ing the expected valuBg|z; ;| = x;, the first term is,

Z Zlg — a4 log Tyq — a4
- al al

)

N (1 A= a4) log (1 T — a4)]
al ai

:Z Ty — a4 log T — a4
a a

i

. <a1—$z+a4> log <1_M>] L @21
al a1

Eqllog Po(zi|z1-1,2141)] =Eq
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The second term in (1.2.13) can be expanded,

Eqllog Pp(zi|z1-1,2141)] =Eq[—log(C) — &(z1, 211, Z141)]
=FEg[—log(¢) — leWl’l_lzl_l — lelel
— 2l Wiz — 0]z (1.2.15)

Again using the expected valugy [z ;] = z;;,
Eqllog P(zilzi1,2001)] = —1og(Q) = Y Wiy 21 pwrs — Y Lap wip i
ik ik

- Z Wi, 2141,k T15 — Z Oz + (1.2.16)
ik i

wherer,;, W, andL;;, are elements of the weight matriceé; ;, 1, W;;_; andL; respectively
and the termr; = Eg[(z; — x;)"Li(z; — x;)] = Eg|¢] L), which is zero assuming that
Ly =0.2

Self-Consistency Conditions of the Variational Approximation. The variational parameters
x1,; that minimize the distance betweély and Py (1.2.13) are found by solving,

OKL (Ppl| P
W =0=uay (Z Wiz, + Z Ligxy g + Z WZ—ZZZH,/@)
* k k k

-H%<“‘W+%)—%, (1.2.17)
I,

using a constant termas for the bias@l,i,:” and factoring outis from W+, W~ and L (with a
slight abuse of notation, including factori@g into as, as, see eq. 1.2.14). Setting (1.2.17) equal
to zero and solving fox; ;,

w1 = f(vis)
v = Z W z—1k + Z Ligayp, + Z Wihziiie (1.2.18)
k k !

2The term¢; = Eql(z — x) T Ly(z; — x)] = Tr[L;X,,], whereX,, is the covariance matrix
of z; under Py. Sincez; is assumed conditionally independent undgy, the non-diagonal
elements of the covariance matrix are zero. We will disallow self-feedback {;; = 0), so
that T{L;>,, | is zero. However it is straightforward to handle the case whgn“ 0 given the
factorial form of P,.

3For simplicity we se¥),; = a3 for all /,i. However this assumption can be relaxed.
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wheref(-) is a sigmoid activation function parameterizeddy- [a1, as, a3, a4),

1+ exp(—agv+az)

f(v)

tayg. (1.2.19)

Defining ¢;; = z,; — x;; to be the approximation error, the statés equal tox plus a
random noise component,; = z;; + ¢; ;. This yields,

v = Z W (xi—p + dr—1,k) + Z Ligxy + Z Wi (i1, + G k)
% % %

=> Wiaicie+ Y Lamie + > Wikaiae +eui (1.2.20)
P k f

where thep terms have been collected intp;. By collecting all the terms for each layer into a
vector we obtain the single equation,

x| Li Wi 0 e 0| [x] e ]

X2 War  La Wy : X9 €9

xs|=f|] 0 Wy Ls Wau | |xs|+]|es]], (1.2.21)
| Xn | 0 cee 0 an_l L, | [Xn] =2

which is theself-consistency conditidior the variational approximation.

Simplified World Model Forms. Further collecting all the estimates for each layer into a
single vectorX = [x?,... x]T and all the weights into a global weight matfi¥, equation

)

(1.2.21) can be written concisely,
X=fWX+e) (SWM-E), (1.2.22)

which is called thesimplified world model on the expected val8%WM-E), and where the

vector forms of the errors are,

d=27-X
e=(W-L)®. (1.2.23)

The SWM can be written equivalently in terms of the binary sfate

Z=f(WZ-L&)+® (SWM-B), (1.2.24)
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and which is called th&WM on the binary statéSWM-B). The SWM can also be written
in an equivalent dual form on the pre-activation state. Collectedvthénto a state vector
V=WX +e(andX = f(V)), we have,

V=WfV)+e (SWM-P), (1.2.25)

which is called theSWM on the pre-activation sta(€WM-P). Equations (1.2.22), (1.2.24) and
(1.2.25) are self-consistency conditions for the SWM. We will return toethesy results in
Section 1.3.2 where we discuss how to find solutions to these conditions thesogution of
updates in time. Note that with a slight abuse of notation we refer to the sedfstency condi-
tions themselves as the SWMs.

1.2.5 Relation to Other Work

Performing inference on a hierarchical GWM has long been a problemnterest in ma-
chine learning (Hinton and Sejnowski, 1983, Dayan et al., 1995, Hintdi&drahramani, 1997),
and it has also been seen as an analogy to the computation performed iaithénbwhich re-
gions of the visual system such as V1, V2, V4 and IT are mapped to thesayef the model
(e.g., see Lee and Mumford, 2003, who present such a model anedssyggticle filtering as an
inference algorithm, but with no simulations). In Section 1.3 we performemiez by finding
an iterative-relaxation solution to the self-consistency conditions (1.2a3#&)cedure which is
consistent with the type of computation assumed possible in the cortex (i.e., suomiritegrat-
ing over an input field followed by a nonlinearity that determines firing réta)suitable-chosen
activation functionf (v) is used, which is the topic of the following section.

Using a factorial variational approximation (suchg) is also known as thenean-field
(MF) approximationin analogy with concepts in statistical physics (Peterson and Anderson,
1987). What distinguishes our method is that we use an approximating dismilfe, that is
conditional on its neighboring layersThis removes less randomness (and allows more gener-
ative capability) than the full, unconditional MF approximation, or the MF apination con-
ditioned on the visible layers (which is done in the Boltzmann machine). Thisziopation
is reasonable as it is equivalent to saying that the information about the eantained in any
layer is provided by its immediate neighboring layers, so if we condition on heiiig layers
then only random (“meaningless”) noise remains.



19

Our SWM is also related to sigmoid (or logistic) belief networks (Neal, 199%) thrir

MF approximations (Saul and Jordan, 1998) but with some key diffesenEirst, while these
models are hierarchical, they do not include lateral connecfiomghin each layer. More subtly,
their energy function has an additional non-quadratic term (eq. 11.8agkin, 1999) which

is difficult to handle and results from a marginalization over the hidden untiseaitial step

in the development of the probability of the state. In contrast, we find it is momeenient

to define the parameteM/y;, L; in Pp so that the energy-like function is quadratic (1.2.10)
(contrast with the form of the conditional probability found in eq. 11.43 ajkin, 1999).

1.2.6 Activation Functions Can Encourage Sparse Distributins

The parameterized sigmoid activation function (1.2.19) can be used toregesparse
activationin the layersz; by appropriate choice of parametersFigure 1.4 shows the activation
function (1.2.19) when parameterized with= [1.1, 2.0, 4.0, —0.05], which are chosen to shift
it to the positive orthant so that small levels of activation do not lead to pesitilues off (v).

We can reasonably assume that= v;; as given by (1.2.18) is a normally distributed
random variable due to the central limit theorem (Thomas, 1971) becasifiee sum of (nearly)
independent, identically distributed values with bounded vari&n@e densityP(x;a) can
then be found by transforming the normal densitfp) = A (1, 02) by the activation function
(2.2.19) resulting in,

P(x;a) =
x;a) =
az(x — a1 — aq)(x — ag)V2wo?
X exp -1 iln _rTa ‘*‘%—M ’ ) (1.2.26)
202 | ay —r+a1+ a4 as

For the values of, given above and fop = 0,02 = 1, Figure 1.5a shows thdt(z) is indeed
a sharply-peaked sparsity-inducing distribution. In contrast, FiguteshbwsP (x) after being
transformed by the sigmoid activation function with paramesets [1, 1, 0, 0], which does not
lead to a sparsity-inducing distribution. Figure 1.4 also shows the desvatithe activation

function,
() = ajag exp (—agv + as)
{1+ exp(—agv + a3)}
which will needed in the learning algorithm.

(1.2.27)

2 9

4The approximate normality af is confirmed by our simulations.
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Figure 1.4: (A) Activation functiory (v) and (B) derivativef’(v) with parametera = [1.1,
2.0,4.0, —0.05], see Equations (1.2.19) and (1.2.27). The limits of the activation function are
lag, a1 + a4] = [—.05,1.05], and the slope is controlled lay and the shift (bias) is determined
with a3. The shape of the activation function encourages sparsity by enghdahgmall input
activitiesv < v; do not produce any positive output activity. In the simulations, the valties o
x = f(v) are thresholded so that= [f(v)] € [0, 1], however the values of (v) are kept for

use in the weight updates (see Section 1.5).

1.3 Recurrent Dynamic Network

Recognizing that the solutions to the important inferencing problems comdgp solu-
tions of the self-consistency conditions derived in Section 1.2.4, we gleresthese condition
into a dynamic network capable of rapidly converge to a solution satisfyi@g(1l).

There aren layers in the network and the vector of activations for Mtk layer at timet
is denotedx; ;,/ = 1...n, with the sizes of the layers given By= [s; ...s,]. The network
is designed to enforce rapid convergence to the self-consistencitioasdl1.2.21) forx;, such

thatx; ; — x;. The state vector of all the layers at tirhis denoted,

X, =[x, xb, .. x5 eRrY (1.3.1)

n

where N is the size of the state vector (summed ovgrand dropping the time index ag
inside the vector notation for clarity. The activity in all layets is enforced to be sparse and
the diversity (number of non-zero elements) of the layers is deneted [r...r,]. Figure
1.6 shows the four-layer network structure used for the experiments ipdher. Dashed lines
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Figure 1.5: (A) The probability densiti?(x; a) of a normal random variable after being trans-
formed by the activation functiory;(v) in Equation 1.2.19, is a sparsity-inducing density if the
parameters are chosen properly. The parameters used in (1.2.26}afe1,2.0,4.0, —0.05]
andy = 0,02 = 1. (B) Probability ofz after transformation by activation functiof(v)

is not sparsity-inducing with the standard set of parameters for sigmoih&eti functions,
a=([1,1,0,0]andy = 0,02 = 1.

indicate inputs and connections that are not used here, but are allotvednrodel.

1.3.1 Inputs and Outputs

The layers used for input and output depend on the type of infereno@ed. In the present
work, inputs are usually injected at either the highest or lowest layer (gjthin general, we
may have inputs at any layer if additional types of inference are requik®d define an input

vectorU;X (again dropping the time index an inside the vector),

UtX = [ulT, uQT, co,uk , (1.3.2)

whereu; is a sparsely coded input image (see below) apds anm-out-of-n binary code
called theobject codenhich represents the classification of the object. The advantage of using
an m-out-of-n. object code is that it allows more objects to be represented than the sikze

the highest layer, which is the limitation of 1-out-ofeodes. The object code provides a high
representational capacity and robustness to the failure of any indivieitzneuron, both of
which are desirable from a biological perspective. In addition, we epresent new objects
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Figure 1.6: Dynamic network used in the experiments. Inputs images first sparsely coded
using the FOCUSS+ algorithm, which operates on non-overlapping pat€kiesinput image.
This sparse overcomplete code is used as bottom-up input to the four-layer hierarchical net-
work. Dashed lines indicate inputss) and connectiond(; ) that are not used in the experiments
in this paper, but which are allowed by the network.
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without adjusting the size of the highest layey,, by creating new random object codes.

For recognition and reconstruction, the input is the coded input image, iand the object
code input is zerou,, = 0. When the network is used for imagination, the input is the object
code representation presented at the highest myend random noise at;, and the output is
the reconstructed image the lowest layer. For expectation-driven sé&gfioanbothu; andu,
inputs are used. In this way, either the highest or lowest layer can asrtree input while the
other serves as the output. Table 1.1 show the layers used for inputigmd for each type of
inference (although we will use the expected valyéor the output instead of;), and the types
of network connections needed. We note that for most inference twaewiill not clamp the
statesk; to the input valuesi;, (see below). The exception is imagination, in which the highest-
layer object code will be clamped during the iterations of the network. Iem@géra time-varying
sequence of inputa; can be presented, but the experiments in this paper deal only with static
objects (thought of as instantaneous snap-shots of the world).

Sparse Overcomplete Image Coding. Since all the layers of the network assume sparsely-
distributed activations, the input images must be encoded before pitement&\e use the
FOCUSS-CNDL (FOCal Underdetermined System Solver-Column Normdlizgibnary Learn-
ing) algorithm for finding a sparse representation of small patches of thgeirfMurray and
Kreutz-Delgado, 2001, Kreutz-Delgado et al., 2003). FOCUSS-CMiakns an overcomplete
dictionary based on training data of images patches drawn from a similar sédgésticronment

as the images to be recognized. More discussion of the FOCUSS-CNDiitlatg@nd imple-
mentation is in Appendix 1.A. Using the learned dictionary, the FOCUSS+ algofitids a
non-negative sparse coding of the patches in the input image. Theoayglete codes for each
(non-overlapping) image patch are concatenated into the vagttor presentation to the net-
work. The iterations of the FOCUSS+ algorithm induce sparsity and atgnassto perform
the function of the lateral inhibitory connections in layer 1 (Olshausen &ld,R997), so the
layer 1 weightdL; will not be used in the experiments below, but they are fully allowed by our

dynamic network (Figure 1.6).
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1.3.2 Dynamic Network Form

The update iteration of each laykis a nonlinear functiory(-) of the current activation at
that layerx;, the activation at the next and previous layers, x; 1, the feedforward weight
matrix W;;_, the feedback weightsV,;;, and the lateral weightk;. The weight matrices
are initialized to be symmetric but are not required to stay symmetric.

The recurrent dynamic network (DN-E) is the time-dependent gendralizaf the self-
consistency conditions (1.2.21) of the SWM-E,

x| Li Wi 0 e 0 %] e, ] [y |
X2 War Ly Woys ; X2 €2 uy
X3 = f 0 Wi Lj Wiy X3| + |€3 + |us3 )
| Xn | 41 | 0 e 0 Win-1 Ln_ | Xn | . | En | ¢ | Un | 41
(1.3.3)
which can be written in the compact form,
X1 = fF(WX, + &) + Uy (DN-E), (1.3.4)

whereU;X is the input to the network which can include a sparsely-coded input imagad/or
a top-downu,, consisting of an object code. The DN-E is a dynamic world model capable of
explaining a time-varying world.

Our assumption is that with an appropriately cho¥&rand transient or constant inputs
U;X, the network (1.3.4) will rapidly converge to a steady-state. In this pagewill attempt to
enforce the steady-state self-consistency behavior at finite time-ha@rizan where the horizon
7 is a design parameter chosen large enough to ensure that informatiofréiowsp-to-bottom
and bottom-to-top and small enough to have rapid convergence. Bewfaihseblock structure
of W, information can pass only to adjacent layers during one timetsté@/e use the terms
time stepanditeration interchangeably.) For example, in a four layer network, it takes only
four time steps to propagate information from the highest to the lowest lajide the network
may require more iterations to converge to an accurate estimate. A relativdlynsimdoer of
iterations will be shown to work well, on the order of 8 to 15.
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1.3.3 Pre-Activation State-Space Model and Relation to Exteted Kalman Filter

In the previous subsection we created a dynamic network on the state vgctmsed
on the SWM-E. By defining an equivalent model on the pre-activatiotovég, we obtain a
nonlinear dynamic system that satisfies the Gauss-Markov propertiefgrinkmenable to
solution with the extended Kalman filter (Anderson and Moore, 1979). Kaliiiten models
have been proposed for many vision problems (Rao and Ballard, 196Wever, the approach
of Rao and Ballard (1997) is computationally expensive, and even thtbagldemonstrate many
of the types of visual inference discussed in Section 1.2.2, these weeawdth fairly limited
data sets and it appears difficult to scale their method to larger vision prab®onsvhile we
will not use the Kalman filter for inference, the move to the Gaussian state miltleé useful
in deriving the learning algorithm of the next section.

Generalizing the pre-activation model (SWM-P, eq. 1.2.25) to a dynamiconets in the
previous section, we find the state-space model for the evolution oftikat#on statd/;,

Vipt =Wf(V) +ee1 + U4, (DN-P), (1.3.5)

whereV; is a Gaussian vector because of the presumed normalityasfdiscussed in Section
1.2.6, anoUt‘frl is the input/inital conditions for the pre-activation state (compare Wgﬁl for
the stateX). The DN-E and DN-P are equivalent representations of a dynamerggare world
model.

Interpreting the layers d¥; as the hidden states of the generative visual-world model, the

visible world is found with the read-out map,
Y; = C g(V;) + noise, (1.3.6)

whereg(-) is the output nonlinearity, an@ = [1, 0, ... ,0] hides the internal states. If the
errorse; are assumed independent across time and across and within layerstéma €ly.3.5)-
(1.3.6) can be seen to be Gauss-Markov, and so thelgtatn be estimated with the extended
Kalman filter (EKF) (Anderson and Moore, 1979, Chapter 8). By appate choice of structure
in W to localize receptive fields, the model (1.3.5) can be seen to be closelydradatee hier-
archical EKF approach used by Rao and Ballard (1997) (see theireF&JuNote that the EKF
finds E[V;|Y:] while the DN-E tracks the expected value of each layer given its neighbaiote
1.2 summarizes the moves made from the generative visual-world model (@\$éxtion 1.2
to the dynamic networks of the present section.
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Table 1.2: Progression of models developed in Sections 1.2 and 1.3.

Hierarchical Generative World Model (GWM)
Inference given neighboring layers:
P(Z1|Zl_1, Zl+1) (GWM, eq. 1.2.9)

4

Simplified World Model (SWM) (Self-consistency conditions)
Variational approximatiotEg[Z] = X leads to:

X =f(WX +¢) (SWM-E, eq. 1.2.22)
Binary state:

Z=fWZ-1Lo)+ o (SWM-B, eq. 1.2.24)
Equivalent pre-activation state:

V=WfV)+e (SWM-P, eqg. 1.2.25)

4

Dynamic Network (DN) (Discrete-time)

State update:

X1 = f(WX, + &) + U, (DN-E, eq. 1.3.4)
Pre-activation state update (Gauss-Markov):
Vier = WIE(VL) + &1 + UYL (DN-P, eq. 1.3.5)

1.4 Finding a Cost Function for Learning the WeightsW

As an alternative to the EKF approach, the stochastic dynamic networke @irérious
section can perform visual inference by settling to the self-consistemmjitoons of the simpli-
fied world model (SWM). This can be done assuming that the welghtégse known. Now, we
turn to the problem of learning these weights given a set of training dathisisection we will
proceed in a general Bayesian framework assuriiinig a random variablée, and derive a cost
function after suitable approximations. In Section 1.5 we will derive a legraligorithm that
optimizes this cost function. The labeled training set is dentited { Y (1), ... Y5} where
the k-th element (%) is a vector with a sparse coding of imagat its first Iayerygk) (Section
1.3.1 and Appendix 1.A) and the corresponding object cgofééat the highest layer and zero

°If a non-informative prior ofWV is used, this reduces to the maximum likelihood approach.
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vectors at the other layers,

T
YO =[5 0 .. 057 . (L4.0)

where the superscript index of the pattérfor each layer (i.eyff)) has been omitted for clarity.

The cost function fofW is derived using the DN-P dynamics on the pre-activation state
V; (1.3.5). During training, for each patteknwe create an input time seriég* from the data
set as follows:UX = Y fort = 1,2,3 andU~X = 0for 4 < t < 7. This choice of
U starts the dynamic network in the desired basin of attraction for the trainingpatt&
(UX = Y® fort = 1,2,3). The network is then allowed to iterate without inpGtY{ = 0
for 4 <t < 1), which with untrained weight$V will in general not converge to the same basin
of attraction. The learning process attempts to update the weights so thainhregtiaputs are
basins of attraction, and to create middle layer states consistent with thatTihguget of inputs
for patternk for all the time steps is denotéd*) = {Ul(k) e Uik)}, and for the entire data set
we haveU = {U®M ... U}, Similarly, for each pattern in the pre-activation state we have
v® = (v ® V¥, and for the whole data s&f, = {V() .. VUO},

Assuming that the weight®/ are random variables, their posterior distribution is found by
Bayes'’ rule,

P(V|W; U)P(W)

P(W[V;U) = —— w0

(1.4.2)

Our goal is to find the weight8 that are most likely given the data and the generative model.
Themaximum a posterioiMAP) method is used to estimate the network weights,

W = arg max P(W|V;U)
= arg mV%,n —In P(V[W;U) — In P(W) (1.4.3)

due to the denominator in (1.4.2) not depending®nCorrect assumptions abdiit can be crit-
ical for successful learning, which requires some form of constsaial as prior normalization
to use all of the network’s capacity (see Section 1.6).

Assuming the patterns in the training set are independ&it|W:; U) =
[T, POV W, U®),

_ - ®) - U®) —
W = argmin Zk:lnP(V |W; UR)) —In P(W)| . (1.4.4)
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Note that the dynamic system (1.3.5) is Markovian under our assumptiosy thig independent
(Bertsekas, 1976). Then, the probability of the sequence of time stafmedactored (omitting
the pattern indeX on theV; for clarity),

PVEIW; UW) = P(V,, Vs 1, Vs o, ..., Vi|W; U®)

= [[PVilVier, W;U®) (1.4.5)
t=1

from the chain rule of probabilities. The pre-activation state at eachltjraan be expressed in

terms of each layev; ;,

PP VS, wu®) = [T P v, wyu®) (1.4.6)
=1
if we assume that the layers are conditionally independent of each othgivah the state at the
previous timel;_;. Combining (1.4.4), (1.4.5) and (1.4.6),

. ~ k k
W= argmin [~ >~ I P VA, Wi U®) — I P(W) (1.4.7)

k t=11=1

Sincev;; is approximately normal (Section 1.2.6), for those layers where and wiemawe
target values of; ; from the data set and corresponding target stateslfp‘? the probability of

the layer is,

1 1
Prarg(vi|Vi-1, W; U) = (2ro2)2 P <—%2€Zt5l,t> ’ (1.4.8)
v v

wheres? is the variance of each component (which is assumed identical). At othasland
times, the state probabilities are also Gaussian by the central limit theorem, botwet have
a desired state and so we enforce sparsity in these cases. Due to theoEliag activation
function f(-), we can enforce sparsity by controlling the shape of the tail,dh the positive
orthant. Therefore, instead of using a Gaussian we instead use a sineeatial form for

our sparsity-enforcing distribution (assuming independent compongtat} o

Sl
Popal(viy[Vie1, W; U) = [ ] ¢ exp (—du(vj10)) (1.4.9)
j=1

6We assume that noise = 0 in (1.3.6) and that givgwe can solve for a corresponding value
of V;.
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wherec is a constant to ensure that the function is a densitygnd is the j-th element of
vyt The form ofd,(-) is chosen to give the density an asymmetric exponential form which
encourages negative valuesugicorresponding to sparse valuesrofsee Figure 1.4),

dy(v) = [onI{v > 0} — axI{v < 0}]v
= [(a1 + a2)I{v > 0} — ao] v, (12.4.10)

wherel{-} is an indicator function that evaluates to 1 if the expression is true and Guigieer
Introducing an indicator variabléthat selects betweePparand Parg, We defings; , = 1 if
we have target values for layeatt, 3, = 0 otherwise. The probability of each layer becomes,

P(v|Vic1, W; U) = 1+ Parg(Vi¢|Vie1, W; U) + (1 — B1¢) Pspad Vit | Vi1, W; U) . (1.4.11)

Substituting (1.4.11) in (1.4.7) yields,

T N
W = arg min zk: ; el (e: @ By) + A;(l — Bi)dy(Vis) | —In P(W) 3, (1.4.12)
whereg, € R is the indicator vector for all elements &, © is the element-wise vector
(Hadamard) product, and the constant terms dependingaodo? have been combined into a
new constani (and again omitting th& inside the summation). We will solve the optimization
problem (1.4.12) with gradient descent in Section 1.5.

There are several things which should be noted about this formulaticst, ffie objective
function is derived in relation to the pre-activation vectpinstead of the post-activation vector
X;. This is done to use the Gaussian form of (1.4.8), and is reminiscent ofdineidqee in the
generalized linear model literature of working with the “linear structure v&ctioa nonlinear
model (Gill, 2001). Secondly, the cost function (1.4.12) is similar in form dexdvation to the
cost function used in sparse overcomplete coding algorithms, which atpervised, and are
designed to minimize the reconstruction error using as sparse a codesddep(8Ishausen and
Field, 1997, Kreutz-Delgado et al., 2003).

The cost function folW (1.4.12) is a function of the true statg and the errog,, which we
generally do not have access to. In practice, we will resolve this proiyegenerating estimates
of the unknownV; using a current estimate of the weights from the dynamic network (DN-P)
under thecertainty equivalence approximatiqBertsekas, 1976). For each pattern in the data
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P(v) o< exp(—dy(v))

0.2

Figure 1.7: Prior orv which concentrates probability mass in the negative orthant and encour-
agesX to be sparse. This prior which captures the tail distribution in the positivamirth used
in lieu of the Gaussian distribution in order to simplify the algorithm.

set, we run DN-P (1.3.5) using the input sequebige= v, U;%, wherev, = f~1(1.0) (Figure
1.4). Running the network with certainty equivalence gives estimated states,

Vi=WfVi) + U . (1.4.13)

The errorse; needed for learning are then the difference betw%eand desired target states
found from the data set,

& =Vi—uY® (1.4.14)

where middle layer values @} are set to 0 because they are ignored due to the effet;t of

1.5 Learning Algorithm for Weights W

Using the cost function derived in the previous section, we now find ailegalgorithm
for the feedforward, lateral and feedback weight&¥n The minimization (1.4.12) is closely
related to the cost function for the backpropagation-through-time-algofB#PTT) for training
recurrent networks (Williams and Peng, 1990). The main drawback oBEHET algorithm
is that it is computationally inefficient due to the unrolling of the network forheime step.
Our approach overcomes this drawback by using a small number of timerséusby taking
advantage of the sparsity of every layer to only update weights betwésmuih some non-zero
activity.
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Our learning algorithm for updating the weighif¢ is derived in a manner analogous to
BPTT. Using the pre-activation cost function from (1.4.12) for an irlial pattern,
1 T N
Tra=53 |el(e@B)+ 2D (1= B)du(Vie)| (1.5.1)

2
t=1 j=1

using the stateB; generated from running the network in certainty-equivalence modeeffdut
of the weight prior— In P(W) will not be considered in this section, as our prior assumption is
that weights are normalized, and it was found that enforcing periodichivegrmalization is
more computationally efficient than using prior constraints in every weigthatep(see Section
1.6).

To minimize the cos/p 4 we update the weights using gradient descent

0Jpa dJpa OVju
— = — 152
1 B, Z vy dwy (1.5.2)

wherewj; is the element from thg-th row andz-th column ofW. The second term on the right
is,
Ve 0
owj; Owﬂ
whereW;. is the j-th row of W. The first term on the right of (1.5.2) is divided into two parts,

dJpa
8VJ¢

W, Xy = Xy, (1.5.3)

Jt+DJt

0 |1 o
Bj7t = 8‘/}7t izep (Ep @,Bp)

0
Djy = — |5 Z Z /Bj p)d v (Vi p) ) (1.5.4)
Wi

plkl

whereB is used to minimize reconstruction error alds used to minimize diversity (equivalent
to maximizing sparsity). Recursion expressions can be foung fpandD; ; with an approach
similar to that used in standard BPTT. As derived in Appendix 1.B, the gérexursions are,

_Bies PR
Bjﬂt— ﬁj,t 7t
L 5Jt5]t+f(Jt)Zk 1 Brgriwg; 1<t<7-1
A !
5 (L= Bj)dy, (V; t=T1
Dﬂ: 2( J,t) (J,t) ’ (1.5.5)
%(1_/3j,t)d( &)+ f1(V; )Zk 1 Digyrwg; 1<t<7-1
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and the derivatives are,
ajag exp (—agv + as)
f(v) =

B {1 + exp(—agv + ag)}2

A
dy(Vig) = B (1 + a2){vjt, > 0} — g

The weight update (1.5.2) can be written using (1.5.3) and (1.5.4),

Awji =-n> (Bji+ Dj)Xis . (1.5.6)
t=1

For computational efficiency when learning sparse patterns, only a setadf sveightsw;;

is updated for each pattern. During our simulatiokisis found by thresholding the activation
function outputf (V;_1) to [0, 1], resulting in a spars&, given certain conditions (Section 1.2.6).
Weights are then only updated between units when the sourc&’pnis active and when either
the the target unifX;, is active or has non-zero errer ;. During initial epochs of learning,
there must be enough initial weight strength to cause activation througfeuiddle layers.
As learning progress, the activity is reduced through the sparsenésising term. Also note
that the weight update (1.5.6) is of the same form for every elemét, iwhether that weight

is feedforward, feedback or lateral.

1.6 Algorithm Implementation

This section summarizes the implementation details of the dynamic network and ¢garnin

algorithm developed above as used in the experiments.

Preparing the Data Set. The data set consists &f images representingy/ unique objects,
where in general we have many different views or transformationsaif ebject, sak’ > M.

For each objectn, we generate a sparse object cefl®) € R*" (the size of the highest layer)

with r,, randomly-selected non-zero elements, which is used as the desired vaiaehghest

layer. For each imagk, we preprocess the image (as described in Section 1.7) and then sparsely
encode it using the FOCUSS+ algorithm (see Appendix A) which is useadigghlayer input,

y1. The data set of all images¥= {Y(}), ... Y(¥)} where each pattern is,
. T
yO g7 0 05T, (1.6.1)

and the highest layer is the object cogté, = c” ().
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Network initialization. The network weights are initialized with small random values uni-
formly distributed within certain ranges. The initial weight ranges are: fégacrd and feed-
back weight3¥V € [—0.01, 0.01], and lateral weighté, € [—0.001, 0.000] (which enables only
lateral inhibition, not excitation). Self-feedback is not allowég, = 0. Feedback weights are
initialized to be the transpose of the corresponding feedforward weigts, = ng but are

not restricted to stay symmetric during training.

Performing Inference Given Known Weights W. To run the network for the experiments
below, we create an input time serigs’ from the images and object codes in the dataiset
The input can includg, and/ory,, as determined by the type of inference desired (see Table
1.1). For example, when the network is run for recognition, the inputs fdirgtéew time steps
are the coded imagg;, so that(U*)" = [y7,0,...,0]7,¢t = 1,2,3, andU;* = 0,t > 4.
When the network is run generatively, the object code is used as inpit,tsat (U;X)7 =
[0,...,y017 ¢t = 1,...,7, and the network is then run farsteps, after which the first layer
contains a representation of an imagined image.

Given a sequence of inputg® the network is run (in certainty-equivalence mode, i.e. no
added noise) for a fixed number of discrete time stéps,t < 7 (with 7 being 8 to 15 for the

experiments below). With an initial stafé, = 0, the network is run using,

Vi, = WX,
Xi=fVie)+ U 1<t<7 | (1.6.2)

wheref(-) is the activation function (1.2.19). The staXe is further restricted to be in the unit
cube,)A(t e [0, 1]N. To maintain computational efficiency, only a limited number of non-zero
elements are allowed in each layer, and this maximum divetsity[r, . .., 7], is enforced on

V; at each layer by only allowing the highesbf them to remain non-zero.

Learning Weights W. Training proceeds in an online epoch-wise fashion. In each epoch, a
subset of patterns is chosen frafmand inputs are created with the coded-image in the first layer
for the first 3 time steps, so th&at* = [37,0,0,31],t = 1,2,3, andUX = 0, t > 4. The
stateX; and pre-activation staté from running the network (1.6.2) are saved for each .

The error vector for weight updatesds = 17,5 — v,Y®) (set to 0 in the middle layers, see eq.
1.4.14). If the errorg, are small enough then training on the pattern can be skipped. Otherwise,
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the weights are updated usidgv;; given by (1.5.5)-(1.5.6). While in standard gradient-based
methods, weight updates will naturally be turned off when errors are smnaligh, since we
use an additional sparsity enforcing term, even when both the highekivamst layer errors are
small, weight updates will still occur in order to sparsify middle layers. By ki learning

on patterns that are represented accurately, the algorithm can moiendffitackle those pat-
terns which are still incorrectly learned. Training stops after a certain suwfbepochs have
completed.

Testing for Classification. For recognition, to classify an input image once the network has
settled into a stable state, the last layer’s activatigiis compared with the object code$™ to
find the class estimate,

Clasgx,) = arg mer{rii{lM} [xI — ™) . (1.6.3)
Weight Normalization. In early experiments with the learning algorithm, it was found that
some units were much more active than others, with corresponding rowswetbket matrices
much larger than average. This suggests that constraints need to lbg@ed@ght matrices to
ensure that all units have reasonably equal chances of firing. Thesé&aints can also can be
thought of as a way of avoiding certain units being starved of conneceayhis. A similarissue
arose in the development of our dictionary learning algorithm (Kreutz-ddelgt al., 2003), and
led us to enforce equality among the norms of each column of the weight mateibe, Hoth
row and column normalization are performed on each weight matrix (feedfdr lateral and
feedback). Normalization values are set heuristically for each layer,anithitial value of 1.0
and increasing layer normalization until sufficient activity can be supgdiyethat layer. The

normalization values remain constant during network training, and are@djiusm trial to trial.

1.7 Visual Recognition and Inference Experiments

In this section, we detail experiments with the learning algorithm developedeatoo
the demonstrate four types of visual inference: recognition, recofistnuémagination and
expectation-driven segmentation.

The set of gray-scale images was generated using the Lightwave mdistticerendering
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softwaré. Each of 10 objects was rotat8d0° through its vertical axis i2° increments, for a
total of 10 x 180 = 1800 images, of which 1440 were used for training and the 360 remaining
were held out for testing, see Figure 1.8. Before images can be préderitee network they
must be sparsely coded which is done with a sequence of preprocésigiage 1.9). First, each
image is edge-detectétb simulate the on-center/off-center contrast enhancement performed by
the retina and LGN. Edge-detected images are then scaled by subtra®iagd 2ividing by
256, so that values are [—0.5,0.5]. Next, each image is divided into 8x8 pixel patches and
sparsely coded with FOCUSS+ using a dictionary learned by FOCUSSLENXHS described in
Appendix A). Dictionaries of size 64x64, 64x128 and 64x196 werakxdto compare the effect

of varying degrees of overcompleteness on recognition performé@hRigeires 1.10-1.16 in this
section are from experiments with the 64x196 dictionary.) Table 1.3 showacthegacy and
diversity (number of non-zero elements) of the image codes. As dictianencompleteness
increases from 64x128 to 64x196, both mean-square-error (M8En@an diversity decrease,
i.e. images are more accurately represented using a smaller number oktarnents (chosen
from the larger overcomplete dictionary). As seen in the bottom row of Ei@8, the recon-
structed images accurately represent the edge information even thoygiréheparsely coded
(on average 192 of 12288 coefficients are non-zero). Finally, thenegative sparse codes are
thresholded td0, 1} binary values before being presented to the network; any value gteater
0.02 is setto 1.

1.7.1 Recognition with a Four-Layer Network

To test recognition performance, a four-layer network was trainedyubim data set de-
scribed above. The training parameters of the network are given in TahleSince there are
many parameters only a small range of parameter values was tested lwbtaeide appears
relatively robust to most. Note that all the lateral interactions were forcee tohibitory or 0,
and the no lateral connections were used in the first layer (as we asselimerrase in sparsity
produced by the FOCUSS+ iterations model the layer 1 lateral connect@od@d images were
presented to the first layer of the network for the initial three time steps. ddawthject codes

"Available atwwv. newt ek. com? pr oduct s/ | i ght wave/

8Edge detection was done with XnView softwaremwv. xnvi ew. con) us-
ing the “edge detect light” filter which uses th& x 3 convolution Kkernel
O -10; -1 4 -1 ;0 —1 0].
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Figure 1.8: (A) Objects used in the experiments, showing one of the 18@ wkeach object.
Images are 64x64 pixel gray-scale. (B) Sample rotated object imagesdatthset.

with diversityr, = 10 non-zero elements were used on the highest layer. Training took between
11 and 22 hours (depending on dictionary size) on a 2.8 Ghz Intel Xemegsor. Classification
performance reached 100% accuracy on the test set after 135sepattraining continued until
1000 epochs on those patterns that were not accurately reconstati¢hedfirst layer. Figure
1.10 shows the time iterations of the network stateduring classification of a test set image.
The first row shows the FOCUSS+ coded input image and the original. &tteows shows the
activity of each layer and the reconstructed image from the first layerobfect was presented
for three time steps and then removed, so that all activity on layer 1 at timesresults from
network feedback. As the iterations proceed, the reconstruction cosgteteutline of the air-
plane and becomes stronger in intensity. In the layer 4, the plot shapetesiigaether the unit

is active and is part of the correct object codl{J, or is part of the object code but inactive
(“o™), or is active but should not be ¥”). At ¢ = 4, all 10 of the highest layer units in the
object code for airplane are activdl[*), so that the image is classified correctly, however there
are four other units active that should not be& (). At later time iterations these extra incorrect
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Figure 1.9: Original images (top row), edge detected images (middle) andJES€ coded
images using a learned overcomplete dictionary.

units are deactivated (or “sparsified away”) so that at 5 only those units in the object code
are active, demonstrating the importance of lateral connections in the tighes Activity in
layers 2 and 3 also decreases with time.

Presenting rotated test-set views of the object shows that the netwot&anaed basins
of attraction for the other orientations. Figure 1.11 shows the state of thenkeatit = 7
after presenting various rotations of the airplane. The degree of ineariaf the representation
also is shown to increase from layer 1 (with nearly completely different aaiise) through
layer 3 (with many of the same units active) to layer 4 (which has identicalitgdiir all four

orientations of the airplane).

1.7.2 Reconstruction of Occluded Images

Using the same network trained in Section 1.7.1, reconstruction is demonstsatgdc-
cluded images from the test set. Approximately 50% of pixels are set to biackdmosing
a random contiguous portion of the image to hide. Figure 1.12 shows the rikgtexations
during reconstruction, where an occluded image is presented for théhfiee time steps. By
t = 3, the feedback connections to the first layer have reconstructed muict ofitline of the

answering-machine object, showing that feedback from the seconddagtins much of the
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Figure 1.10: Recognition of test set object. Each row shows the netwtivitya X; at a time
step. In the layer 4, " indicates that the unit is active and is part of the correct object code,
“o” that the unit is in the object code but inactive, and’that the unit is active but should not
be. Whert > 3, there is no external input and the reconstructed image in layer 1 is dugoonly
network feedback. At = 4 in layer 4 there are four incorrectly activated units {¥ but at later

times, the dynamics of the network suppress these incorrectly-active units.
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Table 1.3: Coding performance on 64x64 pixel images (blocked into 8iBes) using com-
plete and overcomplete dictionaries. Mean-squared-error (MSE) isllaidd over all 8x8
patches in the image, and diversity is the number of non-zero coefficiettts gode.

Diversity
Dictionary size Layer 1 size MSE Max Mean Min
64x64 4096 0.00460 184 109 42
64x128 8192 0.00398 278 197 105
61x196 12288 0.00292 271 192 105

orientation-dependent information for this object. Further iterations isertfee completion of
the outline (particularly of the bottom corner and lower-right panel). Eidul3 gives another
example of reconstruction.

The network also performs well when recognizing occluded objectsuracy is 90% on
the occluded test-set objects with the complete dictionary (64x64) and ®6A9th the over-
complete dictionaries. Figure 1.12 shows that (as above) there areecityprctivated units
in layer 4 att = 4 which are suppressed during later times. In contrast with Figure 1.10, in
layer 2 here there is more activity as time progresses presumably due toivhd@tof missing
features during reconstruction.

1.7.3 Imagination: Running the Network Generatively

Imagination is the process of running the network generatively with inpehgs an object
code at the highest layer. For this experiment, the network trained in Séctidnwas used with
an object code presented on the highest layer for all time steps. Rarafivityavas added to
the second layer d@t= 3 so that the network would have a means of choosing which view of the
object to generate. It was found that increasing the feedback strémgthultiplying feedback
weights by 5.0) to the first and second layer increased the activity aritlycpfathe imagined
image at the first layer. (Without this increase, the layer 1 reconstructisrvery likely to settle
to the O state). Figure 1.14 shows the results when the object code forigfie kias presented.
At ¢ = 4, the reconstruction is a superposition of many features of many object kater
times the outline of the object can be seen. The orientation of the generatesl attexgates

between a front viewt(= 5,7) and a side view#(= 6, 8), which is reminiscent of the bistable
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Table 1.4: Network parameters for training the 4-layer network with 64xid@8complete dic-
tionary (corresponding to layer 1 size of 12288). For other sized daties, the size of the first
layer was 8192 (64x128 dictionary) and 4096 (64x64 dictionary), witbther parameters as
listed below.

Network parameters
s (layer size) [12288, 512, 512, 256
r (maximum diversity of layer) [430, 100, 50, 14]
7 (time iterations per pattern) 8
7n (learning rate) 0.005
A (regularization parameter) 0.025
ay, ag (prior shape) 1.0,0.1
epoch size (number of patterns) 100
maximum number of epochs 1000
feedforward weight range [-5.0, 5.0]
feedback weight range [-5.0, 5.0]
lateral weight range [-5.0, 0.0]
layer 1 norms (FB) [12.0]
layer 2 norms (FF, L, FB) [12.0,2.1,2.1]
layer 3 norms (FF, L, FB) [5.9,2.1,15]
layer 4 norms (FF, L) [1.5,15]

percept effect. Not all trials of this experiment result in a bistable statan#jerity converged

to a single orientation. Interestingly, some orientations of certain objectaafipkee generated
much more often than other orientations. These “canonical views” représgh probability

(low energy) states of the network.

1.7.4 Expectation-Driven Segmentation: Out from Clutter

In expectation-driven inference, both an input image and a top-dopeceation are pre-
sented to the network, and the output can either be the highest-layer cigsifior the lowest-
layer reconstructed image. Here, we considered the later case whetesihed output is a
segmented image reconstructed from the first layer. The same netwoddtmiSection 1.7.1 is
used here with increased feedback strength as described in SectiorClutt@&red input images
are created by combining many objects from the data set at random trams|atierlayed with



41

Reconstruction Layer 1 Layer 2 Layer 3 Layer 4

Figure 1.11: Each row is the network stafgatt = 7 after presenting various rotated images of
the airplane (test set images, views unseen during training), demonstratinguhiple basins
of attraction can be learned for each object. Higher layers show moréanvaepresentations
than lower layers, with layer 4 showing the fully-invariant representatidheoairplane.

a portion of the desired image (the same portion, 50%, used in the recdiastrexcperiment).
This is a fairly difficult recognition problem as the clutter in each image is coetpo&features
from trained objects, so that competing features tend to confound ridicogaigorithms. The
problem of expectation-driven segmentation is different from recognitidghat we ask the net-
work not “what object is this?” but “assuming object x is here, whatiufiess in the image most
likely correspond to it?” For this experiment, we present at 2, 3 the image of the occluded
objectin clutter and at= 1, .. ., 4 the expectation that the object is present at the highest layer.
Figure 1.15 shows the network states when presented with a cluttered inttmpapvel ex-
pectation of the knight object. The timing of the inputs was arranged so th&dtbback and
feedforward input first interact at= 3 in layer 3. When = 4, the input image is no longer pre-
sented and the network feedback has isolated some features of the bafjectime steps show
a sharper and more accurate outline of the knight, including edges tfmbaduded in the input
image. At the highest layer feedforward interactions from lower layause the correct object
code (presented when< 3) to degrade. At = 12 all the units in the object code for knight
were active, as well as four incorrectly active units, which still allowsexrclassification. To

illustrate the need for the top-down expectation input in this case, Figureshdiss the states at
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Figure 1.12: Reconstruction of an occluded input image. As early-a8, feedback from layer
2 results in reconstruction of some of the outer edges of the objects. Mt id filled in at
later time steps. Layer 4 legendl” = unit is active and in correct object codey™= unit is in
the object code but inactivex” = unit is active but should not be (not in object code).
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Object

Layer 1 Layer 2 Layer 3 Layer 4

Input presented

Figure 1.13: Another example of reconstructing an occluded input imageirsip only ¢ =
1,3,8. The occluded input was presented foe 1,2, 3, and some features were reconstructed
as early as = 3.

t = 1,4,8 when no object code is presented at layer 4. The activity graduallysecal there
is no reconstruction at layer 1. Comparing Figure 1.14 (imagination) andd=igll’5 shows that
the partial information provided in the cluttered image is enough to keep the mkediva stable
estimate of segmentation, and in this case, prevent oscillations between tniatoies (which

occurred when only top-down input is present).

1.7.5 Overcompleteness Improves Recognition Performance

One of the central questions addressed in this work is how a sparsommete represen-
tation in the early stages of visual processing, e.g. V1 in humans and nwo(&eseno et al.,
1995), could be useful for visual inference. As described in thénbéty of this section, we
trained the network using learned dictionaries of varying degrees ofavpleteness: 64x64,
64x128 and 64x196, and corresponding sizes of the first layer6,4802 and 12288. Per-
formance was compared on the test set objects, occluded objects, jants div clutter. The
cluttered images were created by overlaying the entire object on a clutigekdrbund, result-
ing in a somewhat easier problem than the occluded-object-in-clutter imageéauSection 1.7,

although here no top-down expectations were used to inform the recaogriigure 1.17 shows
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Figure 1.14: Imagination using the object code for the knight as the top-dloput and the
injection of random activity in layer 2 @ = 3. The reconstruction is a bistable (oscillating)
pattern of the object from the front and side views.
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Figure 1.15: Expectation-driven segmentation using occluded objectsaosiittered back-
ground. The clutter input is presented at the lowest layet fer2, 3. Top-down expectations
(the object code for knight) are presented at the highest layér$oi, ..., 4. By ¢ = 12, the
network converges to a segmented outline of the knight in the correctati@nat the first layer.
Layer 4 legend: " = unit is active and in correct object codey™= unit is in the object code
but inactive, “x” = unit is active but should not be (not in object code).
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Figure 1.16: Recognizing the occluded object in a cluttered backgrouiffiésilt without top-
down expectations. The same input image used in Figure 1.15 is presented=fd, 2, 3,
however no top-down inputs are present. A few representative time stepsthat the activity
gradually decays over time, and no object is reconstructed at layeyér Ldegend: l” = unit
is active and in correct object codey” = unit is in the object code but inactive x” = unit is
active but should not be (not in object code).

the recognition accuracy on these three image sets. For the test set (eoimplges), all three
networks had performance at 99-100%, but for the occluded andreldit@ages there is a gain
in accuracy when using overcomplete representations, and the effeotégpronounced for the
more difficult cluttered images. For occluded objects, accuracy was 3244360) for the com-
plete dictionary and 97% (349/360) for the 3x overcomplete dictionary. That gignificant
improvement was with the cluttered images; accuracy was 44% (160/ 3gbgefoomplete dic-
tionary, and 73% (263/360) for the 3x overcomplete dictionary. While telate classification
rate for the cluttered images might appear low (44-73%), many of the misatassifjects were
those of smaller size (e.g. the airplane and fire-hydrant) which allowedfeaaes from other
larger objects to be visible and confound the recognition. In addition, mefbedictionary nor
the network were trained on images with clutter, so the network had no psssxperience with
this particular type of cluttered images.
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Figure 1.17: Recognition performance on the test set (full object), dedlimages and cluttered
images with three different degrees of overcompleteness in Layer ésegation and learned
dictionaries. Recognition performance improves with increased overctampks, particularly
in the difficult cluttered scenes. Test set size is 360 objects (36 views albjects).

1.8 Discussion

In this section we discuss the motivations for our network (both biologiafamctional)
and place it in context by comparing it with other recurrent network modelision.

1.8.1 Why Sparse Overcomplete Coding?

In the brain, early visual areas are highly overcomplete, with abouB8B00million neurons
in V1 compared to only about 1 million neurons that represent the retina intdrallgeniculate
nucleus (LGN) of the thalamus (Stevens, 2001, Ejima et al., 2003). As prienatation has
progressed, there has been a consistent increase in the ratio of VIr&b deteiculate nucleus
(LGN) size. While even the smallest of primates shows a high degree of@upieteness,
the increase in higher primates is linked with increase in retinal resolutionrasdrpably im-
proved visual acuity (e.g. 87x overcomplete for the tarsier monkey cadpeth over 300x for
humans).

Mathematically, sparse coding strategies are necessary to make effiéeat avercom-
plete dictionaries because the dictionary elements are generically nowgramtio To provide a
low-redundancy representation (Attneave, 1954, Barlow, 1959%@sset of elements must be
chosen that accurately represents the input. If we have faith in theagieenodel postulated
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in Figure 1.1, real-world images can be accurately modeled as being dausesmall number
of features and objects, supporting the choice of a sparse prior {@\tbe case of complete
coding). Other benefits of sparse coding include: making it easier to dimdspondences and
higher order correlations, increasing the signal-to-noise ratio, anddsitrg the storage and
representational capacity of associative memories like Hopfield and Boltzmadels (Field,
1994). Biological evidence for sparse coding ranges from the simptetfat average neural
firing rates are low, 4-10 Hz (Kreiman et al., 2000), to experiments thasfiadseness in V1 in-
creases as larger patches of natural images are presented indicatangdhaise representation
can be found by deactivating redundant features, presumably thtbhegnteraction of lateral
and feedback inhibition from non-classical-receptive-field neurgimgg and Gallant, 2000).

One of the successes of sparse-coding theory has been the ledrrecgpive fields that
resemble the orientation and location selectivity of V1 neurons (Olshauskfield, 1997).
When trained on small patches of natural images, given the criteria cfigpand accurate re-
construction, the learned receptive fields closely resemble Gabor faactidhich are known
to have certain optimality properties and to model biological neurons in thel wisttax accu-
rately (Daugman, 1989). Sparse coding (and the closely relatieghendent component analy-
sis, ICA) have been extended to motion, color and stereo images, with similar pngmésults
(Olshausen, 2000, Hoyer and Haninen, 2000). Efforts have also been made to model complex
cell receptive fields (Hyarinen and Hoyer, 2001, Hoyer and Hyinen, 2002).

In this work, we show that sparse overcomplete coding can be extendedi¢varchical
model capable of performing many types of visual recognition and inferem addition, we
show that increasing the degree of overcompleteness can improvenitemogerformance on
difficult tasks (Figure 1.17). While the complete code proves adequathdoeasier task of
recognizing pre-segmented images, on the cluttered-image task the oviieorapresentation
provides a large advantage. Our intuition as to why these benefits aris¢ lisghear represen-
tational capacity and more basins of attraction can be formed using arooyaete code in the
first layer of the network.

1.8.2 Feedback and Lateral Connections in the Hierarchy

While overcompleteness and sparse-coding are important featuregyofison in V1,
perhaps the most striking aspect of higher visual areas is the amouriexd land feedback
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connections within and between areas. Felleman and Van Essen (1838&hpan overview
of the range of reciprocal connections in the visual system, and shdwhér@ are pathways
between not just adjacent (such as V1 and V2) but between most sdgitime occipital cortex

(e.g. between V3 and V1, V4 and V1, etc.) and that most of these conngetie bidirectional

(see their Table 3). Even in V1, lateral and feedback input from otbrtical areas accounts for
about 65% of activity, with only 35% of response directly due to feedémdiconnections from

the LGN (Olshausen and Field, 2005).

While we develop our model in the more traditional hierarchical framewotie(e only
adjacent layers communicate), we showed in Section 1.2 that feedbatiterad connections
are required for many types of inference. In some recognition tasksg ihevidence that the
brain is fast enough to complete recognition without extensive recumgraction (Thorpe
et al., 1996). Consistent with this, our model is capable of quickly recognibjects in tasks
such as Figure 1.10, where the correct object code is found=ab. However, more difficult
tasks such as segmentation (Figure 1.15) require recurrence andtakeildnger for the brain
(Lee et al., 1998). The other connections not included in our model,asufrom V4 to V1/V2,
might be useful in tasks like imagination. Consider Figure 1.14: if the task Yireeggine the
knight in a side-view” instead of “imagine any knight”, a connection frorrela4 to layer 1 or
2 could instantiate that orientation (in contrast, we injected random noise irioddg create a

randomly-oriented imagined object).

1.8.3 Related Work: Biologically Motivated Models of Vision

There have been many hierarchical models created to explain vision,esaif#tl into two
main categories: feedforward and recurrent (which include variqestgf feedback and lateral
connections between layers). Some examples of the feedforward otaiseaNeocognitron
model of Fukushima and Miyake (1982); VisNet of Wallis and Rolls (1980)|s and Milward
(2000); and the invariant-recognition networks d@fdiak (1991) and Riesenhuber and Poggio
(1999). While many of these models use sparsity with some form of winnerethkompetition
which is usually interpreted as lateral interaction, since they do not inchetback connections
they are not capable of the range of inference described in Sectiondnd.@ill not be discussed
further here.

One of the more closely related prior works is the dynamic network develop&o and
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Ballard (1997). A stochastic generative model for images is presented arerarchical net-
work is developed to estimate the underlying state. Their network includes mistyeles with
feedforward and feedback connections which are interpreted amgabke residuals from pre-
dictions at higher levels back to lower levels (but with no explicit learnabledbt®nnections,
nor overcomplete representations). Experiments demonstrate recogmtionstruction of oc-
cluded images, learned biologically plausible receptive fields and ability to &lkhthobject had
not been seen during training. Their dynamic network can be viewed ggr@nig of extended
Kalman filters (EKF), which as discussed in Section 1.3.3 provides an ditermay of estimat-
ing the states in our dynamic network (DN-P). Forward and backwardhige#@ye learned using
the minimum description length (MDL) principle, in which a Bayesian prior induz@enalty
term on complex models, much in the spirit of the prior terms we use in (1.4.9) evdwthe
priors used by Rao and Ballard (1997) are Gaussian, which do notcergparsity in the same
sense that the priors used here do. The weight update is a form ofafdbhrning which may
be more biologically plausible than our gradient descent rule, althougleg demuire several
matrix inversions per iteration (see their Section 6) and appears more caimpaity expen-
sive than our algorithm. Perhaps because of the computational requissimely fairly limited
recognition experiments were performed, using only five objects (onetatien per object) and
rotation invariant recognition with two objects (each with 36 views used foritgand testing)
Rao (1999).

The layered EKF model was also used to explain non-classical recéptieffects ob-
served in the brain (Rao and Ballard, 1999). In one such effects@apping, a V1 cell that
responds to an oriented line has its response reduced when the linesextgside of its classi-
cal receptive field (theurround suppressioeffect). The predictive coding model explains this
effect by postulating that higher cortical regions can predict the longentiore accurately (be-
cause it is more representative of natural image statistics), and that thisowomate prediction
results in a smaller residual response by the V1 cell. In contrast, othersrslumv that the
surround suppression effect can be explained in terms of reducetbtap feedback from other
cortical areas, without needing residuals from predictions directly (@ulland de Sa, 2005).
Further investigation of our model could show if this effect is present,pamsdibly provide ev-
idence for one of these hypotheses (in that we have not restrictefbfeadd connections to
carry only residual information).

Lee and Mumford (2003) present a Bayesian hierarchical framefeonkodeling the vi-
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sual cortex in which feedforward and feedback connections passages about their beliefs
to adjacent layers (similar to our Equation 1.2.7). Exact inference on thiglngdas usual,
intractable and patrticle filtering (for an overview, see Djuric et al., 2003uggested as an
approximation method, although no implementation is given. In particle filteringnebar of
estimates of the true state, termgalrticles are maintained during an iterative update proce-
dure. When certain particles are found to be very unlikely, they areaeglaith more likely
candidates through a resampling procedure (Djuric et al., 2003, pg.A22advantage of par-
ticle filtering is that it can reduce the severity of local-optima problems: singe e many
particles, if one gets stuck in a local-minimum, the others may be able to escapeisibn,
this means that multiple hypotheses about confusing or cluttered imagesésunchigure 1.15)
can be maintained at lower levels until there has been sufficient feeditlwankhigher levels
to disambiguate. These theories build on those authors earlier work irtbegpvel as a high-
resolution buffer, which forms a more accurate interpretation of the viseie through time
(Lee et al., 1998).

The Leabra model is a biologically motivated neural network designed to seriakrning
and memory in the cortex (O’Reilly, 1996). Leabra uses a combinationafdriven and Heb-
bian (unsupervised) learning, and generates sparse activatiogsausiit k-Winners-Take-All
(KWTA, allowing 0. .. k non-zero elements) which is meant to model the action of inhibitory
interneurons (lateral connections) (O'Reilly, 2001). Similarly, our mades lateral connec-
tions and sparsity-enforcing learning to determine the number of nonunéisy which allows
the complexity of the representation to depend on the complexity of the stimulutheFexper-
iments described above, the number of non-zero units in layers 1-3gadeadout 25-50% of
the the maximum allowed diversity;, in Table 1.4. Results with overcomplete representations
have not been reported for Leabra.

Newer versions of the Neocognitron include feedback connectionsi@ndemonstrated
for recognition and reconstruction (Fukushima, 2005). The model pwsgitsypes of cells in
each region of the system, S-cells and C-cells in analogy with the simple andiexorefis cat-
egorized by Hubel and Wiesel (1959). The S-cells are feature detemtd the C-cells pool the
output of S-cells to create invariant feature detectors. To solve thastaotion problem, fur-
ther cell types and layers are added, and many of the layers havediffearning rules. While
there are many neuron types in the cortex both in terms of anatomical ddterépyramidal,

stellate, etc., Kandel et al., 2000) and functional differences (simple@amglex cells), we be-
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lieve it is best to begin with as simple a model as possible that can performdinedimference
in accordance with the principle of cortical similarity (Mountcastle, 1978).

While we do not consider the detailed neurological mechanisms requiredftomeén-
ference and learning (and concentrate instead on the larger-scaieeteaf the brain, i.e. re-
currence, overcompleteness of V1, sparse-coding, etc.) thereokavemany theories of how
neurons can be perform such tasks. Rao (2004) presents a mduaidayesian inference
can be performed using common neural modeling assumptions in a reatircent O’Reilly
(2001) discusses biologically plausible implementations of error-driveniteg a class of algo-
rithms which includes backpropagation and our learning rule of Section.ééand Mumford
(2003) sketch a biological foundation for how inference in hierard¢meadels could be imple-
mented involving message-passing between cortical regions and bowtlaeiolgy spike-timing
synchrony. Raizada and Grossberg (2003) present a model ofdeailforward, feedback and
lateral connections could be arranged in the laminar structure of the cartegh provides
a mechanism that allows the visual system to distinguish between top-downtededdivity
(such as reconstruction of occluded images or illusory contours) attonbap visual input.
This distinction is important so that the brain can tell reality from perceptiorpaedent hallu-

cinations.

1.9 Conclusions

We have developed a framework and learning algorithm for visual retog and other
types of inference such as imagination, reconstruction of occludedtstged expectation-
driven segmentation. Guided by properties of biological vision, partigutgrarse overcom-
plete representations, we posit a stochastic generative world modell ¥sks are formulated
as inference problems on this model in which inputs can be presented agltiestiayer, low-
est layer, or both depending on the task. A variational approximation ftmelised world
model) is developed for inference which is generalized into a discrete-timentdyg network.
One form of this dynamic system is shown to be Gauss-Markov, which eastimated with
the extended Kalman filter, thus providing a principled derivation of the fikieal EKF vision
system of Rao and Ballard (1997). While the model of Rao and Ballard7{1i89mportant for
demonstrating the role of predictive coding and can perform many typasual inference, it is
computationally expensive. Instead of the EKF approach, we use aeeffilynamic network
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designed to rapidly converge to the self-consistency conditions of theieaal approximation.
An algorithm is derived for learning the weights in the dynamic network, witrsty-
enforcing priors and error-driven learning based on the preadetivstate vector. Experiments
with rotated objects show that the network dynamics quickly settle into easilyistable
states. We demonstrate the importance of top-down connections for eiqreckdven seg-
mentation of cluttered and occluded images. Four types of inference werenderated using
the same network architecture, learning algorithm and training data. Wetklabwan increase
in overcompleteness directly leads to improved recognition and segmentationlinied and
cluttered scenes. Our intuition as to why these benefits arise is that ovéeteropdes allow

the formation of more basins of attraction and higher representationalitapa
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1.A Image Preprocessing with Learned Overcomplete Dictionaries

The dynamic network and learning algorithm presented above requir¢hthatputsu,
(whether top-down or bottom-up) be sparse vectors. To transform plug iimage into a suit-
able sparse vector, we use tfloeal under-determinded-system-solfEOCUSS) algorithm for
finding solutions to inverse problems. The FOCUSS algorithm represdiatindarms of a lin-
ear combination of a small number of vectors from a (possibly overcomplit#&)nary. Other

methods for sparsely-coding signals include matching pursuit (Mallat hadg, 1993b), basis



54

pursuit (Chen and Donoho, 1998), and sparse Bayesian learnimgin(@, 2001), which were
also evaluated for image coding (Murray and Kreutz-Delgado, 200%9.0Vercomplete dictio-
nary is learned using the FOCUSS-CNDL (column-normalized dictionaryilegx algorithm
developed by Murray and Kreutz-Delgado (2001).

The problem that FOCUSS-CNDL addresses here is that of repregensmall patch of
an imagey € R™ using a small number of non-zero components in the source vectoR"”
under the linear generative model,

y = Ax, (L.A2)

where the dictionaryl may be overcomplete, > m. ° The dictionary4 and the sources are
taken to be unknown random variables. With a set of training image pafiches{y }, we find

the maximum a posteriori (MAP) estimatdsand X = {xx} such that
L N
(A,X) = arg {}111)?; lyn — Axg]|* + Adp(x) (1.A.2)

whered,(x) is a diversity measure that in some sense measures the number of naezero

ments of a source vecter,. We use the-norm-like prior,d,(xx) = ||xk|lp = Yoieq |@iklP-

The regularized optimization problem (1.A.2) attempts to minimize the squaredoétiue re-
construction ofy;, while minimizing the diversity measurg, and hence the number of non-zero
elements ink;. The basic problem formulation is similar to ICA in that both model the input
dataY as being linearly generated by unknowAsand X, but ICA attempts to learn a new
matrix W which (by Wy = X;) linearly produces estimateés, in which the components; ;,

are as statistically independent as possible. ICA in general does atitinegs sparse solutions
as FOCUSS-CNDL which uses the non-linear iterative FOCUSS algorithmde&fi.

We now summarize the FOCUSS-CNDL algorithm which is more fully discusseddytk-
Delgado et al. (2003). The algorithm in Section 1.5 requires non-negatlues of the elements
z; k, 1.€. X € R7, so a modified version of FOCUSS-CNDL is used here in which after each
FOCUSS iteration update, the negative elements;cdre set to zero. Creating a non-negative
version of FOCUSS (denoted FOCUSS+) amounts to using a one-sid®puqr, instead of a
symmetric prior (Murray and Kreutz-Delgado, 2005). Thepdate (1.A.4) does not depend on

the prior onx;, and so remains unchanged from Kreutz-Delgado et al. (2003). Ebrafahe

9The notation in Appendix A is different than in the body of this paper in otdée consis-
tent with our earlier work.
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data vectorsy;, in Y, we update the sparse source vectgrsising the FOCUSS+ algorithm:

Y%, = diag|@[i]>?)

_ Az
Mo = |1 EZAKY
1yl

~ —1
X — H_l(ﬁk)A\T ()\kI+AH_1(§k)A\T) Yk

0 fi,k <0

Tip Zikp >0
where )\ is a heuristically adapted regularization term, limited by the parametgmwhich
controls the tradeoff between sparsity and reconstruction accuracy FQRUSS step (higher
values of)\ lead to more sparse solutions, at the cost of increased reconstruction éfter
updating theV source vectorsy, k = 1...n, the dictionaryfl is re-estimated,

1 < 1<
Yyx = NZY@% ; Efcfc:N XX},
k=1 k=1
SA = AYig — Syx

A — 2—7(52—tr(ﬂaﬁ)ﬁ), v>0), (1.A.4)

where~y controls the learning rate. For the experiments here the block si¥e=s200. During
each epoch all training vectors are updated using (1.A.3), with dictionaaiata over every
block on N data vectors using (1.A.4). After each dictionary updaﬁés normalized to have
unit Frobenius norm\]/THF = 1 and equal column-norms. Parameters for FOCUSS-CNDL are:
data set size = 20000 image patches, dictionary size = 64x64, 64x128@&4dversity measure

p = 1.0, regularization parametey;,,,, = 2 x 10~4, learning ratey = 0.01, number of training
epochs = 150, reinitialization every 50 epochs. Figure 1.18 shows thmetb64x196 dictionary
after training on edge-detected patches of man-made objects (the daésadbed in Section
1.7).

Once the dictionarﬁ has been learned, input images for the dynamic network (DN) are
coded using the FOCUSS+ algorithm. The input images are divided into mdige non-
overlapping patches of the same 8x8 size used for dictionary learnieg-r@REUSS+ algorithm
consists of repeated iterations of (1.A.3) over an image pgicio estimater,. Eachx; is
updated for 15 iterations with = 0.5.
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Figure 1.18: Overcomplete dictionary (64x196) learned with FOCUSS{GN@rained on
edge-detected images.

1.B Derivation of Learning Algorithm for W

We derive recursions for the updatesi®fand D in the learning algorithm of Section 1.5.
First, some notation: thg-th row of the weight matri®V is denotedW;. and the element from
the j-th row andi-th column isw;;. Beginning with the error-enforcing terfd (omitting the

binary indicator variablgd for notational clarity),

Zs sp] . (1.B.1)

p_

j7t 8‘/] i

For B;,, at the last time step in (1.5.2) whenr= 7 only thep = 7 terms depend oW -,

Bj, = 0 [1€T€T]

=<l gy
— e (1.B.2)

wheres; ; is thej-th element of the error vecteg. Whent = 7 — 1,

o 1 1
Vo sTeT—i- 2sZ Ero1| - (1.B.3)

Bj,T—l
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The second term on the right can be found to-eg -_; as in (1.B.2). For the first term,

W2 oy, T
0
T
= —eT'w V.
€ av&fflf( ﬁ
0

= —f'(Vjir-1)er W,
N

= —f/(Vj,r—l)Zé‘k,rwkj :
k=1

Substituting (1.B.4) and (1.B.2) into the expression/gy.-_; (1.B.3),

N

Bjr1=—¢jr-1+ ' (Vir-1) Z By rwy; -
k=1

The general recursion fds, ; is (after reintroducing the indicator variab,

=Bt t=r

Bji =
—Bjacia + 1 (Vi) Soney Brasrwg; 1<t <7

Turning to the sparsity-enforcing term (again omittjsg

9 A T N
l)it:: av;t i'iz:zzzdv(vkm)

p=1 k=1

(1.B.4)

(1.B.5)

(1.B.6)

(1.B.7)
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Following similarly to the derivation foB above, whert = T,

Dj. E:E:th
p—lk 1
A, A
= §dU(VJ,r) = 5 (a1 + a2)l{vjr > 0} — s
A
Ha vir >0
_ 2l v (1.B.8)
3(—ag) ;<0
Fort =7 -1,
N
0 A A
Dir1=— | 2dy(Virq)+ 2 (V)| 1.B.
i1 = gy [ Vi) + 5 2 dulVir) (1.B.9)

The first term can be evaluated as in (1.B.8), while the term inside the surpas@ed recur-

sively,
0 0
d’l} T - d/ T T
Vo (Vi) = dy (Vi, )8Vj,771Vk’
0 0
8‘/}"7—_1 Vk,r = aV'q—_lwzf(VTil)
—wkjf( —1) (1.B.10)

which can be inserted into (1.B.9),

N

dy (Vi) + > dy(Vir) £/ (Vi 1)wg;
k=1

A

Dj,T—l = 5
A

:§d2)(‘/j7' 1 +f 7,7—1 ZDk‘rwk] . (1811)

The general recursion fdp, ; is (reintroducing?),

(1= Bj0)dy, (Vi) t=1
(1= Bi0)dy(Vig) + f'(Vig) Sopy Dypawy; 1<t <7—1

The D term can be either Hebbian or anti-Hebbian depending on the sign of thatder,

Dj, = (1.B.12)

)

N> N>

reducing or increasing weight strengthen between coactive units.
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The weight update (1.5.2) for the algorithm can be written using (1.5.3)labd},

Awji = -1y (Bji+ Dj)Xiy - (1.B.13)
t=1



Chapter 2

Dictionary Learning Algorithms

Abstract

Algorithms for data-driven learning of domain-specific overcomplete diaties are devel-
oped to obtain maximum likelihood and maximum a posteriori dictionary estimates tiaseel
use of Bayesian models with concave/Schur-concave (CSC) negagipeitns. Such priors are
appropriate for obtaining sparse representations of environmentalsigithin an appropriately
chosen (environmentally matched) dictionary. The elements of the dictioaaryecinterpreted
as ‘concepts,’ ‘features’ or ‘words’ capable of succinct expi@s of events encountered in the
environment (the source of the measured signals). This is a generalipltientor quantiza-
tion in that one is interested in a description involving a few dictionary entriegpftbverbial ‘25
words or less’), but not necessarily as succinct as one entry. ffodeanvironmentally-adapted
dictionary capable of concise expression of signals generated byherenent, we develop
algorithms that iterate between a representative set of sparse raptiesenfound by variants
of FOCUSS, and an update of the dictionary using these sparse najateses.

Experiments were performed using synthetic data and natural imagesraplete dictio-
naries, we demonstrate that our algorithms have improved performancedependent Com-
ponent Analysis (ICA) methods, measured in terms of signal-to-noise odiseparated sources.
In the overcomplete case, we show that the true underlying dictionarypangessources can be
accurately recovered. In tests with natural images, learned overcordjgétmaries are shown
to have higher coding efficiency than complete dictionaries, i.e. images eteath an over-

complete dictionary have both higher compression (fewer bits/pixel) anéhégicuracy (lower

60
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mean-square error).

2.1 Introduction

FOCUSS stands for “FOCal Underdetermined System Solver” and is anthlg designed
to obtain suboptimally (and, at times, maximally) sparse solutions to the follawirg, under-
determined linear inverse problérfGorodnitsky et al., 1995, Rao, 1997, Rao and Gorodnitsky,
1997, Gorodnitsky and Rao, 1997, Adler et al., 1996, Rao and Ki2elgado, 1997, Rao, 1998)

y = Ax, (2.1.1)

for known A. The sparsity of a vector is the number of zero-valued elements (Doid8d),
and is related to thdiversity, the number of non-zero elements,

sparsity = #{z[i] = 0}
diversity = #{x[i] # 0}

diversity = n — sparsity.

Since our initial investigations into the properties of FOCUSS as an algorithipréwiding
sparse solutions to linear inverse problems in relatively noise-free emvéwots (Gorodnitsky
et al., 1995, Rao, 1997, Rao and Gorodnitsky, 1997, GorodnitskyRaid 1997, Adler et al.,
1996, Rao and Kreutz-Delgado, 1997), we now better understancetiavibr of FOCUSS in
noisy environments (Rao and Kreutz-Delgado, 1998a,b) and as an iirgeiia-like optimiza-
tion algorithm for optimizing concave functionals subject to linear constraitas @nd Kreutz-
Delgado, 1999, Kreutz-Delgado and Rao, 1997, 1998c¢,b,a, 19@89iXbPelgado et al., 1999b,
Engan et al., 2000, Rao et al., 2002). In this paper, we consider thud eFOCUSS algorithm
in the case where the matrikis unknown and must bearned Towards this end, we will first
briefly discuss how the use of concave (and Schur concave) fuatdienforces sparse solutions
to (2.1.1). We also discuss the choice of the matdxjn (2.1.1) and its relationship to the set
of signal vectorg, for which we hope to obtain sparse representations. Finally, we praiggat
rithms capable of learning an environmentally adapted dictiondérgiven a sufficiently large
and statistically representative sample of signal vecigtsyilding on ideas originally presented
in (Kreutz-Delgado et al., 1999c¢,a, Engan et al., 1999).

IFor notational simplicity, in this paper we consider the real case only.
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We refer to the columns of the full row-rank x n matrix A,
A=lar, - ,a,) ER™" n>m, (2.1.2)

as adictionaryand they are assumed to be a set of vectors capable of providing a higbigct
representation fanost(and, ideally, all) statistically representative signal vectoesR™. Note,
that with the assumption that rapk) = m, every vectory has a representation; the question
at hand is whether this representation is likely to be sparse. We call the sthtigierating
mechanism for signalg, theenvironmentnd a dictionaryA, within which such signals can be
sparsely represented anvironmentally adaptedictionary.

Environmentally generated signals typically have significant statistical stejaad can
be represented by a set of basis vectors spanning a lower dimengibrasifold of meaning-
ful signals (Field, 1994, Ruderman, 1994). These environmentally-imgfaih representation
vectors can be obtained by maximizing the mutual information between the setsaf Wec-
tors (the dictionary) and the signals generated by the environment (Cdréae4, Bell, 1995,
Deco and Obradovic, 1996, Olshausen and Field, 1996, Zhu et al/, Y¥&ng et al., 1997).
This procedure can be viewed as a natural generalization of Indepe@dmponent Analysis
(ICA) (Comon, 1994, Deco and Obradovic, 1996). As initially develgpkid procedure usu-
ally results in obtaining aninimal spanning set of spanning vectors (i.e., a true basis). More
recently, the desirability of obtaining “overcomplete” sets of vectors (mtiwharies”) has been
noted (Olshausen and Field, 1996, Lewicki and Sejnowski, 2000, Coimd Wickerhauser,
1992, Mallat and Zhang, 1993a, Donoho, 1994, Rao and Kreutzabe|d.997). For example,
projecting measured noisy signals onto the signal submanifold spanneddiyoadictionary
vectors results in noise reduction and data compression (Donoho, 1%988),. These dictionar-
ies can be structured asatof bases from which ainglebasis is to be selected to represent the
measured signal(s) of interest (Coifman and Wickerhauser, 19933, asingle, overcomplete,
set of individual vectors from within which a vectay, is to be sparsely represented (Mallat
and Zhang, 1993a, Olshausen and Field, 1996, Lewicki and Sejn®@€0, Rao and Kreutz-
Delgado, 1997).

The problem of determining a representation from a full row-rank mrapiete dictionary,

A = lay,...,ay], n > m, for a specific signal measuremept,is equivalent to solving an un-
derdetermined inverse probletdz = y which is nonuniquely solvable for any The standard
least squares solution to this problem has the (at times) undesirable fefiwvelving all the
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dictionary vectors in the solutidr(the “spurious artifact” problem), and does not allow for the
extraction of a categorically or physically meaningful solution. That is, itossgenerally the
case that a least-squares solution yields a concise representation aflomangrecise semantic
meaning. If the dictionary is large and rich enough in representational powerasuned signal

can be matched to a very few (perhaps even just one) dictionary wordlsis manner we can
obtain concise semantic content about objects or situations encounteggdrial environments
(Field, 1994). Thus, there has been a significant interest in findirgrssp solutionsy, (so-
lutions having a minimum number of nonzero elements) to the signal represernieabiolem.
Interestingly, matching apecificsignal to a sparse set of dictionary words/vectors can be related
to entropyminimizationas a means of elucidating statistical structure (Watanabe, 1981). Finding
a sparse representation (based on the use of a “few” code/dictiomatgcan also be viewed

as a generalization of vector quantization where a match to a single “cote™v@eord) is al-
ways sought (taking “code book” = “dictionary}) Indeed, we can refer to a sparse solutien,

as a sparse coding of the signal instantiatipn,

2.1.1 Stochastic Models

It is well known (Basilevsky, 1994) that the stochastic generative model
y=Ar+v, (2.1.3)

can be used to develop algorithms enabling coding®fR™ via solving the inverse problem for
a sparse solutiom € R™ for the undercompletey < m) and completerf = m) cases. In recent
years there has been a great deal of interest in obtaining sparsgsodlinvia this procedure
for the overcompletén > m) case (Mallat and Zhang, 1993a, Field, 1994). In our earlier work
we have shown that given an overcomplete dictiondryfwith the columns of A comprising the

dictionary vectors) a MAP estimate of the source vectpwill yield a sparse coding of y in the

2This fact comes as no surprise when the solution is interpreted within aiBayesmework,
using a gaussian (maximum entropy) prior.

3Taking “semantic” here to mean categorically or physically interpretable.

4For examplepn = 100 corresponds ta00 features encoded via vector quantization ("one
column = one concept”). If we are allowed to represent features upitmfour columns, we can

100 100 100 100 . . .

encode( 1 ) + < 9 ) + < 3 > + ( 4 ) = 4,087,975 concepts showing a combinatorial
boost in expressive power
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low-noise limit if the negative log-prior- log(P(x)), is Concave/Schur-Concave (CSC) (Rao,
1998, Kreutz-Delgado and Rao, 1999), as discussed further b&om® (z) factorizable into
a product of marginal probabilities, the resulting code is also known tdgean Independent
Component Analysis (ICA) representatiompfMore generally, a CSC prior results in a sparse
representation even in the non-factorizable case (witien forming a “Dependent Component
Analysis,” or DCA, representation).

Given iid dataY = YV = (yi, ..., yn), Which is assumed to be generated by the model
(2.1.3), a maximum likelihood estimatd,, , of the unknown (but nonrandom) dictiona#lycan
be determined as (Olshausen and Field, 1996, Lewicki and Sejnow§&ki) 20

Ay = arg max P(Y;A).
This requires integrating out the unobservable iid source vectors, XV = (z1,...,zy), in
order to compute”(Y'; A) from the (assumed) known probabiliti€§z) and P(v). In essence
X is formally treated as a set of nuisance parameters which, in principle,eceamoved via
integration. However, because the pridfx) is generally taken to be supergaussian, this inte-
gration is intractable or computationally unreasonable. Thus approximatithis iategration
are performed which result in an approximation/¢Y’; A) which is then maximized with re-
spect to Y. A new, better, approximation to the integration can then be madaiamocess is
iterated until the estimate of the dictionadyhas (hopefully) converged (Olshausen and Field,
1996). We refer to the resulting estimate as an Approximate Maximum Likelihabt.) es-
timate of the dictionaryd (denoted here bﬁAML). No formal proof of the convergence of this
algorithm to the true maximum likelihood estimat&,,;, has been given in the prior literature,
but it appears to perform well in various test cases (Olshausen alad F%6). Below, we dis-
cuss the problem of dictionary learning within the framework of our recelelyloped log-prior
model-based sparse source vector learning approach whictkif@venovercomplete dictionary
can be used to obtain sparse codes (Rao, 1998, Kreutz-Delgadcaand $®7, 1998c,b, Rao
and Kreutz-Delgado, 1999, Kreutz-Delgado and Rao, 1999). Sumfse codes can be found
using FOCUSS, an affine scaling transformation (AST)-like iterative @tgarwhich finds a
sparse locally optimal MAP estimate of the source vectéor an observationy. Using these
results, we can develop dictionary learning algorithms, both within the Ajpiatie Maximum
Likelihood framework mentioned above and for obtaining a MAP-like estimﬁmp, of the
(now assumed random) dictionary, assuming in the latter case that the dictionary belongs to a
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compact submanifold corresponding to unit Frobenius norm. Underircedaditions, conver-
gence to a local minimum of a MAP-loss function which combines functions dlidgezepancy
e = (y — Ax) and the degree of sparsity incan be rigorously proved.

2.1.2 Related Work

Previous work includes efforts to solve (2.1.3) in the overcomplete casewifith Max-
imum Likelihood (ML) framework. An algorithm for finding sparse codessveieveloped in
(Olshausen and Field, 1997) and tested on small patches of natural jmegésng in Gabor-
like receptive fields. Lewicki and Sejnowski (2000) present andthiealgorithm which uses
the Laplacian prior to enforce sparsity. The values of the elementar found with a modified
conjugate gradient optimization (which has a rather complicated implementatioppased to
the standard ICA (square mixing matrix) case where the coefficients ane foy inverting the
A matrix. The difficulty that arises when using ML is that finding the estimate of itteodary
A requires integrating over all possible values of the coefficient posteeiosity P(x|y, A) as
a function ofz. In (Olshausen and Field, 1997) this is handled by assuming the postegior is
delta-function, while in (Lewicki and Sejnowski, 2000) it is approximatedalgaussian. The
fixed-point FastICA (Hy&@rinen et al., 1999) has also been extended to generate overcomplete
representations. The FastICA algorithm can find the basis functionsnfoslof the dictio-
nary A) one at a time by imposing a quasi-orthogonality condition, and can be thotigist
a “greedy” algorithm. It also can be run “in parallel” meaning all columnsAcdre updated
together.

Other methods to solve (2.1.3) in the overcomplete case have been devetomged com-
bination of the expectation-maximization (EM) algorithm and variational appraton tech-
nigues. Independent Factor Analysis (Attias, 1999) uses a mixtugergfsians to approximate
the prior density of the sources, which avoids the difficulty of integratirtgloeiparameter’
and allows different sources to have different densities. In anothtratiéGirolami, 2001) the
source priors are assumed to be supergaussian (heavy-tailed) andtewal lower-bound is
developed which is used in the EM estimation of the parameteasd X . It is noted by Giro-
lami (2001) that the mixtures used in Independent Factor Analysis are gaoeral than may
be needed for the sparse overcomplete case, and they can be compliyagipensive as the
dimension of the data vector and number of mixtures increases.
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In Zibulevsky and Pearlmutter (2001), the blind source separation pnoisiéormulated
in terms of a sparse source underlying each unmixed signal. These sparses are expanded
into the unmixed signal with a predefined wavelet dictionary, which may beorglete. The
unmixed signals are linearly combined via a different mixing matrix to create terodd sensor
signals. The method is shown to give better separation performance thaedniques. The
use of learned dictionaries (instead of being chaseriori) is suggested.

2.2 FOCUSS: Sparse Solutions for Known Dictionaries

2.2.1 Known Dictionary Model.

A Bayesian interpretation is obtained from the generative signal modeB)dyl assuming

thatz has the parameterized (generally nongaussian) pdf,
Py(z) = Z, e @@ 7, = / e (@) dy (2.2.1)

with parameter vectop. Similarly, the noiser is assumed to have a parameterized (possibly
nongaussian) densit,(v) of the same form as (2.2.1) with parameter vegtoit is assume
thatx andv have zero means and that their densities obey the propesty= d(|x|), for | - |
defined component-wise. This is equivalent to assuming that the dens@iegrametric with
respect to sign changes in the components,af|i] <— —z[i], and therefore that the skews of
these densities are zero. We also assumeitiiat= 0. With a slight abuse of notation, we allow
the differing subscriptg andp to indicate that/, andd, may befunctionallydifferent as well
as parametrically different. We refer to densities like (2.2.1), for suitakdiiadal constraints
ondy(z), as Hypergeneralized Gaussian Distributions (Kreutz-Delgado andlR@6, Kreutz-
Delgado et al., 1999b).

If we treat A, p, andg asknownparameters, then andy are jointly distributed as

P(z,y) = P(x,y;p,q,A) .

Bayes’ rule yields,

P(xly;p, A) = ;P(y!x;p, A) - P(z;p, A) = ;Pq(y — Az) - Py(x) (2.2.2)

5= Ply) = Plyp.a.4) = [ Plula)- (o). (2.23)
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Usually the dependence g@nandgq is notationally suppressed and we write= P(y; A), etc.
Given an observationy, maximizing (2.2.2) with respect to yields a MAP estimaté&. This
ideally results in a sparse coding of the observation, a requirement whicesgfunctional con-
straints on the probability density functions, and particularlylpnNote thats is independent
of x and can be ignored when optimizing (2.2.2) with respect to the unknownesgactorz.
The MAP estimate equivalently is obtained from minimizing the the negative logaathm

P(z|y), which is,

T = arg mxin de(y — Az) + Ndp(x) , (2.2.4)

where\ = v, /4, andd,(y — Az) = d,(Ax — y) by our assumption of symmetry. The quantity
% is interpretable as a signal-to-noise ratio (SNR). Furthermore, assuminigatital, andd,,
areConcave/Schur—Concay€SC) as defined below in Section 2.4, then the téyfy — Ax)
in (2.2.4) will encourage sparse residuals; y — Az, while the termd, (x) encourages sparse
source-vector estimates, A given value of\ then determines a trade-off between residual and
source vector sparseness.

This most general formulation will not be used in this paper. Although weérgeeested
in obtaining sparse source-vector estimates, we will not enforce sparsitlye residuals but
instead, to simplify the develoment, will assume ¢he 2 iid gaussian measurement noise case
(v gaussian with known covariane@ - I), which corresponds to taking,

Iy 1 oy
Y daly =A%) = 5y - Az (2.2.5)
In this case, problem (2.2.4) becomes,
~ 1 2
I = argmin §||y — Az||” + Ndp(z) . (2.2.6)

In either case, we note that— 0 asy, — 0 which (consistent with the generative model
(2.1.3)) we refer to as thiew noise limit Because the mapping is assumed to be onto, in the

low noise limit the optimization (2.2.4) is equivalent to the linearly constrained@nmb
r = argmind,(x) subjectto Az =y. (2.2.7)

In the low-noise limit, no sparseness constraint need be placed on thealssid= y — AZ,
which are assumed to be zero. It is evident that the structudg(ofis critical for obtaining a
sparse codingg, of the observatiog (Kreutz-Delgado and Rao, 1997, Rao and Kreutz-Delgado,
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1999). Throughtout this paper the quantify(x) is always assumed to be CSC (enforcing sparse
solutions to the inverse problem (2.1.3)). As mentioned above, and as \weiliteent during the
development of dictionary learning algorithms below, we do not impose aigpesastraint on

the residuals; instead the measurement noisél be assumed to be Gaussian= 2).

2.2.2 Independent Component Analysis (ICA) and Sparsity Iducing Priors.

An important class of densities is given by tpeneralized gaussiarisr which
dp(@) = lallp = D [k, (2.2.8)
k=1

forp > 0 (Kassam, 1982). This is a special case of the lafgelass (the p-class”) of functions
which allowsp to be negative in value (Rao and Kreutz-Delgado, 1999, Kreutz-Delgad Rao,
1997). Note that this function has the special propertyepfarability

dp(x) =) dp(a[k]),
k=1
which corresponds tfactorizability of the densityP, (z),

Py(x) = [ [ Poalk]).
k=1

and hence tindependence of the components oThe assumption of independent components
allows the problem of solving the generative model (2.1.3)fdo be interpreted as an Inde-
pendent Component Analysis (ICA) problem (Comon, 1994, Pham,, 1386ausen and Field,
1996, Roberts, 1998). It is of interest, then, to consider the develdpmheriarge class of pa-
rameterizable separable functiofigx) consistent with the ICA assumption (Rao and Kreutz-
Delgado, 1999, Kreutz-Delgado and Rao, 1997). Note that givelm awgtass, it is natural to
examine the issue of finding a best fit within this class to the “true” underlyiiagy density
of z. This is a problem of parametric density estimation of the true prior where ttem@s
to find an optimal choice of the model densiy(xz) by an optimization over the parameters
which define the choice of a prior from within the class. This is, in generdiffiault problem
which may require the use of Monte-Carlo, evolutionary programming, astiohastic search
techniques.

Can the belief that supergaussian priaf(z), are appropriate for finding sparse solu-
tions to (2.1.3) (Field, 1994, Olshausen and Field, 1996) be clarified oe mgdrous? It is
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well known that the generalized gaussian distribution arising from the fug28) yields su-
pergaussian distributions (positive kurtosis) fok 2 and subgaussian (negative kurtosis) for
p > 2. However, one can argue (see Section 2.5 below) that the conditiobt@inig sparse
solutions in the low noise limit is the stronger requirement that 1, in which case the separa-
ble functiond,(x) is concave and Schur-concavEhis indicates that supergaussianess (positive
kurtosis) alone imecessanput not sufficienffor inducing sparse solutions. Rather, sufficiency
is given by the requirement thatlog P,(x) ~ d,(x) be Concave/Schur-Concave (CSC).

We have seen that the functia(x) has an interpretation as a (negative logarithm of) a
Bayesian prioor as a penalty function enforcing sparsity in (2.2.4) whéyer) should serve as
a “relaxed counting function” on the nonzero elements.dDur perspective emphasizes the fact
thatd,(x) servesbothof these goals simultaneously. Thus, good regularizing functigyts,),
should be flexibly parameterizable so tfig{=) can be optimized over the parameter vegito
provide a good parametric fit to the underlying environmental probabilitgidefunction,and
the functions should also have analytical properties consistent with thefgeaforcing sparse

solutions. Such properties are discussed in the next section.

2.2.3 Majorization and Schur-Concavity

In this section, we discuss functions which are both concave and Scmuave (Con-
cave/ Schur—Concave, or CSC, functions)(Marshall and Olkin919We will call functions,
d,(-), which are Concave/ Schur—Concaiéversity Functions, Anti-Concentration Functions
or Anti—sparsity FunctionsThe larger the value of the CSC functidp(x), the more diverse
(i.e., the less concentrated or sparse), the elements of the weater Thus minimizingl,(xz)
wrt z results in less—diverse (more concentrated or sparse) vactors

Schur-Concave Functions.

A measure of the sparsity of the elements of a solution vec{or the lack thereof, which
we refer to as théiversityof z) is given by a partial ordering on vectors known as ltloeentz
order. For any vector in the positive orthant,c R, define thelecreasing rearrangement
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and thepartial sumg(Marshall and Olkin, 1979, Wickerhauser, 1994),

k
Sx[k]:ZI.LTLJ5 kzla"'vn'
i=1
We say thay majorizese, y = x, ifffor k =1,--- | n,
Sylk] = Su[k];  Syln] = Se[n],

and the vectoy is said to be more concentrated, or ldsgerse thanz. This partial order defined
by majorization then defines the Lorentz order.

We are interested in scalar-valued functionscairhich are consistent with majorization.
Such functions are known &chur-Concavéunctions,d(-) : R} — R. They are defined to be

precisely the class of functions which aensistent with the Lorentz order

y=-z = d(y) <d(z).

In words, ify is less diverse tham (according to the Lorentz order) théXy) is less thani(z)
for d(-) Schur-concave. We assume that Schur-Concavityhnscassary conditiofor d(-) to be
a goodmeasure of diversitganti-sparsity.

Concavity yields sparse solutions.

Recall that a functiorl(-) is concaveon the positive orthank’} iff (Rockafellar, 1970)

d((1 =)z +vy) > (1 —~)d(z) +~d(y),

Vz,y € R} ,Vvy,0 < v < 1. In addition, a scalar function is said to be permutation invariant
if its value is independent of rearrangements of its components. An impdaiztns that for

permutation invariant functionsoncavity is a sufficient condition for Schur-Concavity
Concavity + Permutation Invariance- Schur-Concavity.

Now consider the low-noise sparse inverse problem (2.2.7). It is wellvkrthat subject
to linear constraints, a concave function Bfy takes its minima on thboundaryof R’} (Rock-
afellar, 1970), and as a consequence these minima are thespfimse We take concavity to
be asufficient conditiorfor a permutation invariand(-) to be a measure of diversity and we
obtain sparsity as constrained minimadgf). More generally, a diversity measure should be
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somewhere between Schur-concave and concave. In this spirit, oriefiaealmost concave
functions (Kreutz-Delgado and Rao, 1997), which are Schur-eenaad (locally) concave in
all n directions but one, which also are good measures of diversity.

Separability, Schur-Concavity, and ICA.

The simplest way to ensure thétz) be permutation invariant (a necessary condition for
Schur-concavity) is to use functions that asparable Recall that separability af,(z) corre-
sponds tdactorizability of P,(x). Thusseparabilityof d(z) corresponds to the assumption of
independent componerdéx under the model (2.1.3). We see that from a Bayesian perspective,
separability ofl(x) corresponds to a generative modelfdhatassumes a source, with inde-
pendent component®Vith this assumption, we are working within the framework of Indepen-
dent Component Analysis (ICA) (Nadal and Parga, 1994, Pham, Fag&erts, 1998). We have
developed effective algorithms for solving the optimization problem (2.2r73darse solutions
whend,(x) is separable and concave (Kreutz-Delgado and Rao, 1997, Raaeutt#Oelgado,
1999).

Itis now evident that relaxing the restriction of separability generalizeggherative model
to the case were the source vector,hasdependent component$Ve can reasonably call an
approach based on a non-separable diversity meagujea Dependent Component Analysis
(DCA). Unless care is taken, this relaxation can significantly complicate thlysis and de-
velopment of optimization algorithms. However, one can solve the low-noisk [@Gblem, at
least in principle, provided appropriate choices of non-separabéesiliy functions are made.

2.2.4 Supergaussian Priors and Sparse Coding

The P-class of diversity measures for< p < 1 result in sparse solutions to the low-noise
coding problem (2.2.7). These separable and concave (and thusc@ctoave) diversity mea-
sures correspond to supergaussian priors, consistent with the “fakaim” that supergaussian
priors are sparsity enforcing priors. However, taking. p < 2 results in supergaussian priors
which arenotsparsity enforcing. Taking to be between and2 yields ad, («) which isconvex
and thereforenot concave. This is consistent with the well-known fact that for this range of
p, thept"-root of d,,(x) is a norm. Minimizingd, () in this case drives towards the origin,
favoring “concentrated” rather than “sparse” solutions. We see tteasffarse coding is to be
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found based on obtaining a MAP estimate to the low-noise generative motied)(then, in a
sense, supergaussianess is a necessary but not sufficient cofati#oprior to be sparsity en-
forcing. A sufficient condition for obtaining a sparse MAP coding is thatrtegative log-prior
be Concave/Schur-concave (CSC).

2.2.5 The FOCUSS Algorithm.

Locally optimal solutions to the known—dictionary sparse inverse problemsussian
noise, equations (2.2.6) and (2.2.7), are given by the FOCUSS algorittuis.isTan Affine-
Scaling Transformation (AST)-like (interior point) algorithm originally prepd for the low
noise case (2.2.7) in (Rao and Kreutz-Delgado, 1997, Kreutz-Delgad®ao, 1997, Rao and
Kreutz-Delgado, 1999), and extended via regularization to the naaltrivise case (2.2.6) in
(Rao and Kreutz-Delgado, 1998a, Engan et al., 2000, Rao et al.).20QBRese references it is
shown that the FOCUSS algorithm has excellent behavior for concagéduas (which includes
the the CSC concentration functiong) ). For such functions FOCUSS quickly converges to a
local minimum yielding a sparse solutions to the problems (2.2.7) and (2.2.6).

One can quickly motivate the development of the FOCUSS algorithm appt® foiasolv-
ing the optimization problem (2.2.6) by considering the problem of obtaining tétesary
points of the objective function. These are given as solutiehgp

AT (Az* —y) + A\V.dy(2*) =0 (2.2.9)

In general (2.2.9) is nonlinear and cannot be explicitly solved for a solutio However, we

proceed by assuming the existence gfradient factorization
Vady(z) = a(x)ll(z)z, (2.2.10)

wherea(z) is a positive scalar function arid(z) is symmetric, positive—definite and diago-
nal. As discussed by Kreutz-Delgado and Rao (1997, 1998c), RhK@utz-Delgado (1999),
this assumption is generally true for CSC sparsity functigy(s) and is key to understanding
FOCUSS as a sparsity-inducing interior-point (AST-like) optimization algorith

5This interpretation, which is not elaborated on in this paper, follows frdimnitg a diagonal
postive definite affine scaling transformation matfiXz) by the relation,

(x) = W ().
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With the gradient factorization (2.2.10), the stationary points of (2.2.9)em@ily shown
to be solutions to the (equally nonlinear and implicit) system,

v = (ATA+BEnE")) " ATy (2.2.11)
= (@) AT (@) + AT () AT) 1y, (2.2.12)

wheref(z) = Aa(x) and the second equation follows from identity (2.A.18) given in Appendix
2.A. Although (2.2.12) is also not generally solvable in closed form, it doggest the following

relaxation algorithm,
7« M Y@AT (B@)I + AT (@)AT) 'y, (2.2.13)

which is to be repeatedly reiterated until convergence.

Taking = 0in (2.2.13) yields the FOCUSS algorithm which is proved in (Kreutz-Delgado
and Rao, 1997, 1998c, Rao and Kreutz-Delgado, 1999) to conteeaggparse solution of (2.2.7)
for CSC sparsity functiond,(-). The case3 # 0 yields the regularized FOCUSS algorithm
which will converge to a sparse solution of (2.2.6) (Rao, 1998, Engah,e2000, Rao et al.,
2002). More computationally robust variants of (2.2.13) are discudsed/igere (Gorodnitsky
and Rao, 1997, Rao and Kreutz-Delgado, 1998a).

Note that for the general regularized FOCUSS algorithm (2.2.13), wef@y,) = \a(z),
where) is the regularization parameter in (2.2.4). The functign) is usually generalized to be
a function ofzy, y, and the iteration number. Methods for choosiipclude the quality-of-fit
criteria, the sparsity critera, and thecurve(Engan, 2000, Engan et al., 2000, Rao et al., 2002).
The quality-of-fit criteria attempts to minimize the residual errer Ax (Rao, 1997) which can
be shown to converge to a sparse solution (Rao and Kreutz-Delgd@®). The sparsity critera
requires that a certain number of elements of eache non-zero.

The L-curve method adjuststo optimize the trade-off between the residual and sparsity
of 2. The plot ofd,(x}) versusd, (yx, — Axy) has an L-shape, the corner of which provides the
best trade-off. The corner of the L-curve is the point of maximum dureaand can be found
by a one-dimensional maximization of the curvature function (Hansen aoea®/, 1993).

A hybrid approach known as theodified L-curve methodombines the L-curve method
on a linear scale and the quality-of-fit critera, which is used to place limits oratige of\ that
can be chosen by the L-curve (Engan, 2000). The modified L-curtieadevas shown to have
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good performance, but it requires a one-dimensional numerical optimizsttp for each;, at

each iteration, which can be computationally expensive for large vectors.

2.3 Dictionary Learning

2.3.1 Unknown, Nonrandom Dictionaries

The Maximum Likelihood Estimation framework treats parameters to be estimated as u
known but deterministic (nonrandom). In this spirit we take the dictiondryo be the set of
unknown, but deterministic, parameters to be estimated from the observetivn=s YV. In
particular, giver N the maximum likelihood estimaté,, is found from maximizing the likeli-
hood functionZ(A YY) = P(Y'"; A). Under the assumption that the observations are iid, this

corresponds to the optimization,

N
Ay = arg m}xkl_ll P(yr; A), (2.3.1)

P(yp; A) = /P(yk,x;A)da: = /P(yk\x;A).Pp(z)dx = /Pq(yk—A:C)-Pp(x)dx. (2.3.2)

Defining the sample average of a functiffy) over the sample sé&t" = (y;,--- ,yn) by
1 N
W)y =~ D f ),
k=1

the optimization (2.3.1) can be equivalently written as
A\ML = arg H}gn — (log(P(y; 4))) i - (2.3.3)

Note thatP(yy; A) is equal to the normalization factgr encountered earlier above, but now
with the dependence @f on A and the particular sample;, made explicit. The integration
in (2.3.2) in general is intractable, and various approximations have repoged to obtain
an Approximate Maximum Likelihood estimau;?l,\ML (Olshausen and Field, 1996, Lewicki and
Sejnowski, 2000).

In particular, the following approximation has been proposed (Olsharstfield, 1996),

Py(@) ~ 6(x — T(A)), (2.3.4)
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where

-~

Ti(A) = argmax P(yy, ; ﬁ) , (2.3.5)

fork =1,---, N, assuming a current estimaté, for A. This approximation corresponds to

assuming that the source vectgrfor whichy, = Az is known and equal t@y(A). With this
approximation, the optimization (2.3.3) becomes,

Apa = argmin <dq(y ~ AR+ A dp(£)>N , (2.3.6)

which is an optimization over the sample averdgéy of the functional (2.2.4) encountered
earlier. Updating our estimate for the dictionary,

~

A — A, (2.3.7)

we can iterate the procedure (2.3.5)—(2.3.6) uAtih, has converged, hopefully (at least in the
limit of large N) to XML = EML(YN) as the maximum likelihood estimaﬂa\,,L(YN) has well-
known desirable asymptotic properties in the lilit— oc.

Performing the optimization in (2.3.6) for the= 2 iid gaussian measurement noise case

(v gaussian with known covarianeg - I) corresponds to taking
. 1 ~
dyly — A7) = 55 ly — A3, (2.3.8)

in (2.3.6). In Appendix 2.A it is shown that we can readily obtain the uniqaéchs solution,

VIS 3PS pw (2.3.9)
1 & 1
k=1 k=1

Appendix 2.A actually derives the maximum likelihood estimate d6r the ideal case dénown

source vectorX = (z1,--- ,znN),

-1
TT

Known Source Vector Casedy, = X%

which is, of course, actually not computable since the actual sourcersesmassumed to be
‘hidden.’
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As an alternative to using the explicit solution (2.3.9), which requires am gitehibitive
n X n inversion, we can obtaid,,, iteratively via gradient descent on equations (2.3.6) and
(2.3.8),

N

~ . 1 N
Amt = Am — N Z €k$1€ ) (2.3.11)
k=1

€ = AAMLaj\k_yk> ]{?:1,---,]\7,

for an appropriate choice of the (possibly adaptive) positive steppsiznetey:. The iteration
(2.3.11) can be initialized ady, = A.

A general iterative dictionary learning procedure is obtained by nestaiggttation (2.3.11)
entirely within the iteration defined by repeatedly solving (2.3.5) every time aewimate,
A, of the dictionary becomes available. However performing the optimizatiomrestjin
(2.3.5) is generally nontrivial (Olshausen and Field, 1996, Lewicki S@jtowski, 2000). Re-
cently we have shown how the use of the FOCUSS algorithm results in aniefalgorithm
for performing the optimization required in (2.3.5) for the case whesa gaussian (Rao and
Kreutz-Delgado, 1998a, Engan et al., 1999). This approach sad@%5) using the Affine-
Scaling Transformation (AST)-like algorithms recently proposed for theroge case (Rao
and Kreutz-Delgado, 1997, Kreutz-Delgado and Rao, 1997, RaKesutz-Delgado, 1999)
and extended via regularization to the non-trivial noise case (Rao autabelgado, 1998a,
Engan et al., 1999). As discussed above in Subsection 2.2.5, for tleatdictionary estimate,

A, a solution to the optimization problem (2.3.5) is provided by the repeated iteration
~ —1
B T @) AT (B@) + AT @) AT) g, (2.3.12)

k=1,---,N, with II(z) defined as in equation (2.3.18) given below. This is the regularized
FOCUSS algorithm (Rao, 1998, Engan et al., 1999) which has an intatipreas an AST-like
concave function minimization algorithm. The proposed dictionary learningitigoalter-
natesbetween the iteration (2.3.12) and the iteration (2.3.11) (or the direct bdtaiosggiven

by (2.3.9), if the inversion is tractable). Extensive simulations show the abilityeycAST-based
algorithm to completely recover an unkno@® x 30 dictionary matrixA (Engan et al., 1999).
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2.3.2 Unknown, Random Dictionaries

We now generalize to the case where the dictiondryand the source vector sat =
XN = (z1,---,xy) are jointly random and unknown. We add the requirement that the dictio-

nary is known to obey the constraint,
A € A = compact submanifold &"™*".

A compact submanifold dR™*™ is necessarily closed and bounded. On the constraint subman-
ifold the dictionaryA has the prior probability density functiaR(A), which in the sequel we

assume has the simple (uniform 4 form,
P(A)=cX(Ac A), (2.3.13)
whereX'(+) is the indicator function andis a positive constant chosen to ensure that
mm:/mmmzL
A
The dictionaryA and the elements of the s&tare also all assumed to be mutually independent,
P(A,X)=P(A)P(X)=P(A)Py(x1) - Py(zn) .

With the set of iid noise vectorsy, - - - , vy ) also taken to be jointly random with, and inde-
pendent of A and X, the observation sé&t = Y~ = (y1,---yx) is assumed to be generated

via the model (2.1.3). With these assumptions we have

P(A,X[Y) = P(Y|A X)P(AX)/P(Y) (2.3.14)
= cX(A € A) PYIA,X) POX)/P(Y)
N
= ey LLPoria 0 R
N
= WH (y — Axy) Bp(xy) ,

using the facts that the observations are conditionally independetit@ntAd, X) = P(yx|A, k).
Thejointly Maximum A Posteriori (MAP) estimates

(AMAPa XMAP) = (AMAPa fI,MAPv te 7§N7MAP)
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are found by maximizin@ posterioriprobability densityP(A, X|Y") simultaneously with re-
spect toA € A andX. This is equivalent to minimizing the negative logarithm/afA, X |Y),
yielding the optimization problem,

(Aypp, Xuap) = arg Arenjnx (dg(y — Az) + Adp(x)) - (2.3.15)

)

Note that this is goint minimization of the sample average of the functional (2.2.4), and as such
is a natural generalization of the single (with respect to the set of soeaters) optimization
previously encountered in (2.3.6). By finding joint MAP estimatesiadind X, we obtain a
problem that is much more tractable than the one of finding the single MAP estihate o
(which involves maximizing the marginal posterior dengityA|Y")).

The requirement that € A, whereA is a compact and hent®undedsubset ofR™*", is
sufficient for the optimization problem (2.3.15) to avoid the degenerate sofutio

for k=1,--- N, yr = Az, with ||A|| — oo and||zg|| — 0. (2.3.16)

This solution is possible for unboundetibecause; = Az is almost always solvable for
since learned overcomplet&is are (generically) onto and for any solution pait, x) the pair
(éA, a ) is also a solution. This fact shows that the inverse problem of finding d@olpair
(A, z) is generally ill-posedinlessA is constrained to be bounded (as we've explicitly done
here) or the cost functional is chosen to ensure that bouddedre learned (e.g., by adding a
term monotonic in the matrix norihA|| to the cost function in (2.3.15)).

A variety of choices for the compact sdtare available. Obviously, since different choices
of A correspond to differena priori assumptions on the set of admissible matricésthe
choice of this set can be expected to affect the performance of thidngsiictionary learning
algorithm. We will consider two relatively simple forms fak.

2.3.3 Unit Frobenius—Norm Dictionary Prior

For the iidg = 2 gaussian measurement noise case of (2.3.8), algorithms that provably
converge (in the low step-size limit) to a local minimum of (2.3.15) can be readiigloleed for
the very simple choice,
Ac ={A]|Allrp =1} CR™", (2.3.17)

6]| A|| is any suitable matrix norm oA.
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where||A|| denotes the Frobenius norm of the mattix
|A[|% = tr (AT A) 2 trace(AT 4),

and it is assumed that the prié®( A) is uniformly distributed onA; as per condition (2.3.13).
As discussed in Appendix 2.A4r is simply connected and there exists a patiirbetween any
two matrices inAr.

Following the gradient factorization procedure (Kreutz-Delgado anol R897, Rao and
Kreutz-Delgado, 1999), we factor the gradienti¢f) as

Vd(z) = a(z)ll(x)z, alz) >0, (2.3.18)

where it is assumed thal(x) is diagonal and positive-definite for all nonzeroFor example,
in the case wheré(z) = ||z||b,

I (&) = diagl| i) 7).

Factorizations for other diversity measur&s) are given by Kreutz-Delgado and Rao (1997).
We also defingg(x) = Aa(x). As derived and proved in Appendix 2.A, a learning law which
provably converges to a minimum of (2.3.15) on the manifold (2.3.17) is themdjy,

%xk = 0 {(ATA 4 BEINGEY) B - ATy}
Zﬁ = —u (52-tr(ﬁ52)2), >0, (2.3.19)

for k = 1,--- N, whereA is initialized to||A|| » = 1, 2, aren x n positive definite matrices,
and the “error’d A is

N
5A = (e(@)zT %Ze @F)TL,  e(@h) = ATy — yk (2.3.20)
k=1

and which can be rewritten in the perhaps more illuminating form (cf. equaftBs9) and
(2.3.10)),
SA =A% —Yys. (2.3.21)

A formal convergence proof of (2.3.19) is given in Appendix 2.A, vehiers also shown that the
right-hand-side of the second equation in (2.3.19) corresponds tapngjehe error termd A
onto the tangent space & thereby ensuring that the derivative 4flies in the tangent space.
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Convergence of the algorithm to a local optimum of (2.3.15) is formally priyeithterpreting
the loss functional as a Lyapunov function whose time derivative alongrdjextories of the
adapted parametefﬁ, X ) is guaranteed to be negative-definite by the choice of parameter time
derivatives shown in (2.3.19). As a consequence of the La Salle ineariarinciple, the loss
functional will decrease in value and the parameters will converge to tipestainvariant set for
which the time derivative of the loss functional is identically zero (Khalil, 996

Equation (2.3.19) is a set of coupled (betwe@and the vectorg}) nonlinear differential
equations which correspond to simultaneous, parallel updating of the esti.&at&jfk. This
should be compared to the alternated separate (nonparallel) update2r@léd Y and (2.3.12)
used in the AML algorithm described in Section 3.1. Note also that (excepldarace term)
the right-hand side of the dictionary learning update in (2.3.19) is of the sameds for the
AML update law given earlier in (2.3.11) (see also the discretized verdid@.8.19) given
in (2.3.27) below). The key difference is the additional trace term in (2)3.1I8is difference
corresponds to a projection of the update onto the tangent space of thelthg¢h3.17), thereby
ensuring a unit Frobenius norm (and hence boundedness) of thendigtiestimate at all times
and avoiding the ill-posedness problem indicated in (2.3.16). It is also oEBite note that

choosing(;, to be the positive-definite matrix
~p o~ R N -1
Q= m (ATA+ B@EONE) e >0 (2.3.22)

in (2.3.19), followed by some matrix manipulations (see (2.A.18) in Appendix, 2i&)ds the

alternative algorithm,

d =R R o R ~ —1
2B =~ {xk (&) AT (ﬁ(xk)l + Al 1(xk)£T) yk} (2.3.23)

with n; > 0. In any event (regardless of the specific choice of the positive defirateces();,
as shown in Appendix 2.A), the proposed algorithm outlined here coaeseoga solutionz, ﬁ)
which satisfies the implicit and nonlinear relationships,

Po= IO @AT (9@)+ AT ATy,

ST (Bas — )7 € A, (2.3.24)

)
|

for scalarc = tr (ET&@).
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To implement the algorithm (2.3.19) (or the variant using (2.3.23)) in discrete #rhet-
order forward difference approximation at tirhe- ¢; can be used,

d . N i'\k(tl-i-l) — /l'\k(tl)
P
A fk[l + 1] - i.\k[l]
s A . (2.3.25)
Applied to (2.3.23), this yields
Tl +1] = (1= p)zpll] + @i
—1
e = TN @) AT (8@ + AT @) A7)
W = npd;>0. (2.3.26)

Similarly discretizing thed-update equation and taking = 1 yields the learning rule (2.3.27)
given below. More generally taking to have a value between zero and dne; ; < 1 yields
an updated valuey[l + 1] which is linear interpolation between the previous vaiyg] and
Frocusq].

When implemented in discrete time, the resulting Bayesian learning algorithm Hasrthe
(for u; = 1) of acombined iteratiorwhere we loop over the operations,

—~ —1
B o TU@E)AT (8@ + AT @) AT) g,
k = 1,---,N and
A - ﬁ—fy(éﬁ—tr(ﬂéﬁ)ﬁ) ~>0. (2.3.27)

We call this FOCUSS-based, Frobenius-normalized dictionary-learfgogthm the FOCUSS-
FDL algorithm. Again, thisnergedprocedure should be compared to feparateterations in-
volved in the maximum likelihood approach given in (2.3.11)-(2.3.12) abegeation (2.3.27),
with 6 A given by (2.3.20), corresponds to performing a finite step-size griadéstent on the
manifold A.. This projection in (2.3.27) of the dictionary update onto the tangent plank of
(see the discussion in Appendix 2.A) ensures the well-behavednessMMR algorithm’. The

"Because of the discrete-time approximation in (2.3.27), and even moreatigiecause of
numerical round-off effects in (2.3.19), a renormalization,

A—Af|Alr,

is usually performed at regular intervals.
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specific step-size choigg = 1, which results in the first equation in (2.3.27), is discussed at
length for the low-noise case in (Rao and Kreutz-Delgado, 1999).

2.3.4 Column-Normalized Dictionary Prior

Although mathematically very tractable, the unit—Frobenius norm prior (2.ad@ars to
be somewhat too—loose, judging from simulation results given below. In diondawith the
Frobenius norm constraitd -, some columns ofl can tend towards zero; a phenomenon which
occurs more often in highly overcomplete This problem can be understood by remembering
that we are using thé,(z), p > 0 diversity measure which penalizes columns associated with
terms inx with large magnitudes. If a column has a small relative magnitude, the weights of its
x; coefficients can be large and it will be penalized more than a column with a lewga. This
leads to certain columns being underused, which is especially problematicondrmmplete
case.

An alternative, and more restrictive, form of the constraint4és obtained by enforcing
the requirement that the columnsof A each be normalized (with respect to the Euclidean 2—
norm) to the same constant value (Murray and Kreutz-Delgado, 20013. cbnstraint can be
justified by noting thatdz can be written as the non-unique weighted sum of the columns

Ax = Zaix[i] = Z <ai> (axli]) = A'2’, foranya; >0,i=1..n,
i=1

o
i=1 v

showing that there iseolumn—wisembiguity that remains even after theerall unit—Frobenius
norm normalization has occurred, as one can now Frobenius-normaipeshmatrixA’.
Therefore, consider the set of matrices on which has been imposed theneelise con-
straint that,
A= {A

1
laill* = af ai = =, z’=1,~-n}. (2.3.28)

n

The setAc is anmn — n = n(m — 1)—-dimensional submanifold &™*"™. Note that every
column of a matrix in4. has been normalized to the valb\l%. In fact, any constant value
for the column normalization can be used (including the unit normalization) asughown in
Appendix 2.B, the particular normalization éfresults inAc being a proper sub—manifold of

themn — 1 dimensional unit Frobenius manifoldr,

Ac C A,
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indicating that a tighter constraint on the matrixis being imposed. Again, it is assumed that
the prior P(A) is uniformly distributed on4. in the manner of equation (2.3.13). As shown in
Appendix 2.B,Ac is simply connected.

A learning algorithm is derived for the constraidt. in Appendix 2.B, following much
the same approach as in Appendix 2.A. Because the derivation @f,thpdate to find sparse
solutions does not depend on the form of the consttdinbnly the A update in the algorithm

(2.3.27) needs to be modified. Each columms now updated independently (see (2.B.17)),

a; <— ai—,u(I—aiaiT) 5ai
i = 1,---,n, (2.3.29)

wheresa; is thei-th column ofs A in (2.3.20). We call the resulting column-normalized dictionary-
learning algorithm the FOCUSS-CNDL algorithm. The implementation details of i F3-
CNDL algorithm are presented in Section 2.4.2.

2.4 Algorithm Implementation

The dictionary learning algorithms derived above are an extension of HJISS algo-
rithm used for obtaining sparse solutions to the linear inverse proplem Ax to the case
where dictionary learning is now required. We refer to these algorithmsrgiynas FOCUSS-
DL algorithms, with the unit Frobenius—norm prior—based algorithm dertptdeDCUSS-FDL
and the column-normalized prior—base algorithm by FOCUSS-CNDL. In dusomn the algo-
rithms are stated in the forms implemented in the experimental tests and it is shoviinethat
column normalization—based algorithm achieves higher performance inehgoowplete dictio-
nary case.

2.4.1 Unit Frobenius-Norm Dictionary Learning Algorithm

We now summarize the FOCUSS-FDL algorithm which was derived in Sectio?. Z8r

each of the data vectoyg, we update the sparse source vecigrasing the FOCUSS algorithm:

0 (z) = diag(|Ze[i]|*?)
—~ —1
7 o TG AT (Ak1+An—1(§k)ET) yn (FOCUSS)  (2.4.1)
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where)\; is the regularization parameter. After updating #ieource vectorsy, k = 1...n, the

dictionaryﬁ is reestimated,

1 N
k=1
1 N
_ ~ AT
k=1
SA = AYi— Dy
A — 2—7(5ﬁ—tr(ﬂaﬁ)ﬁ) . >0, (2.4.2)

where~ controls the learning rate. For the experiments in Section 2.5 the data block size is
N = 100. During each iteration all training vectors are updated using (2.4.1), withrra
sponding number of dictionary updates using (2.4.2). After each uptitite dictionaryﬁ, itis
renormalized to have unit Frobenius noffa|| = 1.

The learning algorithm is a combined iteration, meaning that the FOCUSS algasthm
only allowed to run for one iteration (not until full convergence) befiieA update step. This
means that during early iterations, thgare in general not sparse. To facilitate learnihghe
covariances,; andX;; are calculated with sparsifiég that have all but thé largest elements
set to zero. The value afis usually set to the largest desired number of non-zero elements, but
this choice does not appear to be critical.

The regularization parametgy, is taken to be a monotonically increasing function of the
iteration number,

Me = Amaxtanh (1073 - (iter — 1500)) + 1). (2.4.3)

While this choice of\;, does not have the optimality properties of the modified L-curve method
(see Section 2.2.5), it does not require a one-dimensional optimizatiora¢brze¢ and so is

much less computationally expensive. This is further discussed below.

2.4.2 Column Normalized Dictionary Learning Algorithm

The improved version of the algorithm called FOCUSS-CNDL, which pravidereased
accuracy especially in the overcomplete case, was proposed in (MamchiKreutz-Delgado,
2001). The three key improvements are: column normalization that restricesaimedA, an
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efficient way of adjusting the regularization parametgr and reinitialization to escape from
local optima.

The column-normalized learning algorithm discussed in Section 2.3.4 anckdléni Ap-
pendix 2.B is used. Because thgupdate does not depend on the constrainse¢he FOCUSS
algorithm in (2.4.1) is used to updaté vectors as discussed in Section 2.4.1 above. After every
N source vectors are updated, each column of the dictionary is then updated

a; — a;—p (I — aiaiT) oa;

i = 1,--.,n, (2.4.4)

whereda; are the columns of A, which is found using (2.4.2). After updating eaeh it is

renormalized td|a;||> = 1/n by,
a;

Vo

which also ensures thﬁﬁnp = 1 as shown in Appendix 2.B.1.

a; <

(2.4.5)

The regularization paramet&r may be set independently for each vector in the training set,
and a number of methods have been suggested, including quality-ofifit(nequires a certain
level of reconstruction accuracy), sparsity (requiring a certain nurmbeon-zero elements),
and the L-curve which attempts to find an optimal tradeoff (Engan, 200®.L¥curve method
works well, but it requires solving a one-dimensional optimization for egctvhich becomes
computationally expensive for large problems. Alternatively, we use adtieumethod that
allows the tradeoff between error and sparsity to be tuned for each afpicwhile letting
each training vectoy; have its own regularization parametegr to improve the quality of the

solution,

M = Ama (1 — Hyk—%’“”) . Aoy Amax > 0. (2.4.6)
[

For data vectors that are represented accuratglyyill be large, driving the algorithm to find
more sparse solutions. If the signal-to-noise ratio (SNR) can be estimatechwset\,., =
(SNR)~L.

The optimization problem (2.3.15) is concave wheg 1, so there will be multiple local
minima. The FOCUSS algorithm is only guaranteed to converge to one of thedarimima,
but in some cases it is possible to determine when that has happened bygnibtisensparsity

is too low. Periodically (after a large number of iterations) the sparsity of dthgisnsz;. is
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checked, and if found too lows;, is reinitialized randomly. The algorithm is also sensitive
to initial conditions and prior information may be incorporated into the initializationeip h
convergence to the global solution.

2.5 Experimental Results

Experiments were performed using complete dictiongries- m) and overcomplete dic-
tionaries(n > m) on both synthetically generated data and natural images. Performance was
measured in a number of ways. With synthetic data, performance meastiuekithe signal-
to-noise ratio (SNR) of the recovered souragscompared to the true generating source and
comparing the learned dictionary with the true dictionary. For images of natgaes, the true

underlying sources are not known, so the accuracy and efficidribg dmage coding are found.

2.5.1 Complete dictionaries: Comparison with ICA

To test the FOCUSS-FDL and FOCUSS-CNDL algorithms, simulated data weated
following the method of (Engan et al., 1999, Engan, 2000). The dictioAarfysize 20 x 20 was
created by drawing each element from a normal distribution with: = 0, 02 = 1 (written
asN(0, 1)) followed by a normalization to ensure thatl|z = 1. Sparse source vectors,

k = 1...1000 were created withr = 4 non-zero elements, where thenonzero locations are
selected at random (uniformly) from tB6 possible locations. The magnitudes of each non-zero
element were also drawn froi (0, 1) and limited so that;; > 0.1. The input datay; were
generated using = Ax (no noise was added).

For the first iteration of the algorithm, the columns of the initialization estimﬁtg,;t,
were taken to be the firat = 20 training vectorgy;. The initial x; estimates were then set to the

~ ~ ~

pseudoinverse solutiaty, = Al ., (AinitAL ) lyr. The constant parameters of the algorithm
were set as followsy = 1.0, v = 1.0, and A\, = 2 x 1072 (low noise, assumed SNR 27 dB).
The algorithms were run for 200 iterations through the entire data set, aimg) éach iteration
Awas updated after updating 100 data vecirs

To measure performance, the SNR between the recovered satiraasd the the true

sourcesry were calculated. Each element[:] was considered as a time series vector with
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Signal-to-noise ratio (SNR) of recovered sources

FOCUSS-CNDL s
FOCUSS-DL e
Extended ICA S —

Fast ICA ‘ {
T T T T
15.0 18.0 21.0 24.0 27.0 30.0

SNR (dB) (+/- std dev)

Figure 2.1: Comparison between FOCUSS-FDL, FOCUSS-CNDL, Extelik and FastiICA
on synthetically generated data with a complete dictioragize 20x20. The signal-to-noise
ratio (SNR) was computed between the recovered soarcand the true sources,. The mean
SNR and standard deviation were computed over 20 trials.

1000 elements, and SNRr each was found using,
x[i]|]?
SNR; = 10log; <||$k%|1]k—{l?|lc[l]||2> (2.5.1)
The final SNR is found by averaging SNBver thei = 1...20 vectors and 20 trials of the
algorithms. Because the dictionady is only learned to within a scaling factor and column
permutations, the learned sources must be matched with correspondinguroessand scaled
to unit norm before the SNR calculation is done.

The FOCUSS-FDL and FOCUSS-CNDL algorithms were compared with E&teidA
(Lee et al., 1999) and FastICA(Hyvarinen et al., 1999). Figure 2.1 shows the SNR for the
tested algorithms. The SNR for FOCUSS-FDL is 27.7 dB which is a 4.7 dB impremeover
Extended ICA, and for FOCUSS-CNDL the SNR is 28.3 dB. The avenagéme for FOCUSS-
FDL/CNDL was 4.3 minutes, for FastICA 0.10 minutes and for Extended ICA thihutes on

a 1.0 GHz Pentium Ill Xeon computer.

8Matlab and C versions of Extended ICA can be found at:
http://www.cnl.salk.edu{tewon/ICA/code.html. Matlab code for Fast ICA can be found
at. http://www.cis.hut.fi/projects/ica/fastica/ .
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2.5.2 Overcomplete dictionaries

To test the ability to recover the trueandzx;, solutions in the overcomplete case, dictionar-
ies of size 20x30 and 64x128 were generated. Diversitias set to fixed values (4 and 7) and
randomly (5..10 and 10..15). The elementsdofnd the sources; were created as in Section
2.5.1.

The parameters were set as follows= 1.0,y = 1.0, \pax = 2 x 1073, The algorithms
were run for 500 iterations through the entire data set, and during eaatidted was updated
after updating 100 data vectors.

As a measure of performance, we find the number of columnd tfat were matched
during learning. Becausé can only be learned to within column permutations and sign and
scale changes, the columns are normalized so|that = ||a;|| = 1 and A is rearranged
columnwise so thai; is given the index of the closest match.n(in the minimum 2-norm
sense). A match is counted if

1 —|al@;| < 0.01. (2.5.2)

Similarly, the number of matching,, are counted (after rearranging the elements in accordance

with the indices of the rearrange@)
1 — |z'7;] < 0.05. (2.5.3)

If the data is generated by ahthat is not column normalized, other measures of performance
need to be used to comparg andz.

The performance is summarized in Table 2.1, which compares the FOCUE8#AHRDthe
column normalized algorithm (FOCUSS-CNDL). For the 20x30 dictionary1f4lning vectors
were used, and for the 64x128 dictionary 10,000 were used. Resellévaraged over four or
more trials. For the 64x128 matrix amd= 10..15, FOCUSS-CNDL is able to recover 99.5%
(127.4/128) of the columns oft and 94.6% (9463/10,000) of the solutiong to within the
tolerance given above. This shows a clear improvement over FOCD&Svhich only learns
80.3% of theA columns and 40.1% of the solutiong.

Learning curves for one of the trials of this experiment (Figure 2.2) shasvmost of the
columns of A are learned quickly within the first 100 iterations, and that the diversity ®f th
solutions drops to the desired level. Figure 2.2b shows that it takes sorlewter to correctly

learn thexy, and that reinitialization of the low sparsity solutions (at iterations 175 angl 350
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(A) Matching columns in A =128
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Figure 2.2: Performance of the FOCUSS-CNDL algorithm with overcompletmdary A size
64x128. (A) The number of correctly learned columnsfat each iteration(B) The number

of sourcesr;, learned.(C) The average diversityn(- sparsity) of ther;. The spikes in graphs
(B) and (C) indicate where some solutiafis were reinitialized because they were not sparse
enough.

helps to learn additional solutions. Figure 2.2c shows the diversity atiemation, measured

as the average number of elements of egcthat are larger thaih x 1074,

2.5.3 Image data experiments

Previous work has shown that learned basis functions can be useddaalata more effi-
ciently than traditional Fourier or wavelet bases (Lewicki and Olshau€99). The algorithm
for finding overcomplete bases of Lewicki and Olshausen (1999) isdasigned to solve the

problem (2.1.1), but differs from our method in a number of ways, inclydising only the
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Table 2.1: Synthetic data results

LearnedA columns Learned:
Algorithm Size ofA r Avg. SD % Avg. SD %
FOCUSS-FDL 20x30 7 25,3 34 84.2%| 6759 141.0 67.6%
FOCUSS-CNDL  20x30 7 28.9 1.6 96.2% | 8468 97.6 84.7%

FOCUSS-CNDL  64x128 7 11253 21 97.9% | 9414.0 406.5 94.1%
FOCUSS-CNDL  64x128 5-10, 126.3 1.3  98.6% | 9505.5 263.8 95.1%
FOCUSS-FDL 64x128  10-15 102.8 4.5  80.3% | 4009.6 499.6  40.1%
FOCUSS-CNDL  64x128  10-1% 1274 1.3  99.5%| 9463.4 330.3 94.6%

Laplacian prior f = 1), and using conjugate gradient optimization for finding sparse solutions
(whereas we use the FOCUSS algorithm). Itis widely believed that oveltletanppresentations
are more efficient than complete bases, but in (Lewicki and Olshaug®8) fhe overcomplete
code was less efficient (measured in bits/pixel entropy), and it waesteghythat different priors
could be used to improve the efficiency. Here, we show that our algoritfabléslearn more
efficient overcomplete codes for priors wjth< 1.

The training data consisted of 10,000 8x8 image patches drawn at ramolonblack and
white images of natural scenes. The paramgters varied fron0.5..1.0, and the FOCUSS-
CNDL algorithm was trained for 150 iterations. The complete dictionary (6pwé&é compared
with the 2x overcomplete dictionary (64x128). Other parameters wereyset:0.01, A\, =
2 x 1073. The coding efficiency was measured using the entropy (bits/pixel) metkod d
scribed in (Lewicki and Olshausen, 1999). Figure 2.4 plots the entrepyeeonstruction error
(root-mean-square-error, RMSE), and shows that wher: 0.9 the entropy is less for the
overcomplete representation at the same RMSE.

An example of coding an entire image is shown in Figure 2.3. The original tegfeima
(Figure 2.3a) of size 256x256 was encoded using the learned dictisnd?etches from the
test image were not used during training. Table 2.2 gives results for Idvhigh compression
cases. In both cases, coding with the overcomplete dictionary (64xi/28)lggher compression
(lower bits/pixel) and lower error (RMSE). For the high compression ¢kigure 2.3b and
c), the 64x128 overcomplete dictionary gives compression of 0.777 bis/aixerror 0.328,
compared to the 64x64 complete dictionary at 0.826 bits/pixel at error 0.B28.amount of
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Table 2.2: Image compression results

Dictionary p | Compression RMSE Average
size (bits/pixel) diversity
64x64 0.5 2.450 0.148 17.3
64x128 0.6 2.410 0.141 15.4
64x64 0.5 0.826 0.329 4.5
64x128 0.6 0.777 0.328 4.0

compression was selected by adjustlng, (the upper limit of the regularization parameter). For

high compression .., = 0.02 and for low compressioA,,., = 0.002.

2.6 Discussion and Conclusions

In this paper, we have applied a variety of tools and perspectives (inglidieas drawn
from Bayesian estimation theory, nonlinear regularized optimization, andegbeytbf majoriza-
tion and convex analysis) to the problem of developing algorithms capatdienottaneously
learning overcomplete dictionaries and solving sparse source-vectos@ngroblems.

The test experiment described in Section 2.5.2 is a difficult problem debkigraetermine
if the proposed learning algorithm can solve for the kndwe solutions forA and the spare
source vectors;, to the underdetermined inverse problgm= Ax;. Such testing, which does
not appear to be regularly done in the literature, shows how well an algociéim extract stable
and categorically meaningful solutions from synthetic data. The ability t@panivell on such
test inverse-problems would appear to be at least a necessary comaliteomalgorithm to be
trustworthy in domains where a physically or biologically meaningful spaskeisn is sought,
such as occurs in biomedical imaging, geophysical seismic sounding, meititeagking, etc.

The experimental results presented in Section 2.5.2 show that the FOCU8lgdadithms
can recover the dictionary and the sparse sources vectors. Thidiculaaly gratifying when
one considers that little, or no, optimization of the algorithm parameters haglbee. Further-
more, the convergence proofs given in the appendices only showsrgence to a local optima,

whereas one expects that there will be many local optima in the cost funaeauge of the
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Figure 2.3: Image compression using complete and overcomplete dictioradémg with an
overcomplete dictionary is more efficient (fewer bits/pixel) and more acc(iater RMSE).
(A) Original image of size 256x256 pixel§B) Compressed with 64x64 complete dictionary
to 0.826 bits/pixel at RMSE = 0.329C) Compressed with 64x128 overcomplete dictionary to

0.777 bits/pixel at RMSE = 0.328.
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Comparison of image coding efficiency
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Figure 2.4: Comparing the coding efficiency of complete and 2x overcomptesentations
on 8x8 pixel patches drawn from natural images. The points on the anevihe results from
different values op, at the bottom rightp = 1.0, and at the top lefty = 0.5. For smallemp, the
overcomplete case is more efficient at the same level of reconstructan(RMSE).

concave prior and the generally multimodal form of the cost function.

One should note that the algorithm (2.3.27) was constructed precisely wittpotdeof
solving inverse problems of the type considered here, and thereferenost be careful when
comparing the results given here with other algorithms reported in the literdtorenstance,
the mixture-of-gaussians prior used in (Attias, 1999) does not nadgssdorce sparsity. While
other algorithms in the literature might perform well on this test experiment, toasedh our
knowledge, possible comparably-performing algorithms such as (Atti@8, L&rolami, 2001,
Hyvarinen et al., 1999, Lewicki and Olshausen, 1999) have not been @starge overcom-
plete matrices to determine their accuracy in recovedngnd so any comparison along these
lines would be premature. In Section 2.5.1, the FOCUSS-DL algorithms werpared to the
well-known Extended ICA and FastICA algorithms, in a more conventionalnils complete
dictionaries. Performance was measured in terms of the accuracy ($theyecovered sources
x, and both FOCUSS-DL algorithms were found to have significantly bettéonpesince (al-
beit with longer run-times).

We have also shown that the FOCUSS-CNDL algorithm can learn an ouptete repre-

sentation which can encode natural images more efficiently than completelbassed from
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data (which in turn are more efficient than standard non-adaptive ,bsisels as Fourier or
wavelet bases (Lewicki and Olshausen, 1999)). Studies of the huisweal gortex have shown a
higher degree of overrepresentation of the fovea compared to thenminemals, which suggests
an interesting connection between overcomplete representations anidaeisitya and recogni-
tion abilities (Popovic and $gtrand, 2001).

Because the coupled dictionary learning and sparse-inverse solvinittatgs are merged
and run in parallel, it should be possible to run the algorithms in real-time to tretidrehry evo-
lution in quasistationary environments once the algorithm has essentiallyrgedvé®ne way to
to this would be to constantly present randomly encountered new sigpats,the algorithm at
each iteration instead of the original training set. One also has to ensutidiabary learning
algorithm is sensitive to the new data so that dictionary tracking can ochigwbuld be done
by an appropriate adaptive filtering of the current dictionary estimatemddy the new-data
derived corrections, similarly to techniques used in the adaptive filteringtiiter (Kalouptsidis
and Theodoridis, 1993).
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2.A The Frobenius—Normalized Prior Learning Algorithm

Here we provide a derivation of the algorithm (2.3.19)-(2.3.20) andeptioat it converges
to a local minimum of (2.3.15) on the manifold: = {A| ||A||r =1} C R"™*" defined in
(2.3.17). Although we focus on the development of the learning algorithifi-pthe derivations
in subsections 2.A.2 and 2.A.3, and the beginning of subsection are daangdoeral constraint
manifold A.
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2.A.1 Admissible Matrix Derivatives.

The Constraint Manifold .A-. In order to determine the structural form of admissible deriv-
atives, A = %A for matrices belonging tol.,° it is useful to view.A: as embedded in the finite
dimensional Hilbert space of matricé&7"*", with inner product

(A,B) =tr(ATB) =tr (BT A) = tr (ABT) = tr (BAT).

The corresponding matrix norm is tkeobenius norm

|A|| = ||Allp = Vir ATA = Vir AAT .

We will call this space th€robenius Spacand the associated inner product Eiebenius inner
product It is useful to note the isometry,

AeR™" <« A =vec(A) e R™,

whereA is themn-vector formed by “stacking” the columns df. Henceforth, bolding repre-
sents the stacked version of a matrix (eB.= veq B)). The stacked vectoA belongs to the
standard Hilbert spade™”, which we shall henceforth refer to as thacked Spacé his space

has the standard Euclidean inner product and norm,
(A,B)=ATB, |A| =VATA.
It is straightforward to show that
(4,B) = (A,B) and |[|A]l = [A]l.
In particular, we have
Ac A= A=Al =1.

Thus, the manifold (2.3.17) corresponds to they(— 1)—dimensional unit sphere in the Stacked
SpaceR™" (which, with a slight abuse of notation, we will continue to denote4y. It is
evident that4dr is simply connected so that a path exists between any two elemedtsasfd,

in particular, a path exists between any initial value for a dictiondgy,c A, used to initialize

a learning algorithm, and a desired target valdig, € A:.*°

9Equivalently, we want to determine the structure of elemehts the tangent spacé A,
to the smooth manifoldd, at the pointA.

19For example, fob < ¢ < 1, take thel—parameterized path
_ (1 - t) Ainit +t Afinal

||(1 - t) Ainit + tAfinaIH ’

A(t)
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Derivatives on A;: The Tangent SpaceT'A-. Determining the form of admissible deriv-
atives on (2.3.17) is equivalent to determining the form of admissible diegaon the unit
R™"—sphere. On the unit sphere, we have the well-known fact that

AGAF:>%||A||2:2ATA:0:>ALA.
This shows that the general form Afis A = AQ, whereQ is arbitrary and

AAT
A= <I - HAH2> = (I- AAT) (2.A1)

is the Stacked Space projection operator onto the tangent space of tfe"{irisphere at the
point A (note that we used the fact thgtl|| = 1). The projection operatoA is necessarily
idempotentA = A2. A is also self-adjointA = A*, where the adjoint operatadt* is defined

by the requirement that,

(A"Q1,Q2) = (Q1,AQz) , forall Q1,Q2 € R™,

showing thatA is an orthogonal projection operator. In this cadg, = A”, so that self—
adjointness corresponds dobeing symmetric. One can readily show that an idempotent, self—
adjoint operator is non—negative, which in this case corresponds tymmaetric, idempotent
operatorA being a positive semidefinite matrix.

This projection can be easily rewritten in the Frobenius Space,
A=AQ=Q- (A, QA= A=AQ=0Q—-A,QA=Q-tr(ATQ)A. (2.A2)
Of course this result can be derived directly in the Frobenius Space thsrfact that
Aede— Ljap =2 <A A> —2tr(ATA) =0
dt 9 9
from which it is directly evident that
AcTA at Ac A = <A, A> —trATA=0, (2.A.3)

and therefored must be of the forrt

Ao ( _ T
A_AQ_Q—U(ATA)A_Q—U(A Q)A. (2.A.4)
] e., it must be the case that= I — 'ﬁﬁﬁ' = I — |A) (A, using the physicist’s “bra-ket”

notation.
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One can verify thal\ is idempotent and self-adjoint and is therefore a non—negative, ortabgo
projection operator. It is the orthogonal projection operator fil®fi*"* onto the tangent space
T Ae.

In the Stacked Space (with some additional abuse of notation) we reptbeequadratic
form for a positive semidefinite symmetric matric@s as

|Al3y = ATWA.

Note that this is a weighted norm if, and only W is positive definite, which might not be
the case by definition. In particular, whadN = A, the quadratic formj A ||% is only positive
semidefinite. Finally, note from (2.A.4) thetd € A,

AQ=0+= Q=cA, with c=tr(A7Q). (2.A.5)

2.A.2 Minimizing the Loss Function Over a General Manifold .A

Consider the Lyapunov function,
Vv (X, A) = (dy(y — Az) + Ady(2)),, , A€ A, (2.A.6)

where A is some arbitrary, but otherwise appropriately defined, constraint mduiésociated
with the prior (2.3.13). Note that this is precisely the loss function to be minimized3m®). If

we can determine smooth parameter trajectories (i.e., a parameter-vectatiadaple)( X, A)
such that along these trajectorf'éQX, A) <0, then as a consequence of the La Salle invariance
principle (Khalil, 1996) the parameter values will converge to the largestigmt set (of the

adaptation rule viewed as a nonlinear dynamical system) contained in the set
P ={(X,4)|Vy(X,4)=0anda e A} . 2.A7)

The setl’ contains the local minima dfy. With some additional technical assumptions (gen-
erally dependent upon the choice of adaptation rule), the elemeitsvdf contain only local
minima of V.

Assuming the iidy = 2 gaussian measurement noise case of (213.8)e loss (Lyapunov)

12Note that in the appendix, unlike the notation used in equation (2¢3.8%q. the “hat”
notation has been dropped. Nonetheless, it should be understoocethatiftitiesd and X are
unknown parameters to be optimized over in (2.3.15), while the measured-ségtarsY are
known.
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function to be minimized is then,
1
Vn(X,A) = <§||Ax—y||2+>\dp(x)> , AeA, (2.A.8)
N

which is essentially the loss function to be minimized in (2.3}5).
Suppose for the moment, as in (2.3.4)—(2.3.9), ag assumed to be known and note that

then (ignoring constant terms dependingXrandY’) Vy can be rewritten as

Vn(4) = (tr(Az—y)(Az —y)"),
= (tr(Aza” AT) - 2tr (Azy") +tr(yy"))
= trAS,, AT —2tr A%,
Vn(A) = tr {AS,, AT —24%,,},
for ¥, and¥,, = ng defined as in (2.3.10). Using standard results from matrix calculus

(Dhrymes, 1984), we can show tHa (A) is minimized by the solution (2.3.9). This is done by

setting,

) ~
and using the identities (valid fé# symmetric),
Ot AW AT = 24w and 2-tr AB = BT
0A N 0A B )

This yields (assuming thai,, is invertible),

o~ . ~
S V(@A) =248, - 25, = 2 (AEM _ zyx) —0,

= A=3%,51

)
which is (2.3.9) as claimed. Fat,, non-singular, the solution is unique and globally optimal.
This is, of course, a well-known result.

Now return to the general case (2.A.8), where b&tland A are unknown. For the data
indexed byk = 1,--- , N, define the quantities

dip = dy(xy), e(x) =Azx —y, and e, = Axy, —yi .

13The factor% is added for notational convenience and does not materially affect the
derivation.
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The loss function and its time derivative can be written,

= 1€T.’I)€.’E X
WX A) = (3 @eto) £ Adfa))
VN(X,4) = ((2)é(@) + AVTdy(2) #)

- <e (2)(Ai + Ax) +)\Vpo(x)j:>N

Then, to determine an appropriate adaptation rule, note that

V=T +T, (2.A.9)
where
1 N
Ty = ((e"(x)A+ AV dp(2)) &), = =¥ ef A+ AVTdy) iy, (2.A.10)
and
1 N
_ T A _ T A
T, = <e (ac)Ax>N =~ ;ek Azy . (2.A11)
Enforcing theseparateconditions
T <0andTy <0, (2.A.12)

(as well as the additional condition thdte .4) will be sufficient to ensure thdty < 0 on A.
In this case the solution-containing $eof (2.A.7) is given by

T = {(X,A)|Ti(X,A) =0, Th(X,A) =0 andA € A} . (2.A.13)

Note that if A is known and fixed, thefi; = 0 and only the first condition of (2.A.12) (which
enforces learning of the source vectarg) is of concern. Contrawise, if source vectors,
which ensure that(z;) = 0 are fixed and know, thefi; = 0, and the second condition of
(2.A.12) (which enforces learning of the dictionary matei),is at issue.

2.A.3 Obtaining the x;, solutions with the FOCUSS algorithm

We now develop the gradient factorization based derivation of the F@Cal§orithm,
which provides estimates af, while satisfying the first convergence condition of (2.A.12). The
constraint manifoldA is still assumed to be arbitrary. To enforce the condifign< 0 and
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derive the first adaptation rule given in (2.3.19), we note that we cdarfatl;, = Vd(zy) as
(Kreutz-Delgado and Rao, 1997, Rao and Kreutz-Delgado, 1999)

de = OékaCUk

with o, = o, > 0 andIl,, = II; positive definite and diagonal for all nonzerp. Then,
defining3; = Aoy, > 0 and selecting an arbitrary set of (adaptable) symmetric positive-definite

matrices(2;, we choose the learning rule

i =~ {A ey, + A\Vdi } = = { (AT A+ BIL) 2, — ATy}, k=1,--- N,
(2.A.14)
which is the adaptation rule for the state estimatgs= z;, given in the first line of (2.3.19).

With this choice we obtain
= <HAT )+ AVd(z)[d)

1
= *NZHAT%vL)\de”Qk
k=1

N
1
=~ > (AT A+ BIl) @ — ATyil3, <0, (2.A.15)
k=1

2

as desired. Assuming convergence to the set (2.A.13) (which will betseles the case af-
ter we show below how to ensure that we also have< 0), we will asymptotically obtain
(reintroducing the “hat” notation to now denote converged parameter estimate

| (ATA+ BT ) @ — ATyl =0, k=1, N,
which is equivalent to
~ -1
fk:(ﬁTAJrﬁknk) Alye, k=1,--- N, (2.A.16)

at convergence. This is also equivalent to the condition given in thelifiesof (2.3.24), as
shown below.
Exploiting the fact thaf;, in (2.A.14) are arbitrary (subject to the symmetry and positive-

definiteness constraint), let us make the specific choice shown in (2.3.22),

Q=i (ATA+BI1,) ", me >0, k=1,--- ,N. 2.A.17)
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Also note the (trivial) identity,
(ATA 4 ) I AT = AT (AT AT + 1)
which can be recast nontrivially as
(ATA +p10) ' AT =111 AT (BI + ATT1AT) " (2.A.18)
With (2.A.17) and (2.A.18), the learning rule (2.A.14) can be recast as
i = =i {a — TAT (Bl + ATAT) Ty} k=1, N, (2.A.19)

which is the alternative learning algorithm (2.3.23). At convergenceifWhe= 0) we have the

condition shown in the first line of (2.3.24),

Fp = I 1AT (ﬁkl + ﬁn—lﬂ)_ Uk - (2.A.20)
This also follows from the convergence condition (2.A.16) and the identi#.{8), showing
that the result (2.A.20) is independent of the specific choide,of- 0. Note from (2.A.14) and
(2.A.15) thatT; =0 alsoresultsinc, =0fork =1,--- | N, so that we will have converged to
constant values;,, which satisfy (2.A.20).

For the case dknown fixed A, the learning rule derived here will converge to sparse solu-
tions,z,, and when discretized as in Section 2.3.3, yields (2.3.26) which is the kniotiongry
FOCUSS algorithm (Rao and Kreutz-Delgado, 1998a, 1999).

Note that the derivation of the sparse source-vector learning algorghenWwhich enforces
the conditionT; < 0, is entirely independent of any constraints placeddosuch as, for ex-
ample, the unit Frobenius-norm and column-norm constraints consittetted paper) or of the
form of the A-learning rule. Thus alternative choices of constraints placed,@s considered
in (Murray and Kreutz-Delgado, 2001) and described in Appendix®&iBnot change the form
of thez;-learning rule derived here. Of course, becausecthiearning rule is strongly coupled
to the A-learning rule, algorithmic performance and speed of convergence rakpevhighly
sensitive to conditions placed ohand the specificl learning algorithm used.

2.A.4 Learning the dictionary A

General Results. We now turn to the enforcement of the second convergence condition,
0 and the development of the dictionary adaptation rule shown in (2.3.19j, &rin (2.3.20)
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we define the error termA as
1 N
5A = (e(x)2”) =% > e(zn)at = A¥ps — Sye (2.A.21)
k=1

using the fact that(z) = Az — y. Then, from (2.A.11), we have

Ty = <eT(w)A:U>N = <tl‘ (xeT(x)A) >N =tr (<meT(x)>N A) =tr <(5ATA) = 6ATA.
(2.A.22)
So far, these steps are independent of any specific constraints thhemkaced o, other
than the manifold4 be smooth and compact. With constrained to lie on a specified smooth,
compact manifold, to ensure correct learning behavior it is sufficient tos@phe constraint

that A lies in the tangent space to the manifold and the conditionZthat 0.

Learning on the Unit Frobenius Sphere,.A-. To ensure thaf, < 0 and thatA is in the
tangent space of the unit sphere in the Frobenius sRéc¢e we take

A= —pASA = A= —pNsA = —p (6A—tr(AT6A)A) , pu>0, (2.A.23)

which is the adaptation rule given in (2.3.19). With this choice, and using thi6y@semidefi-
niteness ofA, we have
Ty = —pll5AJ[3 <0,

as required. Note that at convergence, the condifipes 0, yields A = 0, so that we will have
converged to constant values for the dictionary elements, and

from (2.A.5), wherer = tr (XT&Z). Thus, the steady-state solution is
A=Yy (Sss—c) € Ar. (2.A.25)

Note that (2.A.20) and (2.A.25) are the steady state values given earli2Big4).

2.B  Convergence of the Column—Normalized Learning Algorithm

The derivation and proof of convergence of the column—normalizeditgamlgorithm,
applicable to learning members 4f, is accomplished by appropriately modifying key steps of
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the development given above in Appendix 2.A. As in Appendix A, the stahBaclidean norm
and inner product apply to column vectors, while the Frobenius norm awed product apply to

m X n matrix elements oR™*",

2.B.1 Admissible Matrix Derivatives

The Constraint Manifold A.. Lete; = (0---010---0)7 € R” be the canonical unit
vector whose components are all zero except for the value “1” inrthdocation. Then

n
I = Zeie? and a; = Ae; .
=1

Note that
lai|? = al'a; = (Ae;)T Ae; = el AT Aey =tresel ATA =tr MFA = (M;, A)

where

M; & Aeel’ = ael =[00---0a;0--- 0] € R™*", (2.B.1)
Note that only the-th column of M; is nonzero and is equal & = i-th column of A. We
therefore have that

n
A=>"M;. (2.B.2)
=1
Also, fori,j =1,--- ,n,
(M;, Mj) = trM] M; = tree] AT Aeje] =tre] AT Aejel e; = ||as||” 65 , (2.B.3)
whered; ; is the Kronecker delta. Note, in particular, thiat|| = || ;]|

Let A € Ac, whereA. is the set of column-normalized matrices, as defined by (2.3.28).
Ac is anmn — n = n(m — 1)—dimensional submanifold of the Frobenius spRE¢E*™ as each

of then columns ofA is normalized as

las|* = [1M;]]* =

9

S

and

n

n n n
JAP =trATA=tr > MIY M;=> |lail|* = =1,
j=1 i=1

=1
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using linearity of the trace function and property (2.B.3). It is evidenteioee, that
Ac C AF,

for A defined by (2.3.17).

We can readily show thad; is simply connected, so that a continuous path exists between
any matrixA = A,;; € Ac to any other column normalized mattiX = Ag,., € Ac. Indeed, let
A andA’ be such that

A=lay,...,ay), A =]ld},...,al],

lail| = |ld}]| = 1/vn, Vij=1,--,n.

There is obviously a continuous path entirely g from A € Ac to the intermediate matrix
[d},ag,...,a,] € Ac. Similarly, there is a continuous path entirely.ity from [a], ag, ..., ay)
to [a},d), ...,a,], @and so on tdd},...,a,] = A’. To summarize A is a simply—connected
(nm — n)—dimensional submanifold of the simply connected: — 1)—dimensional manifold
Ar and they are both submanifolds of then)—dimensional Frobenius spaé&*".

Derivatives on.A.: The Tangent Spacel’ Ac. . For convenience, far=1,--- ,n define
a; ~
ai - - na;, ||a’l” :17
[ladll
— M; 7 —
and M, = :\/ﬁMi:aiei s ||Mz” =1.
(| M|
Note that (2.B.3) yields,
<J\71\7j> = tr MIM; = 6, (2.B.4)
For anyA € A. we have foreach=1,--- |n,
0= 4 llag|? = 4 ala; = 4 el AT Ae; = 2el AT Ae; = 2treel ATA=2tr MFA,
dt dt dt
or
AeAC¢»<M,»,A>:trMiTA:o for i=1,---,n. (2.B.5)
In fact,

AeTAcat Ac A & <J\Z,A>:trz\7ﬁ:o for i=1,---,n. (2.B.6)
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Note from (2.B.2) and (2.B.5) that

<A,A>:<§;M,~,A>:O,

showing that (see (2.A.30.A. C T A, as expected from the fact thdt C A-.
An important, and readily proven fact, is that foreach 1,-- - , n,

trMfA=0 < A=PQ, (2.B.7)
for some matrix); and projection operatoF;;, defined by
PQ2 Q- M (M,Q) = Q- MtrM/Q. (2.B.8)
From (2.B.4), it can be shown that the projection operatoramute
PP;=PFP;P, i#j, 4,j=1,---,n, (2.B.9)

and aredempotent
P’=P, i=1,---,n. (2.B.10)

2

Indeed, it is straightforward to show from (2.B.4) that for@ll

PPiQ = PiPQ=Q~M; (M, Q) - M (M;,Q) , forall i#j,  (2B.11)
and
PIQ=Q - M, (M,Q) = PQ, i=1,n. (2.B.12)
It can also be shown that,
(-Pina Q2> = <Q17 -PZQ2>
showing thatP; is self-adjoint,P; = P;.
Define the operator,
P=P---P,. (2.B.13)

Note that because of the commutativity of tRg the order of multiplication in the right hand
side of (2.B.11) is immaterial and it is easily determined tRas idempotent,

P:=p.
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By induction on (2.B.11), it is readily shown that
PQ=Q— M <J\71,Q> — =M, <J\7nQ> Q- 21\7<J\7Q> . (2.B.14)
=1

Either from the self—adjointness and idempotency of é3cbr directly from (2.B.14), it can be

shown thatP itself is self-adjoint,P = P*,

(PQ1,Q2) = (@1, PQ2) .

ThusP is the orthogonal projection operator fraR¥* <™ ontoT" Ac.

As a consequence, we have the key result that.
AeTA.atA < A=PQ, forsomematrixQ ¢ R™*", (2.B.15)

This follows from the fact that givef), then the right hand side of (2.B.6) is true fér= PQ.
On the other hand, if the right hand side of (2.B.6) is truedowe can take) = A in (2.B.15).
Note that for theél'.A.—projection operatoh given by (2.A.2), we have that

P=AP=PA,

consistent with the fact that A C T A-.
Letg;, i = 1,--- ,n be the columns of) = [¢: - - - ¢»]. The operatior)’ = P;Q, corre-
sponds to
g=q, i#j, and ¢j=(—aa,)g,

while the operatior®)’ = PQ, corresponds to
qQ:(I—aiaf)qi, i:1,~-,n.

2.B.2 Learning on the Manifold .4,

The development of equations (2.A.6)—(2.A.22) is independent of tleéspraature of the
constraint manifold4 and can be applied here to the specific casd et A.. To ensure that

T, < 0in equation (2.A.22) and that € T'A., we can use the learning rule,

A= —puP§A=—pu (5A - ZMUEM> : (2.B.16)
i=1
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for > 0 andd A given by (2.A.21). With the-th column of§ A denoted bya;, this corresponds
to the learning rule,
di:—u(l—al )5@1, i=1,---.,n. (2.B.17)

With the rule (2.B.16), we have
T = <<5A, A> = 11 (A, P6A) = —p (A, P*5A) = —pu (P6A, PSA) = —p|| PSA|2 <0,

where we have explicitly shown that the idempotency and self-adjointng3sofresponds to
it being a non—negative operator. Thus we will have convergence larest invariant set for
which A = 0, which from (2.B.16) is equivalent to the set for which

PéA_éA—iJ\Z<J\//E,5A> —0. (2.B.18)
=1

This, in turn, is equivalent to

n

5A:§:J\Z<J\Z,5A>:Z M; (M;, 5A) = ch . (2.B.19)

i=1 i=1
with
ci & n(M;,6A) =naléa;, i=1,---,n.

An equivalent statement to (2.B.19) is
da; =cia;, 1=1,---,n.
Defining the diagonal matrix
C =diag|c, - , ¢
and recalling the definitions (2.A.21) and (2.B.1), we obtain from (2.B.19) tha
A¥yy — Yye = 0A = AC,

which can be solved as,
A=y (Bp —C) L. (2.B.20)

This is the general form of the solution found by thg-learning algorithm.



Chapter 3

Sparse Overcomplete Image Coding

Abstract

Images can be coded accurately using a sparse set of vectors fractmad@vercomplete
dictionary, with potential applications in image compression and feature seldotigpattern
recognition. We present a survey of algorithms that perform dictionamnieg and sparse
coding and make three contributions. First, we compare our overcomplétndiy learning
algorithm (FOCUSS-CNDL) with overcomplete independent componenysiadICA). Sec-
ond, noting that once a dictionary has been learned in a given domaindhkemprbecomes
one of choosing the vectors to form an accurate, sparse representedi@ompare a recently
developed algorithm (sparse Bayesian learning with adjustable variamgssians, SBL-AVG)
to well known methods of subset selection: matching pursuit and FOCUS&L, fioting that
in some cases it may be necessary to find a non-negative sparse ceelipggsent a modified
version of the FOCUSS algorithm that can find such non-negative cadiBfficient parallel

implementations in VLSI could make these algorithms more practical for many ajiqutisa

3.1 Introduction

Most modern lossy image and video compression standards have as &drapicnent
the transformation of small patches of the image. The discrete cosine ran@&&T) is the
most popular, and is used in the JPEG and MPEG compression standards& and Woods,
1993). The DCT uses a fixed set of basis vectors (discrete cosimasyoig spatial frequencies)

108
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to represent each image patch, which is typically 8x8 pixels. In recens yeeny algorithms
have been developed that learn a transform basis adapted to the stdttbgasput signals. Two
widely used basis-learning algorithms gmincipal component analysi$®CA), which finds an
orthogonal basis using second-order statistics (Oja, 1982)ndegendent component analysis
(ICA) which finds a non-orthogonal representation using higherratigistics (Pham and de-
Figueiredo, 1989, Jutten andtkhult, 1991). The set of bases used by PCA and ICA are complete
or undercomplete, i.e. the matrix defining the transformatlos R"*"™ hasm > n, implying
that the output has the same or lower dimensionality as the input. Newer atdsdgerithms
(Kreutz-Delgado et al., 2003, Lewicki and Sejnowski, 2000) allow treeafsan overcomplete
A, which we will refer to as dictionaryto distinguish it from a basis, which must by definition
be linearly independent (although some authors use the lhlagiseven when referring to an
overcomplete set). Dictionaries are also referred tivaases(Engan et al., 2001).

We discuss the problem of representing images with a highly sparse settofsvdrawn
from a learned overcomplete dictionary. The problem has receivesiderable attention since
the work of Olshausen and Field (1997), who suggest that this is thegstiaded by the visual
cortex for representing images. The implication is that a sparse, overdemgpeesentation is
especially suitable for visual tasks such as object detection and recoghaiomccur in higher
regions of the cortex. Non-learned dictionaries (often composed dfiGabctions) are used to
generate the features used in many pattern recognition systems (Weligasastnt, 2001), and
we believe that recognition performance could be improved by using lealicgonaries that
are adapted to the image statistics of the inputs.

The sparse overcomplete coding problem has two major parts: learningctimnary
adapted to the input environment, and sparsely coding new patterns uairdjdionary. We
present and compare experimentally algorithms for both of these taskeciin$3.2, we dis-
cuss sparse coding assuming a known, fixed dictionary using the follalgagithms: focal-
underdetermined system solver (FOCUSS) (Rao and Kreutz-Delg886),1sparse Bayesian
learning with adjustable-variance Gaussians (SBL-AVG) (Tipping, @08 modified match-
ing pursuit (MMP) (Cotter et al., 1999). With earlier algorithms such as PCA, and DCT
transforms, finding the coefficients requires only a matrix multiply, howe\tr an overcom-
plete dictionary the representation of a signal is underdetermined, saléivnal criteria such
as sparseness must be used. In Section 3.3, we discuss algorithmsriogiee dictionary:
FOCUSS-CNDL (column-normalized dictionary learning) (Murray andutzeDelgado, 2001,
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Kreutz-Delgado et al., 2003), and an overcomplete extension of ICAi¢keand Olshausen,
1999). Section 3.4 explains the evaluation method for comparing image cpdimgj$Section
3.5 presents the experimental results.

A key result of work in sparse overcomplete coding is that images (and d#ta) can
be coded more efficiently using a learned dictionary than with a non-adbpsesl (e.g. DCT,
wavelet or Gabor) (Lewicki and Olshausen, 1999, Engan, 2000).ekample, it is shown in
(Engan, 2000) (see their Table 5.3) that with from 1 to 12 vectors per ipaigpd, the distor-
tion with learned dictionaries is less than with DCT. Our earlier work using ézhdictionaries
has shown that overcomplete codes can be more efficient than leamgtet® codes in terms
of entropy (bits/pixel), even though there are many more coefficients thageimpiaels in an
overcomplete coding (Kreutz-Delgado et al., 2003). When sparseawgtete dictionaries are
used in complete compression systems, they have shown improved compm@ssictandard
techniques. A compression system based on methods closely related tetbsseted here
was shown to improve performance over JPEG for bit rates of 0.4 bitskixelower (Engan
et al., 2001). The tradeoff for this increased compression is that @vgiete coding is more
computationally demanding, but since the algorithms are based on matrix allgepeae easily
parallelizable and have potential for implementation in DSP or custom VLSin@ae] as dis-
cussed in Section 3.6. Sparse coding has many other applications in sigred$ing including
high-resolution spectral estimation, direction-of-arrival estimation, @peeding, biomedical
imaging and function approximation (see Rao and Kreutz-Delgado (1898 dre references
to these applications).

In some problems, we may desire (or the physics of the problem may dictate)egyative
sparse codings. An example of such a problem is modeling pollution, wheraniount of
pollution from any particular factory is non-negative (Paatero and diafd®94). Methods for
non-negative matrix factorization were developed by Lee and Seu®9)bdd applied to im-
ages and text. A multiplicative algorithm for non-negative coding was dpedl@and applied
to images by Hoyer (2002). A non-negative Independent Compormati/sis (ICA) algorithm
was presented by Plumbley (2003) (which also discusses other applatiohee and Seung
(1999), Hoyer (2002), Plumbley (2003) only the complete case wasdaryed. Here, in Sec-
tion 3.2.1, we present an algorithm that can learn non-negative sduocesn overcomplete
dictionary, which leads naturally to a learning method that adapts the dictitoraych sources.
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3.2 Sparse Coding and Vector Selection

The problem of sparse coding is that of representing someydataR™ (e.g. a patch of
an image) using a small number of non-zero components in a source xectd®™ under the
linear generative model

y=Ax+v, (3.2.1)

where the full-row rank dictionaryt € R™*™ may be overcompletex(> m), and the additive
noisev is assumed to be Gaussiap,= N(0,02). By assuming a priopx (z) on the sources,
we can formulate the problem in a Bayesian framework and find the maxienpwsteriori

solution forz,

%)

= argmaxp(x|A4,y)
= argm}z&x[logp(ym,x)—|—long(x)]. (3.2.2)

By making an appropriate choice for the prio¢(x), we can find solutions with high sparsity
(i.e. few non-zero components). We defsarsityas the number of elements &fthat are
zero, and the related quantitiversityas the number of non-zero elements, so that divetsity
(n — sparsity. Assuming the prior of the sourcesis a generalized exponential distribution of
the form,

px(x) = ce M) (3.2.3)

where the parameterand functiond, (x) determine the shape of distribution ani$ a normal-
izing constant to ensunex (x) is a density function. A common choice for the prioris for

the functiond,(x) to be thep-norm-like measuré,
dp(x) = |x[lF =" |zP, 0<p<1, (3.2.4)
i=1

wherez; are the elements of the vectar Whenp = 0, d,,(x) is a count of the number of non-
zero elements of (diversity), and sa,(x) is referred to as diversity measuréKreutz-Delgado
et al., 2003).

With these choices faf,(x) andp,, we find that,

X = argmax[logp(y[4,x) +logpx (x)]
= argmxinHy—Ax||2+AHx|yg. (3.2.5)

IForp < 1,

x|, = (dp(x))% is nota norm.
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The parametek can be seen as a regularizer that adjusts the tradeoff between sgatwms
(high X\) and accurate reconstruction (Iow. In the limit thatp — 0 we obtain an optimization
problem that directly minimizes the reconstruction error and the diversity. dVhenp = 1

the problem no longer directly minimizes diversity, but the right-hand-sid@.@.5) has the
desirable property of being globally convex and so has no local minimapHhd cost func-

tion is used irbasis pursuif{Chen and Donoho, 1998), where the resulting linear programming
problem is usually solved with an interior point method.

Some recent theoretical results have determined conditions under whiph=the (basis
pursuit) solution finds the truep (= 0) sparsest solution (Donoho and Elad, 2003). However,
an evaluation of these bounds has shown that the conditions are restréctdl that in fact the
global optima associated wih= 1 only finds the sparsest solution when that sparsity is very
high (Wipf and Rao, 2004a). These results and related experimentstehbtw practice the
p = 1 cost function does not always correspond with the sparsest solatidrthatp < 1 often

provides a more desirable cost function (Wipf and Rao, 2004b).

3.2.1 FOCUSS and Non-negative FOCUSS

For a given, known dictionaryi, thefocal underdetermined system sol{fEOCUSS) was
developed to solve (3.2.5) for< 1 (Gorodnitsky et al., 1995, Rao and Kreutz-Delgado, 1999).
The FOCUSS algorithm was first applied to the problem of magnetoencegpaphy (MEG),
where spatially localized signals in the brain mix with each other before reatha sen-
sors, leading to the related problems of localizing the sources and remaowiegited artifacts
(Gorodnitsky et al., 1995, Vayio and Oja, 2000).

FOCUSS is an iterative re-weighted factored-gradient approachnamcbnsistently shown
better performance than greedy vector-selection algorithms such apbesis and matching
pursuit, although at a cost of increased computation (Rao and Krelgadie 1999). Previous
versions of FOCUSS have assumed tkas unrestricted oiR”. In some cases however, we
may require that the sources be non-negatiye> 0. This amounts to a change of prior &n
from symmetric to one-sided, but this results in nearly the same optimization praislé3.2.5).
To create a non-negative FOCUSS algorithm, we need to ensure that #ne initialized to
non-negative values, and that each iteration keeps the sources inattielderegion. To do

so, proposing a one-sided (asymmetrical) diversity meagy(te), the non-negativdFOCUSS
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algorithm can be derived,

n'(x) = diag|z[*?)
_ AA
A = Amax<1—M> . A>0
]l
R« T RAT (M + AT ®)AT) 'y
0 /l‘\l <0
T , (3.2.6)
2 >0

where) is a heuristically-adapted regularization term, limited\py, which controls the tradeoff
between sparsity and reconstruction error (higher valugdexd to more sparse solutions, at the
cost of increased error). We denote this algorithm FOCUSS+, to distimfyois) the FOCUSS
algorithm (Kreutz-Delgado et al., 2003) which omits the last line of (3.2.6¢ dstimate ok
is refined over iterations of (3.2.6) and usually 10 to 50 iterations are ddedeonvergence
(defined as the change inbeing smaller than some threshold from one iteration to the next).
That the form of the nonnegative FOCUSS+ is closely related to FOCUS $ortunate
property of the prior structure used here, and it is not the case inadhat the nonnegative
version of a sparse coding algorithm will be of similar form to the unrestrigegdion. The
SBL-AVG algorithm of the next section is an example of a sparse codingitilgothat cannot
easily be used for nonnegative coding.

3.2.2 Sparse Bayesian Learning with Adjustable-Variance Gassian Priors (SBL-
AVG)

Recently, a new class of Bayesian model characterized by Gaussiarsgpuices with
adjustable variances has been developed (Tipping, 2001). These meeléie linear generating
model (3.2.1) for the data but instead of using a non-Gaussian sparsity inducing prior on the
sourcest (as FOCUSS does), they use a flexibly-parameterized Gaussian prior,

n

px(x) = p(x|y) = [ [NV (il0, %) , (3.2.7)

i=0
where the variance hyperparametgrcan be adjusted for each component When~; ap-
proaches zero, the density.afbecomes sharply peaked making it very likely that the source will
be zero, increasing the sparsity of the code. The algorithm for estimatirgpthiees has been
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termedsparse Bayesian learnin@BL), but we find this term to be too general, as other algo-
rithms (including the earlier FOCUSS algorithm) also estimate sparse componamayesian
framework. We use the term SBL-AVG (adjustable-variance gaussidr® moore specific.

To insure that the prior probability(x|v) is sparsity-inducing, an appropriate prior on the
hyperparametey must be chosen. In general, the Gan(lm.‘é la, b) distribution can be used for
the prior of~;, and in particular withu = b = 0, the prior ony; becomes uniform. As shown
in Section 3.2 of Bishop and Tipping (2003), this leadg(te;) having a Student’s t-distribution
which qualitatively resembles thig-norm-like distributions (with) < p < 1) used to enforce
sparsity in FOCUSS and other algorithms.

SBL-AVG has been used successfully for pattern recognition, wittopegnce compara-
ble to support vector machines (SVMs) (Tipping, 2001, Bishop and Tip@#003). In these
applications the known dictionany is a kernel matrix created from the training examples in
the pattern recognition problem just as with SVMs. The performance ofSBE was similar
to SVM in terms of error rates, while using far fewer support vectors-{@erozx;) resulting in
simpler models. Theoretical properties of SBL-AVG for subset selectiwe been elucidated
by Wipf and Rao (2004b), and simulations on synthetic data show supetifarmance over
FOCUSS and other basis selection methods. To our knowledge, reswdtadtdyeen previously
reported for SBL-AVG on image coding.

The posterior density of is a multivariate Gaussian,

p(xly,T,0%) = N(p, 5x) , (3.2.8)
which has mean and covariance,
p=o25Aly
Se = (024TA4+T71) 7 (3.2.9)

where the matriX® contains the hyperparameteysi.e. I' = diag(«y). To implement the SBL-
AVG algorithm for findingx, we perform iterations of the update,

% TAT (02T + ATAT) 1y

Vi (Sx)ii + pi - (3.2.10)
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Iterative updates for the parametérare given by,

o — %Hy — Apl* + fj Z; (1= (0 (Zxia] - (32.11)
The iterations for the varianee’ and hyperparametess were derived by Wipf and Rao (2004b)
using the expectation maximization (EM) algorithm and are assumed to be updatachl-
lel at each iteration. As the iterations proceed, some values will be driven to 0, which
leads to those components — 0, increasing the sparsity of the solution. For compression
and coding applications, it is desirable to have a parameter that controlsession, and for
SBL-AVG we use a constant? (instead of the update far? in eq. 3.2.11). Higher values
of ¢2 admit more error in the reconstruction, and so result in higher compressierest-
ingly, the updates (3.2.10) are quite similar in form and computational complexihetéO-
CUSS iterations (3.2.6) even though they are derived with different 8ayepriors, with the
main difference being the update of the weighting matridés!(x) for FOCUSS and" for
SBL-AVG). Software called “SparseBayes” that implements SBL-AVG lwafound aht t p:
/I www. resear ch. nmicrosoft.conim p/ RVM def aul t . ht m which was used in the
experiments below. Note that the algorithm in (3.2.10) is functionally equivédetnose pre-
sented by Tipping (2001), Bishop and Tipping (2003) and that we reawvetten it to be consis-
tent with our notation and emphasize the computational similarity to FOCUSS. ldoveegat-
ing a non-negative version of SBL-AVG proves much more difficult themHOCUSS because
of the need to integrate a Gaussian distribution with non-diagonal covar@mt the positive
orthant (Muirhead, 1982). Naively adding a non-negative consti@®BL-AVG (such as in the
last line of eq. 3.2.6) does not result in a working algorithm.

3.2.3 Modified Matching Pursuit (MMP): Greedy vector selection

Many variations on the idea of matching pursuit, or greedy subset seleb@ve been
developed (Mallat and Zhang, 1993b, Cotter, 2001). Here, we usdiatbthatching pursuit
(MMP) (Cotter et al., 1999) which selects each vector (in series) to minimizetidual repre-
sentation error. The simpler matching pursuit (MP) algorithm is more computhyieffecient,
but provides less accurate reconstruction. For the case of notiveegaurces, matching pursuit
can be suitably adapted, and we call this algorithm MP+.

In MMP, the maximum number of vectors to select,s prespecified. At each iteration
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t=1...r,avector is added to the set of selected vecipes {k; ...k},
ki = arg max lalb; 1|, 1 ¢ 11, (3.2.12)

wherea; are the columns oft andb;_; is the residual at iteratioh— 1. The selected vector at
iterationt is denotedny,. For the first iteration, we séf, = y (the signal to be represented).
The residual is updated using,

b; =b;_1 — (q?bt—l)qtv (3.2.13)

whereq; is found by iteratively constructing aiﬁ) as follows,

(0)

a, = a;, q=0
a) = ay V- (oAl g, i=1.
~(t
_ A
UG = (3.2.14)
[Evegl

The operation in (3.2.13) is a projection of the residwabnto the range space of the orthogonal
complement oéll the selected vectors. The simpler MP algorithm replaces the step (3.2.13) with
a projection of the residual onto the orthogonal complement of the only lbetse vectory, .

The MP algorithm is more computationally efficient but provides less accueatastruction.
More details and comparisons can be found in Cotter et al. (1999), C2ti@t ).

The algorithm can be stopped when eitherectors have been chosen or when the residual
is small enough|/b,|| < ¢, wheree is a constant threshold that defines the maximum acceptable
residual error. To find the coefficients of the selected vectors, a ndvixrigcreated with the
selected columnsd; = [ay, ...a,]. The coefficient values corresponding to each vector are
found using the pseudoinverse Af,

x, = (ATA) ATy . (3.2.15)

To form the estimat&, the elements ot are placed into the selected colunins

3.3 Dictionary Learning Algorithms

In the previous section we discussed algorithms that accurately anctlypaagresent a
signal using a known, predefined dictionady Intuitively, we would expect that ifA were
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adapted to the statistics of a particular problem that better and sparseseefations could be
found. This is the motivation that led to the development of the FOCUSS-CNCEtlodary
learning algorithm. Dictionary learning is closely related to the problem of I@écivusually
deals with a completel but can be extended to an overcompldi€¢Lewicki and Sejnowski,
2000).

In this section we discuss the FOCUSS-CNDL (Murray and Kreutz-Delgad01) and
overcomplete ICA algorithm of Lewicki and Sejnowski (2000). We briefigntion other over-
complete dictionary learning algorithms: Engan et al. (2001, 2005) dexeltpge method of
optimal directions (MOD) and applied it in an image compression system; GiroR0QLj de-
veloped a variational approach similar to that of SBL-AVG; Palmer and t&rBelgado (2003)
used the Bayesian maximuanposteriori(MAP) framework and a new notion of relative con-
vexity to ensure sparse solutions; and Aharon et al. (2005) devetopaljorithm based on the
singular value decomposition (K-SVD).

3.3.1 FOCUSS-CNDL

The FOCUSS-CNDL algorithm solves the problem (3.2.1) when both theessxrand
the dictionaryA are assumed to be unknown random variables (Kreutz-Delgado et @B).20
The algorithm contains two major parts, a sparse vector selection step &tobaaty learning
step which are derived in a jointly Bayesian framework. The sparsengetection is done by
FOCUSS (or FOCUSS+ if non-negativg are needed), and the dictionary learnidagupdate
step uses gradient descent.

With a set of training dat& = (y1,...,y~) we find the maximuna posterioriestimates
AandX = (%, ...,%y) such that
A N
(A4, X) = arg g{g; [lyr — Axi]|* + Ady(x2)] (3.3.1)

whered,(x) = ||xx||} is the diversity measure (3.2.4) that measures (or approximates) the num-
ber of non-zero elements of a source vestpi(see Section 3.2).

The optimization problem (3.3.1) attempts to minimize the squared error of thestaoon
tion of y, while minimizingd, and hence the number of non-zero elementg;inThe problem
formulation is similar to ICA in that both model the inplitas being linearly generated by un-
knownsA and X, but ICA attempts to learn a new matfik which linearly produces estimates
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X1 (by Wy = X;) where the components , are as statistically independent as possible. ICA
in general does not result in as sparse solutions as FOCUSS-CNDh gpécifically uses the
sparsity-inducingion-linear iterative FOCUSS algorithm to fiig.

We now summarize the FOCUSS-CNDL algorithm which was fully derived bguka-
Delgado et al. (2003). For each of thedata vectory in Y, we can update the sparse source
vectorx;, using one iteration of the FOCUSS or FOCUSS+ algorithm (3.2.6). Aftertinyisy,
for a certain number of the data vectors (the blockéVzg the dictionaryﬁ is re-estimated,

| Nso N
Yyx = Ng ;ykxk y Yggx = Na k::leXk ;
§A = A%q — By
XHE—U(aﬁ—tr(ﬁTaﬁ)ﬁ) . 4 >0, (3.3.2)

wheren is the learning rate parameter. Each iteration of FOCUSS-CNDL consigtslafing all

Xk, k = 1...N with one FOCUSS iteration (3.2.6), interspersed by dictionary updates)®8.2
everyNpg vectorsx,, (which usest calculated from the updatéd), estimates). After each update
of A, the columns are adjusted to have equal nfag| = |a;||, in such a way thafl has unit
Frobenius norm| A||» = 1. Matlab code for the FOCUSS, FOCUSS-CNDL and non-negative
variants can be found &t t p: / / dsp. ucsd. edu/ ~j f nurray/ sof t war e. ht m

3.3.2 Overcomplete Independent Component Analysis (ICA)

Another method for learning an overcomplete dictionary based on ICA wasdaped by
Lewicki and Olshausen (1999), Lewicki and Sejnowski (2000). ndkiercomplete case, the
sources must be estimated as opposed to in standard ICA (which assuoneglete dictionary
A), where the sources are found by multiplying by a learned mékfjxyielding the estimates
x = Wy. In Lewicki and Olshausen (1999) the sources are estimated using aedamtifijugate
gradient optimization of a cost function closely related to (3.2.5) that usebk-tloem (derived
using a Laplacian prior os). The dictionary is updated by gradient ascent on the likelihood
using a Gaussian approximation (Lewicki and Olshausen (1999), &q. 20

Lewicki and Sejnowski treat the dictionary as a deterministic unknown atel that the

classical maximum likelihood estimate dfis determined from maximizing the marginalized



119

likelihood function,
p(X|A) = /p(Y,X\A)dw = /p(Y|X)p(X)dX. (3.3.3)

whereX = (x,...,xy)andY = (yi1,...,yn), andx; andyy, k = 1,..., N, are related via
equation (3.2.1). Unfortunately, for supergaussian sparsity-indyciogs, such as thg-norm—
like density shown in equations (3.2.3) and (3.2.4), this integration is genaratitable. To
circumvent this problem Lewicki and Sejnowski approximate this integrahking a Gaussian
approximation to the prior evaluated at the MAP estimate of the source veé€tolsained from
a current estimate ofl. This is specifically done for the Laplaciagn= 1 prior by solving the
/1 (i.e., p = 1 basis pursuit) optimization problem using a conjugate gradigoptimization
algorithm, see Section 3 of Lewicki and Olshausen (1999).

After performing the marginalization integration, a dictionary update which ttiithbs”
the resulting approximate likelihood functi@(vﬂA) is given by,

§A — A({(mxf), +1) (3.3.4)
A — A-—néa,
where,
Zi = VI lnp(fck) y (335)

and(-) ,, denotes arV-sample average. The update rule (3.3.4) is valigfer 1 as long as no
single componenty ;, k = 1,--- ,N,i = 1,---n, is identically zero. Using\ as in (3.2.3) for
p = 1, the update rule (3.3.4) is equivalent to

SA — A(I-\2L) (3.3.6)
A = (1-nA+mASE,, (3.3.7)
where,
N
Y7o = (I(Xy,) %%, ) ZH Xp) X X1 = ZSIgr(xk %1, (3.3.8)
k=1 k=1
with,
II(x) = diag(|z;|™!) and sigrix) = [sign(z1), - - - ,sign(z,)]” . (3.3.9)

Matlab software for overcomplete ICA can be founthéit p: / / wwww 2. ¢s. cnu. edu/

~l ewi cki /.
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3.4 Measuring performance

To compare the performance of image coding algorithms we need to measunednid
ties: distortion and compression. As a measure of distortion we use a nomhadztemean-

square-error (RMSE) calculated over Allpatches in the image,

N 7
— S 12
RMSE= — | — k§1 vk — A%l?| (3.4.1)

whereo is the empirical estimate of the variance of the elemgpi$or all the y;, assuming
i.i.d.), N is the number of image patches in the data set,and the size of each vectgry.
Note that this is calculated over the image patches, leading to a slightly diffedentation than
the mean-square error over the entire image.

To measure how much a given transform algorithm compresses an imageeda coding
algorithm that maps which coefficients were used and their amplitudes intdieiergfbinary
code. The design of such encoders is generally a complex undertakithgs outside the scope
of our work here. However, information theory states that we can estintateeabound on the
coding efficiency if we know the entropy of the input signal. Following the meétbf Lewicki
and Sejnowski (cf. Lewicki and Sejnowski (2000) eq. 13) we estimaetitropy of the coding
using histograms of the quantized coefficients. Each coefficiex} iis quantized to 8 bits (or
256 histogram bins). The number of coefficients in each bi.i§ he limit on the number of

bits needed to encode each input vector is,

256

#bits > bitsjm = — > CN log, f; , (3.4.2)
=1

where f; is the estimated probability distribution at each bin. We fise- ¢;/(Nn), while in
Lewicki and Sejnowski (2000) a Laplacian kernel is used to estimate thgtgde The entropy
estimate in bits/pixel is given by,

entropy= blt:;m , (3.4.3)

wherem is the size of each image patch (the vegt@). It is important to note that this esti-
mate of entropy takes into account the extra bits needed to encode anropéate ¢ > m)

dictionary, i.e. we are considering the bits used to encodeig@ade pixel not each coefficient.
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3.5 Experiments

Previous work has shown that learned complete bases can provide fficieneimage
coding (fewer bits/pixel at the same error rate) when compared with ptetldases such as
Gabor, Fourier, Haar and Daubechies wavelets (Lewicki and Olehad999). In our earlier
work (Kreutz-Delgado et al., 2003) we showed that overcomplete dictema can give more
efficient codes than complete bases. Here, our goal is to compare méihledsning overcom-
plete A (FOCUSS-CNDL and overcomplete ICA), and methods for coding images 4ras
been learned, including the case where the sources must be nonsaegati

3.5.1 Comparison of dictionary learning methods

To provide a comparison between FOCUSS-CNDL and overcomplete 1@Ai¢ki and
Sejnowski, 2000), both algorithms were used to trafid & 128 dictionary A on a set o8 x 8
pixel patches drawn from images of man-made objects. For FOCUSS-Ciahing of A
proceeded as described by Kreutz-Delgado et al. (2003), for 1Efidles overN = 20000
image patches with the following parameters: learningnate0.01, diversity measurg = 1.0,
blocksize Nz = 200, and regularization parametdf,,, = 2 x 10~4. Training overcomplete
ICA for image coding was performed as described by Lewicki and Ok#a1999). Both
overcomplete ICA and FOCUSS-CNDL have many tunable parameters, sngeiterally not
possible to find the optimal values in the large parameter space. Howetreglgorithms have
been tested extensively on image coding tasks. The parameters ofropégt® ICA used here
were those in the implementation foundrett p: / / www 2. ¢s. cnu. edu/ ~I ewi cki /,
which was shown by Lewicki and Olshausen (1999) to provide improwddhg efficiency over
non-learned bases (such as DCT and wavelet) as well as other Ibmsesi(PCA and complete
ICA). We believe that the parameters used have been sufficiently optintz#ufimage coding
task to provide a reasonably fair comparison.

Once anA was learned with each method, FOCUSS was used to compare image coding
performance, with parameteps= 0.5, iterations= 50, and the regularization parameter,,
was adjusted over the ranffe005, 0.5] to achieve different levels of compression (bits/pixel),
with higher )., giving higher compression (lower bits/pixel). A separate test set wasasedp
of 15 images of objects from the COIL database of rotated views of holgsebjects (Nene
etal., 1996).
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Comparing dictionary learning methods
0.4 . . . . .

—#— Focuss—-CNDL
0.35} —<&— Overcomplete ICA |

0.3}
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0.05 . . . . . .
0.2 0.4 0.6 0.8 1 12 14 1.6
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Figure 3.1: Image coding with 64x128 overcomplete dictionaries learned @IGIFSS-CNDL
and overcomplete ICA. Images were sparsely coded using the FOCU&8hatgwithp = 0.5
and the compression level (bit rate) was adjusted by varying € [0.005,0.5], with higher
values giving more compression (lower bit/pixel), left side of plot. Resuétsaeeraged over 15
images.

Figure 3.1 shows the image coding performance of dictionaries learnegl BEOIGUSS-
CNDL and overcomplete ICA. Using the FOCUSS-CNDL dictionary provitletter perfor-
mance, i.e. at a given level of RMSE error images were encoded osge/eith fewer bits/pixel
(bpp). FOCUSS was used to code the test images, which may give anaglvémthe FOCUSS-
CNDL dictionary as it was able to adapt its dictionary to sources generdtie F@QCUSS (while

overcomplete ICA uses a conjugate gradient method to find sources).

3.5.2 Comparing image coding with MMP, SBL-AVG and FOCUSS

In this experiment we compare the coding performance of the MMP, SBG-AWd FO-
CUSS vector selection algorithms using an overcomplete dictionary on a sgtrefnade im-
ages. The dictionary learned with FOCUSS-CNDL from the previousrarpet was used,
along with the same 15 test images. For FOCUSS, parameters were setwas:fplle- 0.5,
and compression (bits/pixel) was adjusted with, € [0.005,0.5] as above. For SBL-AVG,
we set the number of iterations to 1000 and the constant noise parareters varied over
[0.005, 2.0] to adjust compression (with higher valuescdf giving higher compression). For
MMP, the number of vectors selectedvas varied from 1 to 13, with fewer vectors selected
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giving higher compression.

Figure 3.2 shows examples of an image coded with the FOCUSS and SBL{gg(&lams.
Images of size 64x64 pixels were coded at high and low compression.lavélsth cases, SBL-
AVG was more accurate and provided higher compression, e.g. MSE@Ds. 0.0026 at
entropy 0.54 vs 0.78 bits/pixel for the high compression case. In termsusdigp the SBL-AVG
case in the bottom right of Figure 3.2 requires only 154 nonzero coeific{ef 8192, or about
2%) to represent the image.

Figure 3.3 shows the tradeoff between accurate reconstruction (lowHREI®I compres-
sion (bits/pixel) as approximated by the entropy estimate (3.4.3). The lowénfighe curves
represents the higher accuracy/lower compression regime, and in thes the SBL-AVG al-
gorithm performs best, with lower RMSE error at the same level of comipresét the most
sparse representation (upper left of the curves) where only 1 otidrthcy vectors are used to
represent each image patch, the MMP algorithm performed best. Thisdsterpn the case of
1 vector per patch, where the MMP finds the optimal single vector to match tbe iGpding
times per image on a 1.7 GHz AMD processor (Matlab implementation) are: FOQGB558
sec, SBL-AVG 17.96 sec, MMP 0.21 sec.

3.5.3 Image coding with non-negative sources

Next, we investigate the performance tradeoff associated with using egative sources
x. Using the same set of images as in the previous section, we learn al newR%4x128
using the non-negative FOCUSS+ algorithm (3.2.6) in the FOCUSS-CNDiodary learning
algorithm (3.3.2). The image gray-scale pixel values are scalgd [0, 1] and the sources
are also restricted to; > 0 but elements of the dictionary are not further restricted and may be
negative. Once the dictionary has been learned, the same set of 15 imsagjesve were coded
using FOCUSS+.

Figure 3.4 shows an image coded using MP+, FOCUSS+ and MMP (whishnesgtive
coefficients). Restricting the coding to non-negative sources in MPwsshelatively small
increases in MSE and number of coefficients used, and a decrease mguoagy. FOCUSS+
is visually superior and provides higher quality reconstruction (MSE &0&1L 0.0027) at
comparable compression rates (0.77 vs. 0.76 bits/pixel). Figure 3.5 shoasrtipression/error

tradeoff when using non-negative sources to code the same set ahteggs as above. As
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Original Low compression  High compression

[
[

FOCUSS

MSE: 0.0011 MSE: 0.0026

BPP: 0.78 BPP: 0.56

232 non-zero 161 non-zero (of 8192)
o

MSE: 0.0011 MSE: 0.0021

BPP: 0.68 BPP: 0.54

214 non-zero 154 non-zero (of 8192)

Figure 3.2: Images coded using an overcomplete dictionary (64x128)ekbavith FOCUSS-

CNDL algorithm. Below each coded image are shown the mean-squarg &), the esti-

mated entropy in bits/pixel (BPP) and the number of non-zero coefficiestd 10 encode the
entire image.

expected, there is a reduction in performance when compared with metlabdsdipositive and
negative sources especially at lower compression levels.

3.6 Potential for VLSI Implementation

While we have focused on the differences between the sparse codidiginnary learning
algorithms presented above, each may be suited to a particular class oatapplicvhich may
require the use of dedicated VLSI or DSP hardware to achieve theshepded and power effi-
ciency. From a VLSI implementation standpoint, all the algorithms share soriratiedraits:
they rely on easily parallelizable matrix operations, have simple logic flows (meeplyated
iterations), and have low memory requirements. For the sparse codingtlaigmrthe most
time consuming operation is the matrix inversion required at each iterationg & only one
matrix inversion is required after the selected columnsidre chosen). Instead of comput-
ing the matrix inverse and subsequent matrix multiply in FOCUSS or SBL-AVGsyhtem of
equations can be solved directly with Gaussian elimination (Golub and Lo8&8).1Efficient

parallel algorithms and architectures for Gaussian elimination have beeloped, such as the
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Comparing vector selection
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Figure 3.3: Comparison of sparse image coding algorithms with a 64x128amptete dictio-
nary. Compression rates are adjusted by varying parameters for lgacitha: A, for FO-
CUSS,0? for SBL-AVG, and the number of vectors selectetbr MMP. Results are averaged
over 15 images.

division-free method of Peng and Sedukhin (1997). Progress cestittumade in increasing
the speed of the other required matrix algebra tasks, such as matrix multipliCsay and
Chang, 1995, Muhammad and Roy, 2002). Using the algorithms of Pen§exhdkhin (1997)
and Tsay and Chang (1995), we can find the number of multiplies and tinee-@wguired for
each iteration of FOCUSS and SBL-AVG (Table 3.1). (See Peng anckBed{1997), Tsay and
Chang (1995) for details on architecture and number of processing rieneguired.)

For both the FOCUSS-CNDL and overcomplete ICA dictionary learning dhgos, the
most time consuming step is the averaging of the sources in (3.3.2) and (8vBi&), could
be made more efficient with 2-D systolic arrays of processing elements1¢Z1i®98). For
calculation of¥ ¢, ann x n array of multiply-add processing elements can perform the vector
multiply and summation in one time step for each training sarhptel . . . N, reducing the time
complexity fromO(Nn?) for a serial implementation t&(N). In FOCUSS-CNDL, a similar

array ofm x n elements is needed to firkd 5.
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Original MMP MP+ FOCUSS+
MSE: 0.0024 MSE: 0.0027 MSE: 0.0016
BPP: 0.65 BPP: 0.76 BPP: 0.77
182 non-zero 187 non-zero 236 non-zero
(of 8192)

Figure 3.4: Image coding using non-negative sources (weights) withxh284overcomplete
dictionary learned with FOCUSS-CNDL+. Images were coded with MP+, B&&+, and MMP
(which uses negative coefficients, shown for comparison).

Image coding with positive sources
0.4 ‘ ‘ ‘ : : ;
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Figure 3.5: Image coding using non-negative sourcesith the FOCUSS curve from Figure
3.3 included for reference. Both experiments use a 64x128 overcondptétanary.
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Table 3.1: Number of multiples required for certain steps of each iteratioredf@CUSS and
SBL-AVG algorithms, given that the systems of equations in the second ateEolved with
the Gaussian elimination algorithm of Peng and Sedukhin (1997), and the nmatitiplies
are performed using the algorithm of Tsay and Chang (1995). Tima-twd¢hese parallel
algorithms is given in the right column.

FOCUSS(eq. 3.2.6)

Step of iteration Multiplies Time (par.)
A+ AT AT nm + nm? m+1

(M + AH’lAT)i1 y 3(m® +2m?) + O(2m? + m) dm
I-1AT (AT + AT AT) 'y nm? m

-1 = diag(|7;|*>?) O(n) 1
Totals: Sm3 + 3m? + 2nm? + nm + O(2m? + m+n)  6m+2

SBL-AVG (eq. 3.2.10)

Step of iteration Multiplies Time (par.)
02 + AT AT nm + nm? m+1
LAT (021 + AFAT)i1 3(m® +2nm?) + 0(2m? + nm)  4m+n—1
TAT (021 + ATAT) 'y nm 1
(Sx)ii = [[ = TAT (021 + ATAT) " AT, nm 1
Totals: %m:‘ + %nm2 + 3nm 5m+n+2

+0(2m? 4+ nm)
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3.7 Conclusion

We have discussed methods for finding sparse representations of insaugeevercomplete
dictionaries, and methods for learning those dictionaries to be adapted tmitfierp domain.
Images can be represented accurately with a very sparse code, with orddr of 2% of the
coefficients being nonzero. When the sources are unrestrictked®", the SBL-AVG algorithm
provides the best performance, encoding images with fewer bits/pixe¢ aatime error when
compared FOCUSS and matching pursuit. When the sources are requiredhtm-negative,
z; > 0, the FOCUSS+ and associated dictionary learning algorithm presentegiozide the
best performance. Based on the success of SBL-AVG, future waulddnclude the devel-
opment of dictionary learning algorithms that incorporate SBL-AVG into thetoreselection
step. While the increased performance of sparse overcomplete codireg @b the price of in-
creased computational complexity, efficient parallel implementations in VL8taoake these

algorithms more practical for many applications.
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Chapter 4

Detecting Rare Events in Time-Series
of Nonparametric Data

Abstract

We compare machine learning methods for detecting rare events in a time $arasyo
and nonparametrically-distributed data. The methods are applied to a diféaitkvorld prob-
lem: predicting computer hard-drive failure using attributes monitored intgrma individual
drives. We develop a new algorithm based on the multiple-instance learamgwork and the
naive Bayesian classifier (mi-NB) which is specifically designed for thefadse-alarm case,
and is shown to have promising performance. While not specific to visios t#sthe previ-
ous chapters, the new mi-NB algorithm may find uses in semi-supervised iratg®Gzation
tasks. Other methods compared are support vector machines (SVMshamised clustering,
and non-parametric statistical tests (rank-sum and reverse arrarggnidr failure-prediction
performance of the SVM, rank-sum and mi-NB algorithm is consideratitgib#nan the thresh-
old method currently implemented in drives, while maintaining low false alarm r@igstesults
suggest that nonparametric statistical tests should be considered fan¢garoblems involving
detecting rare events in time series data. An Appendix details the calculatianke$um signif-
icance probabilities in the case of discrete, tied observations, and weayweecommendations
about when the exact calculation should be used instead of the commedyrasnal approx-

imation. These normal approximations may be particularly inaccurate foevara problems

129
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like hard drive failures.

4.1 Introduction

We present a comparison of learning methods applied to a difficult reddipattern recog-
nition problem: predicting impending failure in hard disk drives. Modermlulives are reliable
devices, yet failures can be costly to users and many would benefitefwarning of potential
problems that would give them enough time to backup their data. The problefreccharacter-
ized as one of detecting rare events from a time series of noisy and aomgtaically-distributed
attributes.

Hard drive manufacturers have been developing self-monitoring témwo their prod-
ucts since 1994, in an effort to predict failures early enough to allowsusebackup their data
(Hughes et al., 2002). This Self-Monitoring and Reporting Technol&WART) system uses
attributes collected during normal operation (and during off-line tests)tta feélure prediction
flag. The SMART flag is a one-bit signal that can be read by operatistgisys and third-party
software to warn users of impending drive failure. Some of the attributebtognake the failure
prediction include counts of track-seek retries, read errors, writessfagallocated sectors, head
fly height too low or high, and high temperature. Most internally-monitorecbates are error
count data, implying positive integer data values, and a pattern of incgeatsiibute values (or
their rates of change) over time is indicative of impending failure. Each raatwrer devel-
ops and uses its own set of attributes and algorithm for failure predicticeryEime a failure
warning is triggered the drive can be returned to the factory for warraplacement, so man-
ufacturers are very concerned with reducing the false alarm ratesioftgorithms. Currently,
all manufacturers use a threshold algorithm which triggers a SMART flagnvany single at-
tribute exceeds a predefined value. These thresholds are setvativsty to avoid false alarms
at the expense of predictive accuracy, with an acceptable false aterom the order of 0.1%
per year (that is, one drive in 1000). For the SMART algorithm currenifglemented in drives,
manufacturers estimate the failure detection rate to be 3-10%. Our prevavkshas shown
that by using nonparametric statistical tests, the accuracy of correctigte@tailures can be
improved to as much as 40-60% while maintaining acceptably low false alarm(kughes
et al., 2002, Hamerly and Elkan, 2001).

In addition to providing a systematic comparison of prediction algorithms, threréna
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main novel algorithmic contributions of the present work. First, we cast #nd trive fail-
ure prediction problem as a multiple-instance (Ml) learning problem (Diektegical., 1997)
and develop a new algorithm termed multiple-instance naive Bayes (mi-NB)mIHNB algo-
rithm adheres to the strict Ml assumption (Xu, 2003) and is specifically degiwith the low
false-alarm case in mind. Our second contribution is to highlight the eféawss and compu-
tational efficiency of nonparametric statistical tests in failure predictionlenady even when
compared with powerful modern learning methods. We show that the tankiest provides
good performance in terms of achieving a high failure detection rate with l3& #arms at a
low computational cost. While the rank-sum test is not a fully general legmiethod, it may
prove useful in other problems that involve finding outliers from a knolassc Other meth-
ods compared are support vector machines (SVMs), unsupervisgdrahg using the Autoclass
software of Cheeseman and Stutz (1995) and the reverse-arrartgdestr(another nonpara-
metric statistical test) (Mann, 1945). The best performance overall efdsved with SVMs,
although computational times were much longer and there were many more pensatoeet.

The methods described here can be used in other applications wherec$sargy to detect
rare events in time series including medical diagnosis of rare diseasegdBund Sawilowsky,
1999, Rothman and Greenland, 2000), financial forecasting suatedisting business failures
and personal bankruptcies (Theodossiou, 1993), and predictirtgamieal and electronic device
failure (Preusser and Hadley, 1991, Weiss and Hirsh, 1998).

4.1.1 Previous Work in Hard Drive Failure Prediction

In our previous work (Hughes et al., 2002) we studied the SMART fapuegliction prob-
lem, comparing the manufacturer-selected decision thresholds to theuanktatistical test.
The data set used was from the Quantum Corporation, and containefdotiatavo drive mod-
els. The data set used in the present paper is from a different mamefa@and includes many
more attributes (61 vs. 14), which is indicative of the improvements in SMARTItorimg
that have occurred since the original paper. An important observatiade by Hughes et al.
(2002) was that many of the SMART attributes amparametrically distributecthat is, their
distributions cannot be easily characterized by standard parametric sthtistidel (such as
normal, Weibull, chi-squared, etc.). This observation led us to investigatpanametric sta-

tistical tests for comparing the distribution of a test drive attribute to the knastrikaition of
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good drives. Hughes et al. (2002) compared single-variate and mmidtevaank-sum tests with
simple thresholds. The single-variate test was combined for multiple attributegs aitogical
OR operation, that is, if any of the single attribute tests indicated that the weagenot from
the good population, then the drive was labeled failed. The OR-ed tdstped slightly better
than the multivariate for most of the region of interest (low false alarms). drpthsent paper
we use only the single-variate rank-sum test (OR-ed decisions) andacemgditional machine
learning methods, Autoclass and support vector machines. Another nfett®BIART failure
prediction, callechaive Bayes EMexpectation-maximization), using the original Quantum data
was developed by Hamerly and Elkan (2001). The naive Bayes EM islgloslated to the
Autoclass unsupervised clustering method used in the present worlg &small subset of the
features provided better performance than using all the attributes. Solneipaey results with

the current SMART data were presented in Murray et al. (2003).

4.1.2 Organization

This chapter is organized as follows: In Section 4.2, we describe the IMsRa set
used here, how it differs from previous SMART data and the notatiod fedrives, patterns,
samples, etc. In Section 4.3, we discuss feature selection using statistisauels as reverse
arrangements and z-scores. In Section 4.4, we describe the multiple exstamework, our new
algorithm multiple-instance naive-Bayes (mi-NB), the failure prediction #lgms, including
support vector machines, unsupervised clustering and the rank-suntSection 4.5 presents
the experimental results comparing the classifiers used for failure predaridthe methods of
preprocessing. A discussion of our results is given in Section 4.6 ardusions are presented
in Section 4.7. An Appendix describes the calculation of rank-sum signdeéevels for the
discrete case in the presence of tied values, and new recommendatigngaras to when the
exact test should be used instead of the standard approximate calculation.

4.2 Data Description

The data set consists of time series of SMART attributes from a single drigdelmand
is a different data set than that used in Hughes et al. (2002), Hametligl&an (2001) Data

!The SMART data set used in this paper is availabléniat p: // cnrr. ucsd. edu/
smart
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from 369 drives were collected, and each drive was labgtexti or failed, with 178 drives in
the good class and 191 drives in the failed class. Drives labeled asngyedrom a reliability
test, run in a controlled environment by the manufacturer. Drives labsl&adlad were returned
to the manufacturer from users after a failure. It should be noted thee Hie good drive data
were collected in a controlled uniform environment and the failed data caone drives that
were operated by users, it is reasonable to expect that there will leeetiffes between the
two populations due to the different manner of operation. Algorithms that attendgarn the
difference between the good and failed populations may in fact be leatisdifference and
not the desired difference between good and nearly-failing drive IssmpVe highlight this
point to emphasize the importance of understanding the populations in thendatarssidering
alternative reasons for differences between classes.

A sampleis all the attributes for a single drive for a single time interval. Each SMART
sample was taken at two hour intervals in the operating drives, and the eégest 800 samples
are saved on the disk. The number of available valid samples for ea@v dsidenotedV;,
and N; may be less than 300 for those drives that did not survive 600 howrsestion. Each
sample contains the drive’s serial number, the total power-on-hawis@other performance-
monitoring attributes. Not all attributes are monitored in every drive, and tiheonitored at-
tributes are set to a constant, non-informative value. Note that there isndarhental reason
why only 300 samples were collected; this was a design choice made bywaerdgmufacturer.
Methods exist by which all samples over the course of the drive’s lifdbeanrecorded for future
analysis. Figure 4.1 shows some selected attributes from a single goedatriy examples of
samples (each row) and patterns (the boxed area). When making a faihalietion apattern
x; € R™* (wherea is the number of attributes) is composed of theonsecutive samples and
used as input to a classifier. In our experimemt&as a design parameter which varied be-
tween 1 and 100. The paiX;, ;) represents the data in each drive, where the set of patterns is
X = [x1,...,xn;] and the classification §; € {0,1}. For drives labeled good/; = 0 and
for failed drives); = 1.

Hughes et al. (2002) used a data set from a different manufactirehwontained many
more drives (3744 vs. 369) but with fewer failed drives (36 vs. 19Ihe earlier data set
contained fewer attributes (14 vs. 61), some of which are found in thedagsvset but with
different names and possibly different methods of measurement. Algmadl and failed drive
data were collected during a single reliability test (whereas in the currernthsefailed drives
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Hours Temp1 ReadErr18 Servo10

1927 58 6 2944

1929 57 13 2688

1931 58 36 5184

1933 56 0 3776

Pattern 1935 57 0 4032
ofn=5 1937 58 0 4480
Samp|es 1941 56 0 8384
S 1943 57 2 7808
1945 57 3 2176

1947 56 14 3328

1949 57 3 2176

1951 56 8 2752

2534 56 4 2176

N total 2536 59 8 2752

Figure 4.1: Selected attributes from a single good drive. Each row of bherepresents a sam-
ple (all attributes recorded for a single time interval). The box shows telected consecutive
samples in each pattex} used to make a failure prediction at the time pointed at by the arrow.
The first sample available in the data set for this drive is from Hours =,18&2dnly the most
recent 300 samples are stored in drives of this model.

were returns from the field).

A preliminary examination of the current set of SMART data was done by pipttie
histograms of attributes from good and failed drives. Figure 4.2 showsgnisns of some
representative attributes. As was found with earlier SMART data, for nofrlge attributes
the distributions are difficult to describe parametrically as they may be multimsaleth @s the
Temp4 attribute) or very heavy tailed. Also noteworthy, many attributes haye taimbers of
zero values, and these zero-count bins are truncated in the plotse higgdy non-Gaussian
distributions initially lead us to investigate nonparametric statistical tests as a métfzildre
prediction. For other pattern recognition methods, special attention sheplaithto scaling and

other preprocessing.

4.3 Feature Selection

The process of feature selection includes not only deciding which attsilbatese in the
classifier, but also the number of time samplesused to make each decision, and whether
to perform a preprocessing transformation on these input time serieoude; these choices

depend strongly on which type of classifier is being used, and issueanfré selection will
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Figure 4.2: Histograms of representative attributes from good and faiteesdillustrating the
nonparametric nature of many of the attributes. Axis scales are diffeseriath plot to em-
phasize features of their distributions. Zero-count bins are much l#ngerplotted and the
count-axis is shortened accordingly.
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also be discussed in the following sections.

As will be demonstrated below, some attributes are not strongly correlateflivite drive
failure and including these attributes can have a negative impact on clagsifiermance. Be-
cause it is computationally expensive to try all combinations of attribute vakesse the fast
nonparametric reverse-arrangements test and attribute z-scorestify idetentially useful at-
tributes. If an attribute appeared promising with either method it was condiftareise in the

failure detection algorithms (see Section 4.4).

4.3.1 Reverse Arrangements Test

The reverse arrangements teist a nonparametric test for trend which is applied to each
attribute in the data set (Mann, 1945, Bendat and Piersol, 2000). kishese based on the idea
that a pattern of increasing drive errors is indicative of failure. Seppee have a time sequence
of observations of a random variable,: = 1...N. In our caser; could be, for example, the
seek error count of the most recent sample. The test statistie,>" ' A;, is the sum of all
reverse arrangementa/here a reverse arrangement is defined as an occurrenge-af ; when
i < j. To find A we use the intermediate sums and the indicator functioh,;,

N
A; = Z hi]‘ where hi]‘ = I(IL‘Z > LU]‘) .
j=i+1
We now give an example of calculatingfor the case ofV = 10. With datax (which is assumed
to be a permutation of the ranks of the measurements),

x = [z1,...,210] = [1,4,3,7,2,8,6,10,9,5] ,

the values of4; for: = 1...9 are found,

10 10 10
Av=D ;=0 Ay=3 hyy=2, ... Ag=3 hy=1,
j=2 j=3 7=9

with the valuegA4;] = [0,2,1,3,0,2,1,2,1]. The test statistici is the sum of these values,
A=12.

For large values oiV, the test statistici is normally distributed under the null hypothesis
of no trend (all measurements are random with the same distribution) with meamiaaudce
(Mann, 1945),

N(N —-1)

2
pa=———">, 03=

2N3 + 3N2 — 5N
I .

72
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For small values ofV, the distribution can be calculated exactly by a recursion (Mann, 1945,
eq. 1). First, we find the county (A) of permutations of 1, 2, ..., N} with A reverse arrange-
ments,
A
Cn(A) = Y Cnali),
i=A—N+1
whereCy(A) = 0 for A < 0 andCy(A) = 0. Since every permutation is equally likely with
probability% under the null hypothesis, the probability 4fis CNT(!A).
Tables of the exact significance levels 4fhave been made. For significance leugl

Appendix Table A.6 of Bendat and Piersol (2000) gives the acceptauions,
AN;l—a/Q <A< AN;a/Qa

for the null hypothesis of no trend in the sequengcéhat is, that:; are independent observations
of the same underlying random variable).

The test is formulated assuming that the measurements are drawn from aicostiis-
tribution, so that the ranks are distinct (no ties). SMART error count data values are discrete
and allow the possibility of ties. It is conventional in rank-based methodsdaattiom noise
to break the ties, or to use thaidrankmethod described in Section 4.4.6.

4.3.2 Z-scores

Thez-scorecompares the mean values of each attribute in either class (good or fdilisd). |

calculated over all samples,

mye—m
= f g
| 9%
ny T ng

wherem ¢ andoj% are the mean and variance of the attribute in failed drivesando; are the
mean and variance in good drives, andn, are the total number of samples of failed and good
drives. Large positive z-scores indicate the attribute is higher in thelgtigu of failed drive
samples, and that there is likely a significant difference in the means betweenand failed
samples. However, it should be noted that the z-score was developeddarttext of Gaussian
statistics, and may be less applicable to honparametric data (such as theoambattributes
collected by hard drives).
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4.3.3 Feature Selection for SMART Data

To apply the reverse arrangements test to the SMART data for the puffeseure extrac-
tion, the test is performed on a set of 100 samples taken at the end of the tieseasailable.
To break ties, uniform random noise within the rang®.1,0.1] is added to each value (which
are initially non-negative integers). The percentage of drives forhwtiie null hypothesis of
no trend is rejected is calculated for good and failed drives. Table 4.3.&ttstsutes and the
percent of drives that have significant trends for the good and fadgdlations. The null hy-
pothesis (no trend) was accepted 1868 < A < 2981, for a significance level higher than
99%. We are interested in attributes that have both a high percentage dfdeiles with sig-
nificant trends and a low percentage of good drives with trends, in thef beat an attribute
that increases over time in failed drives while remaining constant in gowddis likely to be
informative in predicting impending failure.

From Table 4.3.3 we can see that attributes such as Servo2, Rea@@&madr$ervol0 could
be useful predictors. Note that these results are reported for a teseafroup of 100 samples
from each drive using a predefined significance level, and no leamésgused. This is in
contrast to the way a failure prediction algorithm must work, which must st ef many
(usually N) consecutive series of samples, and if any fail, then the drive is prddiztail (see
Section 4.4.1 for details).

Some attributes (for example CSS) axanulative meaning that they report the number
of occurrences since the beginning of the drive’s life. All cumulativelattes either will have
no trend (nothing happens) or have a positive trend. Spin-ups is theemwhbmes the drive
motors start the platters spinning, which happens every time the drive igltamer when it
reawakens from a low-power state. It is expected that most drives avillimed on and off
repeatedly, so it is unsurprising that both good and failed drives shoeasing trends in Table
1. Most attributes (for example ReadErrorl8) report the number afromeces during the two-
hour sample period.

Table 4.3.3 lists selected attributes sorted by descending z-score. Attrieatethe top are
initially more interesting because of more significant differences in the méwaiss, the mean
value of an attribute (over all samples) for failed drives was higher tbagdod drives. Only
a few of the attributes had negative z-scores, and of these even@rersignificant. Some

attributes with negative z-scores also appeared to be measured impfopedyne drives.
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Attribute % Good | % Failed

Templ 11.8% 48.2%
Temp3 34.8% 42.9%
Temp4 8.4% 58.9%
GListl 0.6% 10.7%
PList 0.6% 3.6%
Servol 0.0% 0.0%
Servo2 0.6% 30.4%
Servo3 0.6% 0.0%
CSS 97.2% 92.9%

ReadErrorl 0.0% 0.0%
ReadErrorl 0.6% 5.4%
ReadError3 0.0% 0.0%
WriteError 1.1% 0.0%
ReadErrorl8 0.0% 41.1%
ReadError19 0.0% 0.0%

Servo7 0.6% 0.0%
ReadError20 0.0% 0.0%
GList3 0.0% 8.9%
Servol0 1.7% 39.3%

Table 4.1: Percent of drives with significant trends by the reversmgements test for selected
attributes, which indicates potentially useful attributes. Note that this test fisrped only

on the lastn = 100 samples of each drive, while a true failure prediction algorithm must test
each pattern of. samples taken throughout the drives’ history. Therefore, thesks&gically
represent an upper bound on the performance of a reverseyamants classifier. CSS are
cumulative and are reported over the life of the drive, so it is unsurgrisiat most good and
failed drives show increasing trends (which simply indicate that the degédken turned on and

off).

From the results of the reverse arrangements and z-score tests,f25ettibuted was
selected by hand from those attributes which appear to be promising duedasimg attribute
trends in failed drives and large z-score values. The tests also help d¢énaitidbutes that are

not measured correctly, such as those with zero or very high vartafbis. set of attributes was

2Attributes in the set of 25 are: GListl, PList, Servol, Servo2, ServeB;0S, ReadEr-
rorl, ReadError2, ReadError3, FlyHeight5, FlyHeight6, FlyHeigklyHeight8, FlyHeight9,
FlyHeight10, FlyHeight11, FlyHeightl2, ReadErrorl8, ReadErrorE9y&, Servo8, ReadEr-
ror20, GList2, GList3, Servol0.

3Attributes that were not used because all measurements were zeroean@2 TServo4,
ReadErr13-16. Also excluded are other attributes that appear to beimgasproperly for
certain drives are FlyHeight13-16, Temp5, and Temp6.
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used in the SVM, mi-NB and clustering algorithms (see the next sectionidindil attributes
in this set were tried one at a time with the rank-sum test. Attributes that progtsdifailure
detection with low false alarms in the classifiers were then used togethergstenst.5).

We note that the feature selection process is not a black-box automatic matitbde-
quired trial-and-error testing of attributes and combinations of attributes icldksifiers. Many
of the attributes that appeared promising from the z-score and rexeesegements tests did
not actually work well for failure prediction, while other attributes (suctirRaadError1l9) were
known to be important from our previous work and from engineeringanysics knowledge of
the problem gained from discussions with the manufacturers. While an aitdesure selec-
tion method would be ideal, it would likely involve a combinatorial optimization probiéhith
would be computationally expensive.

The z-scores for each attribute were calculated using the entire datahée, may lead
to questions about training on the test set. (The reverse-arrangemémageslculated using
only about 1/3 of the data). In practical terms, z-scores obtained uaimdpm subsets are
similar and lead to the same conclusions about attribute selection. Concegtoalgyer, the
issue remains: is it correct to use data that has been used in the feddatesegrocess in
the test sets used for estimating performance? Ideally, the reuse of datd bk avoided, and
thedouble-resamplingnethod should be used to estimate performance (Cherkassky and Mulier,
1998). In double-resampling, the data is divided intoaining set and gredictionset, with the
prediction set used only once to measure error, and the training sedrfditided intolearning
andvalidation sets that are used for feature selection and parameter tuning (by wayssf c
validation). Double-resampling produces an unbiased estimate of entdgrifinite data sets
the estimate can be highly dependent on the initial choice of training and poadiets, leading
to high variance estimates. For the hard-drive failure problem, the nurbeives is limited,
and the variance of the classification error (see Section 5) is alreadyhigliteFurther reducing
the data available by creating a separate prediction set would likely lead twénigimce error
estimates (the variance of which cannot be estimated). We note that for a@llaesfication
error results in Section 4.5, the test set was not seen during the traimiogsgr The issue just
discussed relates to the question of whether we have biased the resuligitg performed
statistical tests on the complete data set and used those results to inform stly menual)
feature and attribute selection process. The best solution is to collect rmtaréom drives to
validate the false alarm and detection rates, which a drive manufactuted wo in any case
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Attribute Z-score
Servob 45.4
Servol0 29.5
Writes 28.1

FlyHeight6 24.8
FlyHeight8 23.7
FlyHeight9 22.7
FlyHeight7 22.5
Reads 22.3
FlyHeight10 21.3
FlyHeight11 19.8
FlyHeight13 19.8
FlyHeight12 19.6
Servo2 16.2
ReadErrorl8 15.1
FlyHeightl 12.4
ReadErrorl 11.2
ReadError3 10.2
ReadErrorl 9.5
PList 8.3

Table 4.2: Attributes with large positive z-score values.

to test the method and set the operating curve level before actual implememftoproved
SMART algorithms in drives.

4.4 Failure Detection Algorithms

We describe how the pattern recognition algorithms and statistical tests diedapphe
SMART data set for failure prediction. First, we discuss the preprotg#sat is done before the
data is presented to some of the pattern recognition algorithms (SVM and Asspdlze rank-
sum and reverse-arrangements test require no preprocessirtgwidalevelop a new algorithm
called multiple-instance naive-Bayes (mi-NB) based on the multiple-instanogefvork and
especially suited to low-false alarm detection. We then describe how the 8dMresupervised
clustering (Autoclass) algorithms are applied. Finally we discuss the namgdric statistical
tests, rank-sum and reverse-arrangements.

Some notation and methods are common among all the pattern recognition algoAthms.
vectorx of n consecutive samples (out of tAétotal samples from each drive) of each selected
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attribute is used to make the classification, and every vecter @dnsecutive samples in the
history of the drive is used (see Figure 4.1). The lengtk isf(n x a) wherea is the number of
attributes. There ar® vectorsx created, with zeros prepended to thasa the early history of
the drive. Results are not significantly different if the early samples miged (that is,N — n
vectors are created) and this method allows us to make SMART predictions vethearly
history of the drive. If anyx is classified as failed, then the drive is predicted to fail. Since
the classifier is applied repeatedly to Allvectors from the same drive, each test must be very

resistant to false alarms.

4.4.1 Preprocessing: Scaling and Binning

Because of the nonparametric nature of the SMART data, two types abgesgsing were
considered: binning and scaling. Performance comparison of theogessing is given in Sec-
tion 4.5.

The first type of preprocessinglidnning (or discretization), which takes one of two forms:
equal-frequencyr equal-width(Dougherty et al., 1995). In equal-frequency binning, an at-
tributes’ values are converted into discrete levels such that the numbeunofscat each level
is the same (the discrete levels are percentile groups). In equal-width dpire@ioh attribute’s
range is divided into a fixed number of equal magnitude bins and valuesaverted into bin
numbers. In both cases, the levels are set based on the training seth thdoequal-width and
equal-frequency cases, the rank-order with respect to bin is pegséas opposed to converting
the attribute into multiple binary nominal attributes, one for each bin). Becaase éine a large
number of zeros for some attributes in the SMART data (see Figure 4.2gc@bpero-count
bin is used with both equal-width and equal-frequency binning. The twastgpbinning were
compared using the Autoclass and SVM classifiers. For the SVM, theltaftiibute scaling
in the algorithm implementation (MySVM) was also compared to binning (see 4.4.4).

Binning (as a form of discretization) is a common type of preprocessing ihimatearning
and can provide certain advantages in performance, generalizatiaoemitational efficiency
(Frank and Witten, 1999, Dougherty et al., 1995, Catlett, 1991). As slywDougherty et al.
(1995), discretization can provide performance improvements for certassifiers (such as
naive Bayes), and that while more complex discretization methods (such s ithmlving

entropy) did provide improvement over binning, the difference in peréorce between binning
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and the other methods was much smaller than that between discretization asdratizhtion.

Also, binning can reduce overfitting resulting in a simpler classifier which neagi@lize better
(Frank and Witten, 1999). Preserving the rank-order of the bins sdhbalassifier may take
into account the ordering information (which we do) has been shown to me@ovement over
binning into independent nominal bins (Frank and Witten, 1999). Finaltyniany algorithms,

it is more computationally efficient to train using binned or discretized attrib@teer than

numerical values. Equal-width binning into five bins (including the zeramtdin) was used
successfully by Hamerly and Elkan (2001) on the earlier SMART data sdtna significant

difference was found using up to 20 bins.

4.4.2 The Multiple-Instance Framework

The hard drive failure prediction problem can be cast amiliiple-instance learningrob-
lem, which is a two-class semi-supervised problem. In multiple-instance (Mbiteg we have
a set of objects which generate mangtancesof data. All the data from one object is known
as abag Each bag has a single labgb, 1}, which is assumed to be known (and given during
training), while each instance also has a true Igliell } which is hidden. The label of a bag is
related to the correct labeling of the instances as follows: if the label ¢f ieatance is 0, then
the bag label is 0; ifiny of the instances is labeled 1, then the bag label is 1. This method of
classifying a bag as 1 if any of its instances is labeled 1 is known adithesumptionBecause
the instance labels are unknown, the goal is to learn the labels, knowingt fleasst one of the
instances in each 1 bag has label 1, and all the instance labels in eackitbbiétbe O.

The hard drive problem can be fit naturally into the MI framework. Eaattepnx (com-
posed of: samples) is an instance, and the set of all patterns for adevbe bagX;. The terms
bag labelanddrive labelare interchangeable, with failed drives labe)d= 1 and good drives
labeled); = 0. The hidden instance (pattern) labels gygj = 1. ..V, for the N; instances in
each bag (drive). Figure 4.3 show a schematic of the Ml problem.

The multiple-instance framework was originally proposed by Dietterich etl8P%) and
applied to a drug activity prediction problem; that of discovering which mdéscieach of which
may exist in a number of different shapes, the group of all shapesdpecific molecule com-
prising a bag) bind to certain receptors, specifically that of smell recefainthe scent of musk.
The instances consist of 166 attributes that represent the shape pbdssible configuration of
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a molecule from X-ray crystallography, and the class of each moleculg ibaif the molecule
(any instance) smells like musk as determined by experts. The so-called™daisksets have
become the standard benchmark for multiple-instance learning.

The algorithm developed by Dietterich et al. (1997) is called axis-paratgingles, and
other algorithms were subsequently developed based on many of thegpasad machine
learning such as support vector machines (Andrews et al., 2003almmiworks, expectation-
maximization, nearest-neighbor (Wang and Zucker, 2000), as weleagaspurpose algorithms
like the diverse-density algorithm. An extended discussion of many of tlsegeen by Xu
(2003), who makes the important distinction between two classes of Ml algwitthose which
adhere to the Ml assumption (as described above) and those which makassbmptions, most
commonly that the label for each positive bag is determined by some other nietrosimply
if one instance has a positive label. Algorithms that violate the MI assumptiailysissume
that the data from all instances in a bag is available to make a decision abalhtke Such
algorithms are difficult to apply to the hard drive problem, as we are inter@steonstruction
on-line classifiers that make a decision based on each instance (padte@yaes. Algorithms
that violate the Ml-assumption include Citation-k-Nearest-Neighbors (VdadgZzucker, 2000),
SVMs with polynomial minimax kernel, and the statistical and wrapper methods ¢2303),

and these will not be considered further for hard drive failure ptific

4.4.3 Multiple Instance Naive Bayes (mi-NB)

We now develop a new multiple instance learning algorithm using naive Balgessknown
as thesimple Bayesian classiflfeand specifically designed to allow control of the false alarm
rate. We call this algorithm mi-NB (multiple instance-naive Bayes) becauds oflation to
the mi-SVM algorithm of Andrews et al. (2003). The mi-SVM algorithm dodserd to the MI
assumption and so could be used for the hard drive task, but sinceiiteegepeated relearning
of an SVM, itis presently too computationally intensive. By using the fasieBayes algorithm
as the base classifier, we can create an efficient multiple-instance leatganghm.

The mi-NB algorithm begins by assigning a labglto each pattern: for good drives, all
patterns are assigned = 0; for failed drives, all patterns except for the last one in the time
series are assigned = 0, with the last one assigned to the failed clagg, = 1. Using these

class labels, a naive Bayes model is trained (see below). Using the NB,nreagl pattern
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Figure 4.3: Multiple-instance learning. The numbers are bag (drive) atsnlnd each circle or
square represents an instance (pattern). Instances from clasdled gfives) are squares, while
instances from class O are circles. The + or - in each instance refgéiserhidden underlying
class of each instance, 1 or O respectively. The decision surfacesesys the classification
boundary induced by a classifier. Grayed instances are those miselassifine decision sur-
face. Bag 1: All - instances are classified correctly, and the bag ieatbyrclassified as 0 (good
drive). Bag 2: One instance is classified as +, so the bag is correctyjfiddsas 1 (failed drive).
Bag 3: One instance of the failed drive is classified as -, but anothessifidal as +, so the bag
is correctly classified (failed). Bag 4: An instance with true class - is labglexb the bag is
misclassified as 1 (false alarm). Bag 5: All instances of the + bag (failed)dare classified as
-, so the bag is misclassified as 0 (missed detection).
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in the training set is assigned to a clagse {0,1}. Because nearly all patterns are assigned
to the good clasg; = 0, this initial condition insures that the algorithm will start with a low
false alarm rate. In each iteration of the mi-NB algorithm, for every failededyi; = 1 that
was misclassified (that is, all patterns were classified as ggoes 0), the patternj= (with

current labely; = 0) that is most likely to be from the failed clasg = argmax  fi(x;),
je{l...NilijO}
is relabeled to the failed clags, = 1, wheref; (x) is the log-posterior of class 1 (see Equation

4.4.1 below). The NB model is updated using the new class labels (whichecdorte very
efficiently). Iterations continue until the false alarm rate on the training se¢@ses to over the
target level,FA > FAirger The mi-NB algorithm is detailed in Algorithm 1. The procedure
given in Algorithm 1 may be applied with different base classifiers other tiave Bayes,
although the resulting algorithm may be computationally expensive unlessishemeefficient
way to update the model without retraining from scratch. Other stoppinditimms could also
be used, such as detection rate greater than a certain value or numbeatimfrise

In Bayesian pattern recognition, theaximum a posteriofMAP) method is used to esti-
mate the clasg of a patternx,

y = arg cggﬁ}p(y = c|x)

=a a = =c).
rgcgof}p(xw c)ply = c)

The “naive” assumption in naive Bayes is that the class-conditional distibp(x|y = ¢) is
factorial (independent componentsjx|y = ¢) = [[,..%, p(zm|y = ¢) wheren - a is the size of
x (see Section 4.2). The class estimate becomes,

fe(x) =D log plam|y = ¢) + log ply = ¢)

m=1

~_ (%) | 4.41
U argcggff}f (x) ( )

where we have used estimajesf the probabilities. Naive Bayes has been found to work well
in practice even in cases where the compongptare not independent, and a discussion of this
is given by Domingos and Pazzani (1997). Assuming discrete distribdtions,, counts of the
number elementg{-} can be found. Training a naive Bayes classifier is then a matter of finding
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Algorithm 1 mi-NB Train (for SMART failure prediction)
Input: x, Y, FAqgesired(desired false alarm rate)

Initialize:
Good drives: For drives with; = 0O initialize y; =0forj =1...N;
Failed drives: For drives wit}; = 1 initialize y; = 0 forj = 1...N; — 1, and
yn;, =1
Learn NB model
yj = arg Cérﬁfj){;f}uf'"c()cj) Classify each pattern using the NB model
Find FA and DET rate
while FA < FAtarget do
forall Misclassified failed driveg;; =0V j =1...N; do
jx= argmax fi(x;) Find pattern closest to decision surface with lajpet 0
Yjsx <—j i{l...gg%lglg}sify the pattern as failed
Update NB model
end for
y; = arg ?6”1{ fe(x;) Reclassify each pattern using the NB model
Find FA and DET rate
end while

Return: NB model

the smoothed empirical estimates,

#{xm - k7y = C}+€
#y=ct+2

. H#Hy=ch+t

Ply=c)= #{patterng + 2¢ "’

where/ is a smoothing parameter, which we set/te-= 1 corresponding to Laplace smooth-

plxm =Fkly=c) =

(4.4.2)

ing (Orlitsky et al. (2003), who also discuss more recent methods for dstgriarobabilities,

including those based on the Good-Turing estimator). Ng and Jordag)(286w that naive
Bayes has a higher asymptotic error rate (as the amount of training da¢ases) but that it
approaches this rate more quickly than other classifiers and so may ba@ddah small-sample
problems. Since each time we have to switch a pattern in the mi-NB iteration, we ardytt

change a few of the counts in (4.4.2), updating the model after relabelitagrcpatterns is very
fast.
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Next, we show that the mi-NB algorithm has non-decreasing detection eddarm rates
over the iterations.

Lemma 1 At each iterationt, the mi-NB algorithm does not decrease the detection and false

alarm rates (as measured on the training set) over the previous iteratioi,

A7) < 17 (x;)
D) > fP(x;)  Vj=1...N. (4.4.3)

Proof Atiterationt — 1 the probability estimates for a certdirare,

~ b+7¢
Pt—l(ﬂfm = k:|y: 1) = m )

whereb = #{x,, = k,y = c},d = #{y = ¢}, and of coursé < d. Since class estimates are
always switched frony; = 0 to 1, for somek

~ b+0+1
pt(xm:k’y: 1) = m

(and for otherk it will remain constant). It is now shown that the conditional probability esti-

mates are non-decreasing,

Pi1(wm =kly=1) < pi(wy =kly=1)
b+0O)(d+20+1) < (d+20)(b+L+1)

b < d+o,

with equality only in the case df = d,¢/ = 0. Similarly, the prior estimate is also non-
decreasingp;_1 (y = 1) < pi(y = 1). From (4.4.1) this implies that'" ™V (x) < £\ (x).

For classy = 0, it can similarly be shown thak_ (x,, = k|ly = 0) > py(xp, = K|y = 0)
andp;_1 (y = 0) > pi(y = 0), implying £V (x;) > £ (x;) and completing the proof. M

Note that Algorithm 1 never relabels a failed pattern as a good pattern, asigiisreduce
the detection rate (and invalidate the proof of Lemma 1 in Section 4.3). The irotigittons
of the algorithm ensure a low false alarm rate, and the algorithm procieeag(eedy fashion)
to pick patterns that are mostly likely representatives of the failed class witheavaluating
previous choices. A more sophisticated algorithm could be designed thasrpatterns back to
the good class as they become less likely failed candidates, but this reguioesputationally
expensive combinatorial search.
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4.4.4 Support Vector Machines (SVMs)

The support vector machine (SVM) is a popular modern pattern recogaitidmegression
algorithm. First developed by Vapnik (1995), the principle of the SVM dl&sss to project
the data into a higher dimensional space where the classes are sepgratethr hyperplane
which is defined by a small set of support vectors. For an introduction/tdsSfor pattern
recognition, see Burges (1998). The hyperplane is found by a gti@diptimization problem,
which can be formulated for either the case where the patterns are lineadyable, or the
non-linearly separable case which requires the use of slack varighi@seach pattern and a
parameteiC' that penalizes the slack. We use the non-linearly separable case artitiorad
use different penalties™, L~ for incorrectly labeling each class. The hyperplane is found by

solving,

1 N _
min oW +c< YL+ > L&)

Vily;=+1 Vily;=—1
subject to: yz(WTd)(XZ) + b) >1-¢&
& >0

wherew andb are the parameters of the hyperplaine w” ¢(x) + b ande(-) is the mapping to
the high-dimensional space implicit in the kerag¢k;, x;) = ¢(x;)? ¢(xx) (Burges, 1998). In
the hard-drive failure problent,™ penalizes false alarms, aiid™ penalizes missed detections.
SinceC is multiplied by bothZ™ andL~, there are only two independent parameters and we set
L~ =1 and adjust’, L™ when doing a grid search for parameters.

To apply the SVM to the SMART data set, drives are randomly assigned imingaand
test sets for a single trial. For validation, means and standard deviatiomseztidn and false
alarm rates are found over 10 trials, each with different training andstdst Each pattern
is assigned to the same label as the drive (all patterns in a failed Jrive 1 are assigned
to the failed classy; = +1, and all patterns in good drivég = 0 are set toy; = —1).
Multiple instance learning algorithms like mi-SVM (Andrews et al., 2003) couldubed to
find a better way of assigning pattern classes, but these add substeinéial@mputation to the
already expensive SVM training.

We use the MySVM package developed by Ruping (2000). Parameters for the MySVM

4MySVM is available at: http://ww ai . cs. uni - dor t mund. de/ SOFTWARE/
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software are set as followspsilon = 10~2, max_iterations = 10000, convergence_ epsilon =
10~3. When equal-width or equal-frequency binning is used (see Section),4é.4cale is set;
otherwise, the default attribute scaling in MySVM is used. The paraméteand L™ (with
L~ = 1) are varied to adjust the tradeoff between detection and false alarmael&¢ested
include dot product, polynomials of degree 2 and 3, and radial kerngismdth parametety.

4.4.5 Clustering (Autoclass)

Unsupervised clustering algorithms can be used for anomaly detectior, Wermse the
Autoclass package (Cheeseman and Stutz, 1995) to learn a probabilistt ofidlde training
data from only good drives. If any pattern is an anomaly (outlier) froml¢hened statistical
model of good drives, then that drive is predicted to fail. Elpectation maximization (EM)
algorithm is used to find the highest-likelihood mixture model that fits the data. Mbeu of
forms of the probability density function (pdf) are available, including Gamsgoisson (for
integer count data) and nominal (unordered discrete, either indemteoideovariant). For the
hard drive problem, they are all set to independent nominal to avoidréisga parametric form
for any attribute’s distribution. This choice results in an algorithm very tjossated to the
naive Bayes EMilgorithm (Hamerly and Elkan, 2001), which was found to perform well on
earlier SMART data.

Before being presented to Autoclass the attribute values are discretizesltheo equal-
frequency bins or equal-width bins (Section 4.4.1), where the bin randetésmined by the
maximum range of the attribute in the training set (of only good drives). Alitiadal bin was
used for zero-valued attributes. The training procedure attempts to fimddsielikely mixture
model to account for the good drive data. The number of clusters carbalgetermined by
Autoclass, but here we have restricted it to a small fixed number from 2.tdHaénerly and
Elkan (2001) found that for the naive Bayes EM algorithm, 2 clusters witinS (as above)
worked best. During testing, the estimated probability of each pattern urelerixture model
is calculated. A failure prediction warning is triggered for a drive if thebatuility of any of its
samples is below a threshold (which is a parameter of the algorithm). To iec@asstness, the
input pattern contained between 1 and 15 consecutive sampEesach attribute (as described

above for the SVM). The Autoclass threshold parameter was varied tetadydeoff between

MYSVM
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detection and false alarm rates.

4.4.6 Rank-sum Test

The Wilcoxon-Mann-Whitney rank-sum test is used to determine if the twdomandata
sets arise from the same probability distribution (Lehmann and D’Abref8,18. 5). One set
T comes from the drive under test and the otRds areference setomposed of samples from
good drives. The use of this test requires some assumptions to be madéhabdistributions
underlying the attribute values and the process of failure. Each attribsi@gued distribution
G and anabout-to-fail distribution F For most of the life of the drive, each attribute value is
chosen from the&=, and then at some time before failure, the values begin to be chosen from
F. This model posits an abrupt change fréhto F', however, the test should still be expected
to work if the distribution changes gradually over time, and only give a wgraihen it has
changed significantly from the reference set.

The test statistid¢Vs is calculated by ranking the elementsi®fof sizem) andT (of size
n) such that each element &f andT" has a rankS € [1,n + m] with the smallest element
assigned> = 1. The rank-suni¥g is the sum of the rankS of the test set.

The rank-sum test is often presented assuming continuous data. Thatestrib the
SMART data are discrete which creates the possibility of ties. Tied valuesiaked by as-
signing identical values to themidrank(Lehmann and D’Abrera, 1998, pg. 18), which is the
average rank that the values would have if they were not tied. For exaifhiblere were three
elements tied at the smallest value, they would each be assigned the mliégéﬁk: 2.

If the set sizes are large enough (usually, if the smallenset 10 or m 4+ n > 20), the
rank-sum statistié?s is normally distributed under the null hypothesis énd R are from the

same population) due to the central limit theorem, with mean and variance:

1
EWs) = 5n(m+n+1)
mn(m+n-+1
VCLT(Ws) = ( 12 )*CTa

whereC'r is the ties correction, defined as

mn i (d? —d;)

" Rmtn)(m+tn—1)"
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wheree is the number of distinct values iR andT’, andd; is the number of tied elements at
each value (see Appendix A for more details). The probability of a parti¢tilacan be found
using the standard normal distribution, and a critical valuwan be set at which to reject the null
hypothesis. In cases of smaller sets where the central limit theorem dbappip (or where
there are many tied values), an exact method of calculating the probabilitg tdghstatistic is
used (see Appendix A, which also gives examples of calculating the téstisja

For application to the SMART data, the referenceRdor each attribute (sizer = 50 for
most experiments) is chosen at random from the samples of good dfitestest sefl” (size
n = 15 for most experiments) is chosen from consecutive samples of the driler test. If the
test set for any attribute over the history of the drive is found to be signifii¢ different from
the reference sek then the drive is predicted to fail. The significance leve$ adjusted in the
range[10~7,10~!] to vary the tradeoff between false alarms and correct detections. Wheuse
one-sided test df' coming from a larger distribution thaR, against the hypothesis of identical
distributions.

Multivariate nonparametric rank-based tests that exploit correlationsbataitribute val-
ues have been developed (Hettmansperger, 1984, Dietz and Killeeln Br@@®ner et al., 2002).
A different multivariate rank-sum test was successfully applied to eaVIARST data (Hughes
et al., 2002). It exploits the fact that error counts are always positilere, we use a simple
OR test to use two or more attributes: if the univariate rank-sum test foattiilyute indicates a
different distribution from the reference set, then that pattern is labailedif The use of the OR
test is motivated by the fact that very different significance level rarjger-pattern) for each

attribute were needed to achieve low false alarm rates (per-drive).

4,47 Reverse Arrangements Tests

The reverse arrangements test described above for feature selsmiaiso be used for
failure prediction. No training set is required, as the test is used to deteifritieee is a signifi-
cant trend in the time series of an attribute. For use with the SMART data, hf}flesmare used
in each test, and every consecutive sequence of samples is usedickatrize, if any test of
any attribute shows a significant trend, then the drive is predicted to faivithsthe rank-sum

test, the significance level controls the tradeoff between detection and false alarm rates.
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4.5 Results

In this section we present results from a representative set of expasimenducted with
the SMART data. Due to the large number of possible combinations of attribudesdassifier
parameters, we could not exhaustively search this space, but wetdvbypwe provided some
insight into the hard drive failure prediction problem and a general gatiwhich algorithms
and preprocessing methods are most promising. We also can clearly ssertteamethods
are significantly better than the current industry-used SMART threshimlplemented in hard
drives (which provide only an estimated 3-10% detection rate with 0.1% flsas).

4.5.1 Failure Prediction Using 25 Attributes

Figure 4.4 shows the failure prediction results in the form of a Receiverddpg Char-
acteristic (ROC) curve using the SVM, mi-NB, and Autoclass classifiers wit2hattributes
selected because of promising reverse arrangements test or z-alum@e (see Section 4.3.3).
One sample per pattern was used, and all patterns in the history of eadhuestere tested.
(Using more than one sample per pattern with 25 attributes proved too compaligtiexpen-
sive for the SVM and Autoclass implementations, and did not significantly inepitoe mi-NB
results.) The detection and false alarm rates were measured per damg péttern in the drive’s
history was classified as failed, the drive was classified as failed. Tiveswere created by
performing a grid search over the parameters of the algorithms to adjusatiesdff between
false alarms and detection. For the SVM, the radial kernel was used wiplatameters adjusted
as follows: kernel widthy € [0.01,0.1, 1], capacityC' € [0.001,0.01,0.1, 1], the cost penalty
L* € [1,10,100]. Table 4.5.3 shows the parameters used in all SVM experiments. For Auto-
class, the threshold parameter was adjustégai®9, 99.90, 99.5,99.0, 98.5] and the number of
clusters was adjusted [, 3, 5, 10].

Although all three classifiers appear to have learned some aspects obltenp, the SVM
is superior in the low false-alarm region, with 50.6% detection and no mehfalse alarms.
For all the classifiers, it was difficult to find parameters that yielded lovughdalse alarm rates
compared with the low 0.3-1.0% annual failure rate of hard drives. ForBjieMen at the initial
condition (which includes only the last sample from each failed drive in tlexifalass) there is
a relatively high false alarm rate of 1.0% at 34.5% detection.

For the 25 attributes selected, the SVM with the radial kernel and defalithggrovided
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the best results. Results using the linear kernel with the binning and scedis@vn in Figure
4.5. The best results with the linear kernel were achieved with the defalihg, although
it was not possible to adjust to false alarm rate to 0%. Equal-width binnindtsda better
performance than equal-frequency binning for SVM and Autoclas® sTiperiority of equal-
width binning is consistent with other experiments (not shown) and so onbl-@gdth binning
will be considered in the remaining sections. Using more bins (10 vs. 5) éadititretization
did not improve performance, confirming the results of Hamerly and EIkad1(2

The good performance of the SVM comes at a high computational priceoassh Fig-
ure 4.6. The bars represent the average time needed to train each aidorith given set of
parameters. The total training time includes the time needed for the grid sedith e best
parameters. For SVMs with the radial kernel (Figure 4.4), training toakmBhutes for each
set of parameters, and 17893 minutes to search all 36 points on the pargritcet&he mi-NB
algorithm was much quicker, and only had one parameter to explore, takimgnlutes per point
and 366 minutes for the grid search.

Also of interest is how far in advance we are able to predict an imminent dailbigure
4.7 shows a histogram of the time before actual failure that the drivesoarecty predicted
as failing, plotted for SVM at the poirit0.6% detection,0.0% false alarms. The majority of
detected failures are predicted within 100 hours (about 4 days) bigitwes, which is a long
enough period to be reasonable for most users to backup their databsfastial number of
failures were detected over 100 hours before failure, which is oneeaghtitivations for initially
labeling all patterns from failed drives as being examples of the failed (lasembering that
our data only includes the last 600 hours of SMART samples from eaab)dri

4.5.2 Single-attribute Experiments

In an effort to understand which attributes are most useful in predicting igmhimard-
drive failure, we tested the attributes individually using the non-paramesiistical methods
(rank-sum and reverse arrangements). The results of the reveaag@ments test on individual
attributes (Section 4.3 and Table 4.3.3) indicate that attributes such as Rea8md Servo2
could have high sensitivity. The ReadErrorl8 attribute appears promisihgt1.1% of failed
drives and 0 good drives showing significant increasing trends. ré&igi8 shows the failure
prediction results using only the ReadErrorl8 attribute with the rank-swersearrangements,
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Figure 4.4: Failure prediction performance of SVM, mi-NB and Autoclassgug5 attributes
(one sample per pattern) measured per drive. For mi-NB, the results drevior equal-width
binning. Autoclass is tested using both equal-width (EW) and equal-fregu@&F) binning
(results with 5 bins shown). Error bars aré standard error in this and all subsequent figures.
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Figure 4.5: Comparison of preprocessing with the SVM using 25 attributess gample per

pattern). A linear kernel is used, and the default attribute scaling is cepéth equal-width
and equal-frequency binning.
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Figure 4.6: Training times (in minutes) for each of the algorithms used in Figudesnd 4.11.
The training times shown are averaged over a set of parameters. Thieditialg time includes
a search over multiple parameters. For example, the SVM used in Figuregdidecta grid

search over 36 points which took a total of 17893 minutes for training witarpater selection.
For the rank-sum test, only one parameter needs to be adjusted, andrtimg ttiene for each
parameter value was 2.2 minutes, and 21 minutes for the search througtaailepers.
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Figure 4.7: Histogram of time (hours) before failure that correct faiprediction was made.
Counts are summed over ten trials of SVM algorithm (radial kernel with 25 atér#) from
point in Figure 4.4 at 50.6% detection, no false alarms.
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Figure 4.8: Failure prediction performance of classifiers using a singlbuatty ReadErrorl8,

with 5 input samples per pattern. For rank-sum and reverse arrantgmenr bars are smaller
than line markers. For this attribute, the SVM performed best using the famtied| and default

attribute scaling (no binning).

and SVM classifiers. Reducing the number of attributes from 25 to 1 iresehg speed of
all classifiers, and this increase is enough so that more samples cardhgeugattern, with 5
samples per pattern used in Figure 4.8. The rank-sum test providedgtheebformance, with
24.3% detection with false alarms too low to measure, 88% detection with0.5% false
alarms. The mi-NB and Autoclass algorithms using the ReadErrorl8 (nonsimokiigure 4.8
for clarity) perform better than the reverse-arrangements test andslgirse than the SVM.

Single attribute tests using rank-sum were run on all 25 attributes selectedtior$4.3.3
with 15 samples per pattern. Of these 25, only 8 attributes (Figure 4.9) whkrdcatietect
failures at sufficiently low false alarm rates: ReadErrorl, ReadErReadError3, ReadErrorl8,
ReadErrorl9, Servo7, GList3 and Servol0. Confirming the obsengaticthe feature selection
process, ReadErrorl8 was the best attribute, with 27.6% detection &t ¢al® alarms.

For the rank-sum test, the number of samples to use in the referencarsptds from good
drives) is an adjustable parameter. Figure 4.10 shows the effects gfresimence set sizes 25,
50 and 100 samples, with no significant improvement for 100 samples ovefdsCall other

rank-sum test results 50 samples were used in the reference set.
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Figure 4.9: Failure prediction performance of rank-sum using the lregtesattributes. The
number of samples per pattern is 15, with 50 samples used in the referénce se
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Figure 4.10: Rank-sum test with reference set sizes 25, 50 and @PRsadErrorl8 attribute
and 15 test samples. There is no improvement in performance using 10@samtpe reference
set instead of 50 (as in all other rank-sum experiments).

45.3 Combinations of Attributes

Using combinations of attributes in the rank-sum test can lead to improvelisreser
single-attribute classifiers (Figure 4.11). The best single attributes figure=4.9 were Read-
Errorl, ReadError3, ReadErrorl8 and ReadErrorl9. Using thves attributes and 15 samples
per pattern, the rank-sum test detec?8dl % of the failures, with no measured false alarms.
Higher detection rates (52.8%) can be had if more false alarms are allowéd)(0These four
attributes were also tested with the SVM classifier (using default scalingyesbiingly, the lin-
ear kernel provided better performance than the radial, illustrating thetoealuate different
kernels for each data set.

All the ROC curves plotted in this section include error bars atstandard error. We also
note that the number of good drives is relatively small (178) and with up % dlthese used
in the training set, measuring low false alarm rates is imprecise. When resutesparted with
false alarm rates of 1%, this means that some of the trials had no false alarm drives while other
trials had very few (1 or 2). Because some drives are inherently motg tikée predicted as
false alarms, whether these drives are included in the test or trainingaselsaa to a variance

from trial to trial, causing large error bars at some of the points.
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Figure 4

Point Detection False Alarm Kernel gamma C L+ L-
1 50.60 0.00 radial 0.100 0.010 100.0 1.0
2 64.18 4.21  radial 0.010 0.100 1000 1.0
3 70.38 6.20 radial 0.010 1.000 100.0 1.0
Figure 5

Point Detection False Alarm  Kernel C L+ L-
1 default scaling 54.73 0.78 linear 0.001 1000.0 1.0
2 60.97 3.09 linear 0.100 50 1.0
3 63.17 7.75 linear 0.010 50 1.0
1 EW bins 11.18 0.00 linear 0.001 100.0 1.0
2 41.40 0.46 linear 0.001 50 1.0
3 48.05 1.72  linear 0.001 1.0 1.0
4 51.83 8.68 linear 0.001 05 1.0
1 EF bins 17.54 2.34  linear 0.001 50 1.0
2 42.90 11.09 linear 0.100 50 1.0
3 (off graph) 70.22 35.40 linear 0.100 100 1.0
Figure 8

Point Detection False Alarm Kernel gamma C L+ L-
1 8.28 0.00 radial 0.010 0.010 100.0 1.0
2 17.01 0.96 radial 0.100 0.010 1.0 10
3 30.29 3.45 radial 1.000 0.010 1.0 10
Figure 11

Point Detection False Alarm Kernel gamma C L+ L-
1 linear 5.43 0.17  linear 0.001 1000.0 1.0
2 15.82 0.35 linear 0.010 1000.0 1.0
3 32.92 0.51 linear 0.010 1.0 1.0
4 52.23 0.96 linear 0.100 1.0 1.0
1 radial 1.68 0.09 radial 0.100 0.001 100.0 1.0
2 9.29 0.53 radial 0.001 0.010 100.0 1.0
3 17.79 0.69 radial 1.000 1.000 1000.0 1.0
4 27.13 1.73  radial 0.100 0.100 100.0 1.0

Table 4.3: Parameters for SVM experiments in Figures 4, 5, 8 and 11.
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Figure 4.11: Failure prediction performance of rank-sum and SVM iékassusing four at-
tributes: ReadErrorl, ReadError3, ReadErrorl8 and ReadBxror

4.6 Discussion

We discuss the results of our findings and their implications for hard-taikere prediction
and machine learning in general.

While the SVM provided the best overall performance (50.6% detection witheasured
false-alarms, see Figure 4.4), a few caveats should be noted. Usingdiaé kernel, three
parameters must be searched to find the optimum performance (kernel~yiddpacityC
and cost penalty.+) which was very computationally expensive and provides no guarantee
as to optimality. After examining the SVM classifiers, it was found that a largeben of the
training examples were chosen as support vectors. For example, in al tgperiment using
the radial kernel with 25 attributes, over 26% of the training examples wegrpost vectors
(6708 of 25658). This indicates that the classifier is likely overfitting the dadauaing outliers
as support vectors, possibly causing errors on unseen data. @searchers have noticed this
property of SVMs and have developed algorithms that create smaller segspadrt vectors, such
as the relevance vector machine (Tipping, 2001), kernel matchingip(Mswcent and Bengio,
2002) and Bayesian neural networks (Liang, 2003). The SMARTreajwediction algorithms
(as currently implemented in hard-drives) run on the internal CPU’s adtire and have rather
limited memory and processing to devote to SMART. To implement the SVM clasddarsed
here, they would have to evaluate the kernel with each support vectenvéoy new sample,
which may be prohibitive.
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The rank-sum test provided the second-best detection rate (on B4attdbutes, Figure
4.11), 28.1% with no measured false-alarms, and while lower than the bé&str&udlt, it is
still much higher than the currently implemented SMART threshold algorithms. Aehifalse
alarm rates, the rank-sum detection rate is 52.8% with 0.7% false alarms, mvbants (due to
the small number of good drives) that only 1 drive at most triggered a &ésm in the test set.
A larger sample of good drives would be desirable for a more accurateumseat the false alarm
rate. The rank-sum test has a number of advantages over the SMbf: tfasning time (about
100 times), faster testing of new samples, fewer parameters, and lower ynegairements.
These advantages may make it more suitable for implementation in hard driveafiemwor
offline situations where more processing power is available (such astivbéailure prediction
algorithm is run on the host CPU), the SVM may be practical. For some maclangrig
problems, the rank-sum test may be superior to SVMs as shown in Figurela.this case the
four attributes were selected because of good performance in thewamkest, and so of course
it is not an entirely fair comparison but in some situations the only attributes hleiaay
be those that favor rank-sum. From a drive reliability perspective,ahk-sum test indicates
that attributes that measure read errors (in this case, ReadErrodE Re@, ReadErrorl8 and
ReadErrorl9) were the most useful in predicting imminent failure. Also tefrést, although
with less selectivity, are attributes that measure seek errors.

Our new mi-NB algorithm demonstrated promising initial performance, which adgho
less successful than the SVM was considerably better than the unsggetwtoclass algorithm
which was also based on naive Bayesian models (Figure 4.4). The multiladesramework
addresses the problem of which patterns in the time series should be labdbalbé during
learning. In order to reduce false alarms, our algorithm begins with thergeton that only the
last pattern in each failed drive’s history should be labeled failed, aridglaubsequent itera-
tions, it switches the labels of those good samples mostly likely to be from the disiitbution.
This semi-supervised approach can be contrasted with the unsupekvitadiass and the fully
supervised SVM, where all patterns from failed drives were labeitztifa

The reverse-arrangements test performed more poorly than expasted believed that
the assumption of increasing trend made by this test was well suited fortiaectiributes (like
read-error counts) that would presumably increase before a fallbeerank-sum test makes no
assumptions about trends in the sets, and in fact all time-order informatiemsved in the

ranking process. The success of the rank-sum method led us to spdbaliathis removal of
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time-order over the sample interval was important for failure prediction.relaee physical
reasons in drive technology why impending failure need not be assbaidtie an increasing
trend in error counts. The simplest example is sudden stress from a failirgadmponent
which causes a sudden increase in errors, followed by drive failure.

It was also found that a small number of samples (from 1 to 15) in the inpt#rpa was
sufficient to predict failure accurately, this indicates that the driveffopmance can degrade
quickly, and only a small window of samples is needed to make an accuralietime. Con-
versely, using too many samples may dilute the weight of an important evemicitiats within
a short time frame.

One of the difficulties in conducting this research was the need to try manyicatioins of
attributes and classifier parameters in order to construct ROC curvéscR®es are necessary
to compare algorithm performance because the cost of misclassifyinglasee(m this case,
false alarms) is much higher than for the other classes. In many other oddl applications
such as the examples cited in Section 4.1, there will also be varying costs fdassifying
different classes. Therefore, we believe it is important that the machameifg community
develop standardized methods and software for the systematic compdisaming algorithms
that include cycling through ranges of parameters, combinations of atsilamig number of
samples to use (for time series problems). An exhaustive search mayhileitpre even with a
few parameters, so we envision an intelligent method that attempts to find treb darthime of
the ROC curve by exploring the limits of the parameter space, and gradufiigs¢he curve
estimate as computational time allows. Another important reason to create R@&S @uthat
some algorithms (or parameterizations) may perform better in certain reditims curve than
others, with the best algorithm dependent on the actual costs involvech(wart of the curve

we wish to operate in).

4.7 Conclusions

We have shown that both nonparametric statistical tests and machine learnigisean
significantly improve over the performance of the hard drive failurelpt®sn algorithms which
are currently implemented. The SVM achieved the best performance c¥o5fe6ection/0%
false alarms, compared with the 3-10% detection/0.1-0.3% false alarms of tréhaits cur-
rently implemented in hard drives. However, the SVM is computationally exgeher this
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problem and has many free parameters, requiring a time-consuming awagtioral grid search.

We developed a new algorithm (mi-NB) in the multiple-instance framework tlest nigive
Bayesian learning as its base classifier. The new algorithm can be seemiasupervised in
that it adapts the class label for each pattern based on whether it is likedyni® ftrom a failed
drive. The mi-NB algorithm performed considerably better than an umgigeel clustering algo-
rithm (Autoclass) that also makes the naive Bayes assumption. Furtheasasri@ performance
might be achieved with base classifiers other than naive Bayes, for &xaihmgpmi-SVM algo-
rithm (Andrews et al., 2003) could be suitably adapted but probably rentaimputationally
prohibitive.

We also showed that the nonparametric rank-sum test can be usefidttern recogni-
tion and that it can have higher performance than SVMs for certain cotiinsaof attributes.
The best performance was achieved using a small set of attributes:nizsumn test with four
attributes predicted 28.1% of failures with no false alarms (and 52.8% det€ciion false
alarms). Attributes useful for failure prediction were selected by usisgozes and the reverse
arrangements test for increasing trend.

Improving the performance of hard drive failure prediction will have maractical bene-
fits. Increased accuracy of detection will benefit users by giving taempportunity to backup
their data. Very low false alarms (in the range of 0.1%) will reduce the numbssturned
good drives, thus lowering costs to manufacturers of implementing improve®RS algo-
rithms. While we believe the algorithms presented here are of high enoudty qredative to
the current commercially-used algorithms) to be implemented in drives, it is stillrianato
test them on larger number of drives (on the order of thousands) touneeascuracy to the
desired precision 0f.1%. We also note that each classifier has many free parameters and it is
computationally prohibitive to exhaustively search the entire parametee.sp&cchoose many
parameters by non-exhaustive grid searches; finding more principléabdseof exploring the
parameter space is an important topic of future research.

We hope that the insights we have gained in employing the rank-sum test, mirtdece
framework and other learning methods to hard drive failure prediction wilbbuse in other
problems where rare events must be forecast from noisy, nonpai@atimatr series, such as in
the prediction of rare diseases, electronic and mechanical device $aiture bankruptcies and

business failures (see references in Section 4.1).
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4.A Exact and Approximate Calculation of the Wilcoxon-Mann-

Whitney Significance Probabilities

The Wilcoxon-Mann-Whitney test is a widely used statistical proceduredoparing two
sets of single-variate data (Wilcoxon, 1945, Mann and Whitney, 194i¢. tdst makes no as-
sumptions about the parametric form of the distributions each set is dramrafnd so belongs to
the class of nonparametric or distribution-free tests. It tests the null hggistthat the two dis-
tributions are equal against the alternative that one is stochastically thegethe other (Bickel
and Doksum, 1977, pg. 345). For example, two populations identicapefarea shift in mean
is sufficient but not necessary for one to be stochastically larger tieasthier.

Following Klotz (1966), suppose we have two s&is= [z1,z2,...,2z,] , Y = [y1, 4o,

..y Ym], n < m, drawn from distributiong’ andG. The sets are concatenated and sorted, and
eachx; andy; is assigned a rank according to its place in the sorted list. The Wilcoxon statistic
Wx is calculated by summing the ranks of eagh hence the term rank-sum test. Table 4.A
gives a simple example of how to calculatéy andWy-. If the two distributions are discrete,
some elements may be tied at the same value. In most practical situations thetcsisibue
either inherently discrete or effectively so due to the finite precision of suniay instrument.
The tied observations are given the rank of the average of the rartkbélyavould have taken,

called themidrank Table 4.A gives an example of calculating the Wilcoxon statistic in the
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X 74 59 63 64 n=4
Y 65 55 58 67 53 71 m=6

[X,Y]sorted 53 55 58 59 63 64 65 67 71 74

Ranks 1 2 3 4 5 6 7 8 9 10
X ranks 10 4 5 6 Wx =25
Y ranks 7 2 3 8 1 9 Wy =30

Table 4.4: Calculating the Wilcoxon statisiitxy andWy without ties

discrete case with ties. There are five elements with the value ‘0’ which aessitined the
average of theirrankg1 + 2 +3 +4+5)/5 = 3.

To test the null hypothesif| that the distributiong’ andG are equal against the alternative
H, thatF(z) < G(x)Vz, F' # G we must find the probabilityy = P(Wx > w,) that under
Hy the true value of the statistic is greater than the observed value, now eglidcehmann
and D’Abrera, 1998, pg. 11). If we were interested in the alternatimefh< G or F' > G,

a two-sided test would be needed. The generalization to the two-sidedscstsaightforward
and will not be considered here, see Lehmann and D’Abrera (199&3). Before computers
were widely available, values @f) (the significance probability) were found in tables if the set
sizes were small (usually: andn < 10) or calculated from a normal approximation if the set
sizes were large. Because of the number of possible combinations of tredréte the tables
and normal approximation were created for the simplest case, namely eaamgidistributions
(no tied elements).

Lehman (1961) and Klotz (1966) report on the discrepancies betweeextct value of
po and its normal approximation, which can be over 50%, clearly large entmubgad to an
incorrect decision. Unfortunately, many introductory texts do not dstusse errors nor give
algorithms for computing the exact probabilities. Here we outline how to calctilatexact
value ofpg but keep in mind there are other more efficient (but more complicated) algorithms
(Mehta et al., 1988a,b, Pagano and Tritchler, 1983). Each elem&htaimdY can take one of

values,z; < z9 < --- < z.. The probability that:; will take on a valuez is py:

P(a;,:zk) = Pk 1= 1..7”1,7 k=1.c.
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X 0O 0 O 1 3 n=>5

Y 0 O 1 2 2 3 4 m=7

X ranks 3 3 3 65 105 Wx =26

Y ranks 3 3 65 85 85 105 12 Wy =52
Z1 z9 z3 Z4 z5

Discrete values: 0 1 2 3 4

t to t3 ty t5
Ties configuration: 5 2 2 2 1

Table 4.5: Calculating the Wilcoxon statistity andWy- with ties

Similarly for y;,
Plyj=z)=r j=1.m, k=1l.c.

Under Hy, pi. = r Vk. The count of elements iX that take on a valuey, is given by, and

the count of elements il that are equal tey is given byw;. so that

up = #{X =z} v =##Y =2z}

dup=mn dYuvp=m.

k=1 k=1
The vectord/ = [uy, us,...,u.]andV = [vy, ve, ..., v.] give the ties configuration of X and Y.
The vectoT’ = [t1,t,...,t.] = U+ V gives the ties configuration of the concatenated set. See

Table 4.A for an example of how to calculdfe Under the null hypothesi#, the probability
of observing ties configuratiofi is given by (Klotz, 1966),

o))
)

To find pg, we must find all thé/ such thaiV’; > W, wherelWWy; is the rank sum of a set with

PUIT) =

ties configuratiort/,

po = Y P(UJT)  Exactsignificance probability
U e Ug
U, = {UWy>Wy} . 4.A1)
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m (Large)
10 15 20 25 30 35 40 45 50
5 | 12.298 5.332 6.615 8.480 2.212 0.947 1.188 0.527 0.630
n(Small) 10| 4.057 3.482 2.693 0.595 0.224 0.14 0.064 0.091 0.042
15 1.648 0.306 0.069 0.081 0.026 0.019 0.010 0.009
20 0.082 0.048 0.016 0.014 0.006 0.005 0.006

Table 4.6: Mean-square error between exact and normal approximiue distribution ofi?.
All z, are equally likely. Averages are over 20 trials at each set size

Equation (4.A.1) gives us the exact probability of observing a set withkasamiV’ greater than
Wx . Because of the number 6f to be enumerated, each requiring many factorial calculations,
the algorithm is computationally expensive but still possible for sets as large & 50 and
n = 20. We can compare the exggj to the widely-used normal approximation and find the
conditions when the approximation is valid and when the exact algorithm iedeed

The normal approximation to the distribution of the Wilcoxon statiBtican also be used
to find pg. BecausdV is the sum of identical, independent random variables, the central limit
theorem states that its distribution will be normal asymptotically. The mean arahwarofit’

are given by Lehmann and D’Abrera (1998),

EW) = %n(m—kn—i— 1)
mn Y (8 — )
_ mn(m+n+1) =0
Var(W) - = 12 T 12mtn)(mtn—1)" (4.A.2)

Using the results of (4.A.2) we can fing) by using a table of normal curve area or com-
mon statistical software. Note that V&) takes into account the configuration of ti€s=
[t1,t2,...,t.] defined above. The second term on the right in the expression foFiVais
known as the ties correction factor.

The exact and approximate distributions&f were compared for set sizes ranging from
10 < m < 50 and5 < n < 20 with tied observations. For each choicemefandn the average
error between the exact and normal distributions is computed forpg < 0.20 which is the
range that most critical values will fall into. The mean-square error (issepmputed over
20 trials for each set size. Table 4.A gives the results of this comparisahdacase where

each discrete value, is equally likely,pr, = rr = constant/k. As expected, the accuracy
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m (Large)
10 15 20 25 30 35 40 45 50
5 | 31.883 25.386 28.300 26.548 14.516 16.654 19.593 9.277 8021.3
n(Small) 10| 3.959 4.695 3594 1884 1.058 1.657 0.427 0.735 0.369
15 1984 0.733 0.311 0336 0.230 0.245 0.317 0.205
20 0.303 0.146 0.123 0.059 0.045 0.071 0.034

Table 4.7: Mean-square error between exact and normal approximide distribution ofii.
One discrete value; is much more likely than the othef. Averages are over 20 trials at each
set size

improves as the set size increases, but it should be noted that theselyasverages; that
accuracy ofpy for any particular experiment may be worse than suggested by Table 4A. T
illustrate this, Table 4.A compares the distributions in the case when the firgtaalsi much
more likely (p; = 60%) than the other;, which are equally likely. When < 10, the normal
approximation is too inaccurate to be useful even wihes 50. This is the situation when using
the Wilcoxon test with the hard drive failure-prediction data, and motivatedhweestigation into

the exact calculation gfy. Again, Tables 4.A and 4.A should be used only to observe the relative
accuracies of the normal approximation under various set sizes anfuistis; the accuracy

in any particular problem will depend on the configuration of fieshe actual value ofy, and

the set size. The inaccuracies of normal approximations in small sampleiziatitgations is

a known aspect of the central limit theorem. It is particularly weak for stadiskgpendent on

extreme values (Kendall, 1969).

Recommendations Based on the results of the comparisons between the exact calculation of
po and the normal approximation (Tables 4.A and 4.A), we offer recommendatiotow to

perform the Wilcoxon-Mann-Whitney test in the presence of tied obens

1. If n < 10 andm < 50, the exact calculation should always be used.

2. The normal approximation loses accuracy if one of the values is muchlikelyethan
the others. If this is the case, valuesoK 15 will require the exact calculation.

3. The exact calculation is no longer prohibitively slow fox 20 andm < 50, and should
be considered if the significance probabilityis close to the desired critical value.

These recommendations are stronger than those given in Emerson aad (1685). A
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number of software packages can perform the exact test, includingeStatitp://www.cytel.com),
the SAS System (http://www.sas.com) and SPSS Exact Tests (http://www.spssWerhbpe
that an increased awareness of exact procedures will lead to highlitly gtatistical results.
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