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We present a hierarchical architecture and learning algorithm for visual recognition and

inference tasks such as imagination, reconstruction of occluded images, and expectation-driven

segmentation. Certain characteristics of biological vision are used for guidance, such as exten-

sive feedback and lateral recurrence, a highly overcomplete early stage (V1) and sparse distrib-

uted activity. Recent advances in computational methods for learning overcomplete dictionaries

are used to explore how overcompleteness can be useful for visual tasks. We posit a stochas-

tic, hierarchical generative-world-model (GWM) and develop a simplified-world-model (SWM)

based on a variational approximation to the Boltzmann-like distribution. The SWMis designed

to enforce sparsity and leads to a tractable dynamic network. Experimentally,we show that

increasing the degree of overcompleteness results in improved recognitionand segmentation.

Critical to the success of this vision system is the sparse coding of images using a learned

overcomplete dictionary. An algorithm for performing dictionary learning termed FOCUSS-

CNDL is developed in Chapter 2. In tests with natural images, learned overcomplete dictionaries

are shown to have higher coding efficiency than complete dictionaries: images encoded with an

overcomplete dictionary have both higher compression (fewer bits/pixel) and higher accuracy

(lower mean-square error).

The vision algorithm of Chapter 1 requires non-negative sparse codes, which is discussed

in Chapter 3. A non-negative version of the FOCUSS algorithm is shown to be superior to a

xviii



matching-pursuit variant. Also, the FOCUSS-CNDL algorithm is found to have better image

coding performance than another overcomplete independent analysis (ICA) algorithm.

The final chapter presents methods for detecting rare events in a time seriesof noisy and

nonparametrically-distributed data. These algorithms are tested on a difficultreal-world prob-

lem: predicting failures in hard-drives. An algorithm is developed based on the multiple-instance

learning framework and the naive Bayesian classifier (mi-NB) which is specifically designed for

the low false-alarm case. Other methods compared are support vector machines (SVMs), unsu-

pervised clustering, and non-parametric statistical tests. While not specificto vision tasks, the

mi-NB algorithm may find uses in semi-supervised image categorization tasks.

xix



Chapter 1

Visual Recognition and Inference

Using Overcomplete Sparse Learning

Abstract

We present a hierarchical architecture and learning algorithm for visual recognition and

other visual inference tasks such as imagination, reconstruction of occluded images, and expect-

ation-driven segmentation. Using properties of biological vision for guidance, we posit a sto-

chastic generative world model and develop a simplified world model (SWM) based on a tractable

variational approximation that is designed to enforce sparsity. Recent developments in compu-

tational methods for learning overcomplete representations (Lewicki and Sejnowski, 2000, Teh

et al., 2003) also suggest that overcompleteness can be useful for visual tasks, and we use an

overcomplete dictionary learning algorithm (Kreutz-Delgado et al., 2003) as a preprocessing

stage to produce accurate, sparse codings of images.

Inference is performed by constructing a dynamic network which settles to the SWM. This

dynamic system is Gauss-Markov, and can be used to provide a principledderivation of the hi-

erarchical extended Kalman filter model of vision (Rao and Ballard, 1997). The Kalman filter

is computationally intensive however, and we alternatively develop a dynamicnetwork for in-

ference which is efficient for practical vision tasks. In particular, enforcing sparseness at each

layer leads to an efficient learning algorithm that updates only a small subset of elements in a

large weight matrix. Experiments on a set of rotated objects demonstrate various types of vi-

1
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sual inference, and show that increasing the degree of overcompleteness provides an increase in

recognition performance in difficult scenes with occluded objects in clutter.

1.1 Introduction

Vision, whether in the brain or computer, can be characterized as the process of inferring

certain unknown quantities using an input image and predictions or expectations based on prior

exposure to the environment. Visual inference includes tasks such as recognizing objects, recon-

structing missing or occluded features, imagining previously learned or entirely novel objects,

and segmentation (finding which features in a cluttered image correspond to aparticular ob-

ject). Performing these inference tasks requires combining information about the current image

(bottom-up processing) and abstract concepts of objects (top-down processing). These tasks

can naturally be placed into the framework of Bayesian probabilistic models, and determining

the structure and priors for such models is a great challenge both for understanding vision in

the brain and for application-oriented computer vision. A primary goal of thispaper is to de-

rive an effective probabilistic model of visual inference consistent withcurrent understanding of

biological vision.

A number of important principles have emerged from neuroscience that wewill make use

of here:

1. Vision in the brain is ahierarchical process with information flowing from the retina to

the lateral geniculate nucleus (LGN) of the thalamus, and through the occipital (V1, V2,

V4, etc.) and temporal regions of the cortex (Kandel et al., 2000).

2. This hierarchy has extensiverecurrencewith reciprocal connections between most re-

gions, e.g., from V1 to V2, V2 to V1, V1 to V4, V4 to V1, etc. (Felleman and VanEssen,

1991).

3. There is also extensive recurrence within cortical regions, as typified by lateral inhibition

which is a mechanism for how sparse coding can arise (Callaway, 2004).

4. The primary visual cortex (V1) is strikinglyovercomplete, meaning that there are many

more cells than would be needed to represent the incoming retinal information.In humans,
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there are over 200-300 V1 neurons per each LGN neuron, and a lesser degree of overcom-

pleteness in other primates (Stevens, 2001, Ejima et al., 2003). Overcompleteness may be

a critical feature of how V1 can be used as a high-resolution buffer (Lee et al., 1998) for

precision recognition and segmentation tasks.

5. The firing patterns of cortical neurons gives evidence forsparse distributed representa-

tions, in which only a few neurons are active out of a large population, and that information

is encoded in these ensembles (Vinje and Gallant, 2000).

6. Finally, the principle ofcortical similarity states that even though there are differences

between various areas, the basic structure is of the cortex is qualitatively similar, implying

that the underlying cortical operation should be similar from area to area (Mountcastle,

1978, Hawkins and Blakeslee, 2004).

Since these six properties are present in animals with high visual acuity, it is reasonable to

assume they are important for inference, and we will adopt all of them in a network model

presented here.

While many computational models of vision have been developed which incorporate some

of the above-listed properties (Fukushima and Miyake, 1982, Rao and Ballard, 1997, Riesenhu-

ber and Poggio, 1999, Rolls and Milward, 2000, Lee and Mumford, 2003, Fukushima, 2005), we

propose a model which takes into account all six properties. For example,the recognition mod-

els of Rolls and Milward (2000) and Riesenhuber and Poggio (1999) donot use feedback (and

so are incapable of inference tasks such as reconstruction or imagination), and the dynamic sys-

tem of Rao and Ballard (1997) does not use overcomplete representations. The use oflearned

overcomplete representations for preprocessing is a new and largely unexplored approach for

visual recognition and inference algorithms. Recent developments in learning overcomplete

dictionaries (Lewicki and Sejnowski, 2000, Kreutz-Delgado et al., 2003, Teh et al., 2003) and

the associated methods for sparse image coding (Murray and Kreutz-Delgado, 2005) now make

possible the investigation of their utility for visual inference.

Real world images are high-dimensional data that can be explained in terms ofa much

smaller number of causes, such as objects and textures. Each object, in turn, could appear in

many different orientations but in fact is seen in only one particular orientation. At any given

angle, an object can be described with a concise set of lines and arcs (Olshausen and Field, 1997).
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The key feature of these various types of image descriptions is that they can be represented as

sparse vectors, where only a few of the many possibly choices suffice to explain the scene.

While pixel values of images have non-sparse distributions (they are unlikely to be zero), these

more abstract representations are very sparse (each component is likely to be zero), and only a

few non-zero components at a time succinctly describe the scene. This intuition, along with the

biological evidence for sparsity, is the justification for our use of sparseprior distributions.

Beginning with a hypothetical hierarchicalgenerative world model(GWM) that is pre-

sumed to create images of objects seen in the world, we discuss how the GWM can be used for

visual inference. The GWM leaves arbitrary the selection of the probabilitydistribution form,

and a suitable choice is required to create practical algorithms. As a first move, we consider a

Boltzmann-like distribution which captures the desired top-down, bottom-up and lateral influ-

ences between and within layers, but it is computationally intractable. Then, asimplified world

model(SWM) distribution is created based on a variational approximation to the Boltzmann-like

distribution, and which is specifically designed to be flexible enough to model sparse densities

(Section 1.2.4). The variational parameters are taken to be the expected value of the state at each

layer given its neighboring layers (immediately above and below). Solving for these parameters

results in a binary state SWM with a flexibly-parameterized nonlinearity (the activation func-

tion). The SWM can be considered in a dual form using the pre-activation-function state, which

by the central limit theorem is a normally distributed random vector. With the proper choice

of activation function parameters, the distribution of the binary state can be shown to be sparse

even though the pre-activation state is normally distributed. The normality of thepre-activation

state is used to show that a dynamic system on the pre-activation state is a Gauss-Markov sys-

tem. As such, it is amenable to solution with the extended Kalman filter (EKF, Anderson and

Moore, 1979), and it shows a direct connection to the hierarchical EKFmodel of vision of Rao

and Ballard (1997), Rao (1999) (Section 1.3.3).

By designing a dynamic network (alternative to the EKF) that rapidly converges to a self-

consistency condition in the simplified world model, we can perform inferencetasks if we have

the weights that parameterize the network (Section 1.3.2). To determine the unknown weights, a

learning algorithm that minimizes the error between the simplified world model’s converged state

and the data set. The learning algorithm is an extension of the backpropagation-through-time-

algorithm (Williams and Peng, 1990) which operates on the normally-distributedpre-activation

state and includes a sparsity-enforcing prior (Section 1.5). This can be seen as a natural extension
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of the sparse-coding principles that are useful in modeling V1 responseproperties (Olshausen

and Field, 1997) to the full visual inference task.

To show the efficacy of this approach, we demonstrate experimentally several types of vi-

sual inference including recognition, reconstruction, segmentation and imagination. We show

that overcomplete representations provide an increase in recognition performance over complete

codes when used in the early stages of vision (Section 1.7).

1.1.1 Organization

The chapter is organized as follow: In Section 1.2, a generative visual-world model (GWM)

is hypothesized, and its use for recognition and other types of visual inference is discussed. In

Section 1.2.4, a variational approximation is used to construct a simplified worldmodel (SWM)

which makes inference computationally tractable. Section 1.3 details a hierarchical dynamic

network (DN), which settles to the self-consistency conditions of the SWM, for solving the

visual inference problems. Sections 1.4 and 1.5 establish a Bayesian probabilistic framework

and a learning algorithm for the network weights. Algorithm implementation is given in Section

1.6 and vision experiments on a set of rotated objects are described in Section 1.7, showing the

effect of increasing degrees of overcompleteness. A discussion of the biological motivations and

comparison to prior work is given in Section 1.8, and conclusions are drawn in Section 1.9.

1.1.2 Notation

a Activation function parameters

B Error-related term in learning algorithm

c(m) Object code for objectm, (sparse binary code)

D Sparsity-enforcing term in learning algorithm

f(·) Sigmoid activation function

I{·} Indicator function, 1 if expression is true, 0 otherwise

K Number of images in training setY

Ll Lateral weights between units in layerl

M Number of unique objects in training set

n Number of layers in network

N Number of elements in state vectorX
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r Diversity (number of non-zero elements),r = [r1, . . . , rn], whererl is the

diversity of layerl

s Size of layers,s = [s1, . . . , sn], wheresl is the size of layerl

Ut Network input at timet

v,v Unit weight sumv (for entire layervl), pre-activation function

V Pre-activation values of all layers

V̂t Certainty-equivalence approximation of pre-activation values

Wlm Weights from layerm to layerl

W Complete weight matrix for all layers (including allWlm andLl), W ∈ R
N×N

xl Activation vector at layerl, expected values ofP (zl)

X State vector of all layers,X = [xT
1 , . . . ,xT

n ]T

Y̌ Training data,̌Y = [y̌T
1 , 0, . . . , 0, y̌T

n ]T , wherey̌1 is sparsely-coded image

andy̌n is an object code

Yt Network output at timet

Y, V, U Sets of multiple state vectorsY, V , e.g.Y = {Y (1), . . . , Y (K)}
zl True state of generative model at layerl, binary random vector∈ {0, 1}sl

Z True state of generative model, all layers,Z = [zT
1 , . . . , zT

n ]T , binary random

vector∈ {0, 1}N

αi Prior-shaping parameters

βt Indicator vector of whether target values are available for each elementof Vt

ε Error between variational approximation and true state

ε̂ Error between data set and network approximationV̂t

ζ Normalization constant (partition function)

η Learning rate

λ Regularization parameter

Φ Error between true and approximate state,Φ = Z −X = [φT
1 , . . . ,φT

n ]T

ξ Energy-like function

τ Number of time steps network is run for (maximum value oft)

GWM Generative world model

SWM Simplified world model, variational approx. to Boltzmann-like distribution

DN Dynamic network that settles to the self-consistency condition of the SWM
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1.2 Generative Models for Visual Inference

In this section, we postulate a hierarchical generative visual-world model(GWM) and dis-

cuss its properties, particularly that of independence of one layer given its immediately neighbor-

ing layers. We then discuss how the GWM can be used for visual inference tasks such as recog-

nition, imagination, reconstruction, and expectation-driven segmentation. Specific forms of the

probability distribution in the model must be chosen, and as a starting point we use a Boltzmann-

like distribution. Since inference with the Boltzmann-like distribution is generally intractable,

a variational approximation is developed leading to a simplified world model (SWM). The key

assumption of sparsely-distributed activations (prior distributions) is enforced and used exten-

sively. While this work deals with the visual world, it is conceivable that this procedure could be

applied to generative auditory-, tactile-, or other sense-world models as well.

1.2.1 Hierarchical Generative Visual-World Model

Images of objects seen in the world can be thought of as being created by ahierarchical,

stochastic generative model (thegenerative world model, GWM). While it cannot be rigorously

claimed that the real world uses such a model to generate images, the idea of the GWM is a useful

fiction that guides the development of learning algorithms (Hinton and Ghahramani, 1997).

For the GWM, we assume a hierarchical binary-state model of the form shown in Figure

1.1. The number of layers is somewhat arbitrary, though there should be enough layers to capture

the structure of the data to be modeled, and four to five appears to be a reasonable number for

images of objects (Riesenhuber and Poggio, 1999, Lee and Mumford, 2003). The arrows in

Figure 1.1 indicate that each layer depends only on the layer directly aboveit in the hierarchy.

At the highest level, the vectorz5 is a sparse binary coding of the object in the image, and its

value is drawn from the prior distributionP (z5). The representation of the particular orientation

z4 of an object depends only on the object representationz5. The invariant, composite and

local features,z3, z2 andz1, likewise depend only on the layer immediately above them, e.g.

P (z3|z4, z5) = P (z3|z4), and the local featuresz1 model the imageI. The sequence can be
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Figure 1.1: Hierarchical generative visual-world model (GWM) for objects. At each layerzl,
the image can be represented by a large (possibly overcomplete) sparse vector. In this generative
model, each layer is a binary random vector which, given only the layer immediately above it in
the hierarchy, is independent of other higher layers.

summarized,

z5
P (z4|z5)−−−−−→ z4

P (z3|z4)−−−−−→ z3
P (z2|z3)−−−−−→ z2

P (z1|z2)−−−−−→ z1
P (I|z1)−−−−→ I , (1.2.1)

where the probabilities represent certain visual transformations. The joint distribution of the

image and generative statesz is,

P (I, z1, z2, z3, z4, z5) = P (I|z1, z2, z3, z4, z5)P (z1, z2, z3, z4, z5)

= P (I|z1)P (z1|z2)P (z2|z3)P (z3|z4)P (z4|z5)P (z5) . (1.2.2)

We postulate that thezl are sparse, i.e., they have very few non-zero components (Ol-

shausen and Field, 1997). For example, in every image only a few of all possible objects will

be present, and each object will only be in one of its possible orientations, and so forth. Spar-

sity is measured by counting the number of zero components in a vectorz ∈ R
n, sparsity ≡

#{zi = 0}. A related quantity,diversity, is defined as the number of non-zero components,

diversity ≡ #{zi 6= 0} = n − sparsity. Many studies, such as Olshausen and Field (1996)
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and our own work (Kreutz-Delgado et al., 2003, Murray and Kreutz-Delgado, 2005), have con-

firmed that natural images can be represented accurately by sparse vectors, which corresponds

to thez1 representation ofI in our notation. These studies have mainly dealt with small patches

of images (on the order of 8x8 to 16x16 pixels), and it is clear that features larger than such

patches will be represented non-optimally. This further redundancy in larger-scale features can

be reduced at higher levels, and these will also have the property of sparseness.

Recognition. For object recognition, the problem is to infer the highest layer representation

z5 given an imageI, which can be seen as the statistical inverse of the world image generation

process (1.2.1),

I
P (z1|I)−−−−→ z1

P (z2|z1)−−−−−→ z2
P (z3|z2)−−−−−→ z3

P (z4|z3)−−−−−→ z4
P (z5|z4)−−−−−→ z5 . (1.2.3)

Using the hierarchical assumption in the generative model that each layer given the layer directly

above it is independent of other higher layers, we can show that each layer given the layer directly

below it is independent of all other lower layers. For example, starting with the highest layerz5,

P (I, z1, z2, z3, z4, z5) = P (z5|I, z1, z2, z3, z4)P (I, z1, z2, z3, z4) . (1.2.4)

where,

P (z5|I, z1, z2, z3, z4) =
P (I|z1)P (z1|z2)P (z2|z3)P (z3|z4)P (z4|z5)P (z5)

P (I|z1)P (z1|z2)P (z2|z3)P (z3|z4)P (z4)

=
P (z4|z5)P (z5)

P (z4)

= P (z5|z4) , (1.2.5)

Thus, dually to (1.2.2) we have,

P (I, z1, z2, z3, z4, z5) = P (z5|z4)P (z4|z3)P (z3|z2)P (z2|z1)P (z1|I)P (I) . (1.2.6)

Neighboring Layer Conditional Probability (NLCP). For a middle layerzl given all the

other layers, we find thatzl given its immediate neighborszl−1, zl+1 is independent of all the

remaining layers. For example (proceeding as in eq. 1.2.5),

P (z3|I, z1, z2, z4, z5) =
P (z2|z3)P (z3|z4)

ζ(z2, z4)

≡ P (z3|z2, z4) , (1.2.7)
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whereζ is a normalization function to ensure thatP is a distribution. Generalizing to an arbitrary

layer, we find theneighboring layer conditional probability(NLCP),

P (zl|I, z1, . . . , zn) = P (zl|zl−1, zl+1) (NLCP) . (1.2.8)

This important modeling assumption is equivalent to saying the each layer of themodel learns

about the world only through its neighboring layers. More generally, iful is an exogenous input

to layerl, the NLCP isP (zl|zl−1, zl+1,ul), however in this section we suppressul for notational

clarity.

Properties of Generative World Model (GWM). We now summarizes the four properties of

our generative world model (GWM).

1. There is a hierarchy ofn hidden-layer vectorsz1, . . . , zn that model and explain each

imageI.

2. Each layer is independent of all higher layers given its next highestneighboring layer, i.e.,

P (zl|zl+1, . . . , zn) = P (zl|zl+1).

3. Each layer is independent of all lower layers given its next lower neighboring layer, i.e.,

P (zl|zl−1, . . . , z1) = P (zl|zl−1).

4. Given its immediate neighboring layers, a layerzl is independent of all other higher and

lower layers, i.e.P (zl|I, z1, . . . , zn) = P (zl|zl−1, zl+1) (NLCP).

These properties of a hierarchical world model have been proposed by Lee and Mumford

(2003).

1.2.2 Imagination, Reconstruction and Expectation-Drive Segmentation and De-

tection

Recognition is only one type of inference we might be required to perform. Another type

is running a model generatively in order to use a high-level object representation toimaginean

image of that object. In the brain, imagining a particular instance or orientation of an object will

not correspond to the level of detail in the retinal representation, but there is evidence of activity

in many of the same regions during vision and imagination including the medial temporal (MT),

V1 and V2 (Kosslyn et al., 1995, 1997).
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Table 1.1: Types of inference that can be performed with the hierarchical generative world model
(GWM) and the types of information flow required (bottom-up or top-down).We wish to find a
good approximation to the layerzl of interest. The approximation used is the expected value of
zl under the variational approximation,EQ[zl] = xl as discussed in Section 1.2.4.

Requires

Type of Inference Inputs Outputs Bottom-up Top-down

Recognition (I → z1) zn Y N

Imagination zn (z1 → I) N Y

Reconstruction (I → z1) (z1 → I) Y Y

Exp.-driven seg. (I → z1), zn (z1 → I) Y Y

Exp.-driven det. (I → z1), zn zn Y Y

Certain types of inference involve the use of top-down influences interacting with bottom-

up inputs. For example, given a partially occluded image that has been recognized by higher

layers, top-down influences can be used toreconstructthe hidden parts of the object (i.e. those

features that are most likely given the input). Another type of inference isexpectation-driven

segmentation, where a prediction is presented at a higher level which may be used to explain

cluttered, incomplete or conflicting inputs at the lowest layer, and the desiredoutput is the seg-

mented object at the first layer (or suitable early-layer representation) (Grossberg, 1976, Rao and

Ballard, 1997, Hecht-Nielsen, 1998). The expectation input (higher-layer, top-down) must come

from a source external to the visual system, which in the brain could be higher cortical areas or

other senses, and in computer vision could be dependent on the task or provided by a user. If we

wish to find which objects are in a cluttered scene (i.e., the desired output is thehighest-layer

object representation) based on prior knowledge of what might be there(higher-layer input), we

performexpectation-driven detection. If the high-level prediction about the scene is consistent

with the input, the system converges with the expectation at the highest layer and the predic-

tion is confirmed. If the system converges to a different pattern, this indicates that the expected

object is not present (which could be considered a state of surprise).Table 1.1 shows types of

inference and the necessary information flow (top-down or bottom-up) needed in the model. As

discussed below, we use a sparse-coding algorithm to transform the imageinto the first layer

representation,z1, and vice versa (denoted by→ in the table).
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1.2.3 Boltzmann-like Distributions for Layer-Conditional Probabilities

Our next task is to postulate a reasonable form for the GWM distributionsP that is tractable

for both inference and estimating the parameters, yet powerful enough for generating the images

seen in the world. A common choice in probabilistic modeling is theBoltzmann distribution,

where the probabilities are related to a function that assigns an energy to each state (Hopfield,

1982, Hinton and Sejnowski, 1983). In analogy with thermodynamics and physical systems

such as magnetic materials, the energy function captures the influences of each particle on its

neighbors where lower-energy states are more probable. In the context of associative memories,

the energy function is adjusted (by observing the statistics of the environment) such that learned

patterns form low-energy basins of attraction. However, the energy function of the Boltzmann

distribution is required to be symmetric and have zero self-energy (Kappenand Spanjers, 2000).

We relax these restrictions and use the termsBoltzmann-likeandenergy-liketo distinguish our

model from the more strict Boltzmann distribution assumptions. The Boltzmann-likeform of

the NLCP is,1

PB(zl|zl−1, zl+1) =
1

ζ(zl−1, zl+1)
exp (−ξ(zl, zl−1, zl+1)) (NLCP-B) , (1.2.9)

whereξ is the energy-like function andζ is the normalization function. The energy-like and

normalization functions are,

ξ(zl, zl−1zl+1) = −zT
l Wl,l−1zl−1 − zT

l Llzl − zT
l Wl,l+1zl+1 − θT

l zl

ζ(zl−1, zl+1) =
∑

zl

exp(−ξ(zl, zl−1, zl+1)) , (1.2.10)

whereWl,l+1 are top-down weights from layerl + 1 to l, Wl,l−1 are the bottom-up weights

from the layerl − 1 to l, Ll encodes the influence of units in layerl on other units in that layer

(lateral weights), andθl is a bias vector. The summation inζ is over all states of layerl. The

energy-like function (1.2.10) is a simple functional form that encodes the influences between

every pair of units with a linear weight. The dependencies between and among layers captured

by the NLCP-B can be represented as a graphical model (Figure 1.2, which shows a subset of

these connections for simplicity).

1When the weights are symmetric and diagonally zero, i.e.W = WT , L = LT ,Lii = 0,
thenPB (1.2.9) is the equilibrium distribution generated by the Boltzmann machine update rule
(Ackley et al., 1985). However, more generally this is not true.
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Figure 1.2: Graphical model representation of the NLCP-B, which can perform recognition as
well as other types of inference such as reconstruction and imagination. Within a layer, units
influence each other using lateral connectionsLl. Bottom-up recognition weightsWl,l−1 and
top-down generative weightsWl,l+1 connect adjacent layers (only some weights are shown).
External inputs can be included at the highest layer (expectations) or lowest layer (input images),
but both types of input are treated similarly in this graphical model. All the layerszl in the
hierarchy can be combined into a single vectorZ.

The NLCP-B is a special case of the non-layered energy-like distributionfor a vector of

binary random variables. Although it is common to use{0, 1} or {−1, 1} for the binary levels,

we will allow them to be arbitrary, which does not change the functional form of PB. In the ex-

periments below, we use values which are close to{0, 1} so that conceptually we are envisioning

the{0, 1} case.

The need for the lateral connectionsL is related to the well-known “explaining away”

effect (Pearl, 1988). Consider the two-layer model in Figure 1.3 (Dayan, 1999): in the top-down

generative model (left in Figure 1.3), the probabilities of units inz2 are independent (factorial)

and each is likely to activate the first unit inz1, but the units inz2 are each unlikely to be active

(i.e. they are sparsely distributed as in Figure 1.1). So, only one unit inz2 is likely to generate
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Generative model Recognition model

-

+

+

z1z1 z2z2

Figure 1.3: The “explaining away” effect and the need for lateral connections. Even if the units in
each layer of a top-down generative model (left) are independent, the units in the corresponding
layer of a bottom-up recognition model will not be, requiring lateral interaction for accurate
inference.

the activation of the unit inz1. In the bottom-up recognition model (right in Figure 1.3), given

only z1 and the feedforward weights fromz1 to z2, we would infer that both units ofz2 were

active. However, by including a negative lateral connection between theunits inz2 (the negative

arrow), the correct inference of only one active unit inz2 can be made. Thus, the activity of one

unit in z2 “explains away” the need for the second unit to be active. Straightforward application

of Bayes’ rule also shows that the distribution of units inz2 is not independent givenz1 even

with a factorial generative model. So, even if the independence assumptionwithin layers is made

in the generative model, lateral connections are required for inference.

Unfortunately, even when the parameters of thePB(zl|zl−1, zl+1) are known, exact infer-

ence onzl givenzl−1, zl+1 is intractable because of the need to sum over every possible statezl

to calculate the normalization functionζ (Saul et al., 1996).

1.2.4 Simplified World Model Developed With a Variational Method

The Boltzmann-like distribution (1.2.9)-(1.2.10) provides a reasonable form of the probabil-

ities in the GWM that accounts for feedforward, feedback and lateral influences. Unfortunately,

performing inference with this model is generally intractable. In this section, we use a variational

method that approximatesPB(zl| zl−1, zl+1) with a factorial distribution,PQ(zl| zl−1zl+1). By

variational we mean that there are certain parametersxl = {xl,i} that are varied to make the

distributionPQ as close toPB as possible. The form ofPQ is ageneralized factorial Bernoulli

distribution,

PQ(zl|zl−1, zl+1) =
∏

i

[
xl,i − a4

a1

]� zl,i−a4

a1

� [
1− xl,i − a4

a1

]�1− zl,i−a4

a1

�
, (1.2.11)
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wherexl,i are the variational parameters anda = [a1, a2, a3, a4] are additional constant parame-

ters (a2 anda3 will be introduced later) that are used to encourage sparsity-inducing densities

(see Section 1.2.6 below). A sufficient condition for (1.2.11) to be a probability distribution is

that xl,i−a4

a1
+
(
1− xl,i−a4

a1

)
= 1 and xl,i−a4

a1
≥ 0, which is true fora1 > 0 andxl,i ≥ a4.

The slightly generalized Bernoulli-distribution (1.2.11) is based on a shift in the logical val-

ues ofzl,i in the energy function from{0, 1} to {a4, a1 + a4} (in our experiments we will use

{−0.05, 1.05}, which will be useful for computational efficiency). Our formulation encom-

passes the two common choices for logical levels,{0, 1} and{−1, 1}, e.g. if logical levels of

{−1, 1} are needed, thena4 = −1, a1 = 2. Collecting thexl,i into vectorsxl of the same size

aszl for each layer, we have the conditional expected values for each layer,

xl = EQ[zl|zl−1, zl+1] . (1.2.12)

Note thatxl is the minimum-mean-squared-error (MMSE) estimate ofzl given the values of its

neighboring layers (Kay, 1993, pg. 313).

We now find the variational parametersxl,i that minimize the Kullback-Leibler diver-

gence (Cover and Thomas, 1991) between the conditional probabilitiesPB(zl|zl−1, zl+1) and

PQ(zl|zl−1, zl+1),

KL(PQ||PB) = EQ[log PQ(zl|zl−1, zl+1)]− EQ[log PB(zl|zl−1, zl+1)] , (1.2.13)

whereEQ is the expected-value operator with respect to the distributionPQ(zl|zl−1, zl+1). Us-

ing the expected valueEQ[zl,i] = xl,i, the first term is,

EQ[log PQ(zl|zl−1, zl+1)] =EQ

[
∑

i

(
zl,i − a4

a1

)
log

(
xl,i − a4

a1

)

+

(
1− zl,i − a4

a1

)
log

(
1− xl,i − a4

a1

)]

=
∑

i

[
xl,i − a4

a1
log

(
xl,i − a4

a1

)

+

(
a1 − xl,i + a4

a1

)
log

(
1− xl,i − a4

a1

)]
. (1.2.14)
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The second term in (1.2.13) can be expanded,

EQ[log PB(zl|zl−1, zl+1)] =EQ[− log(ζ)− ξ(zl, zl−1, zl+1)]

=EQ[− log(ζ)− zT
l Wl,l−1zl−1 − zT

l Llzl

− zT
l Wl,l+1zl+1 − θT

l zl] . (1.2.15)

Again using the expected valueEQ[zl,i] = xl,i,

EQ[log PB(zl|zl−1, zl+1)] =− log(ζ)−
∑

ik

W−
ik zl−1,k xl,i −

∑

ik

Lik xl,k xl,i

−
∑

ik

W+
ik zl+1,k xl,i −

∑

i

θl,i xl,i + cl , (1.2.16)

whereW+
ik , W−

ik andLik are elements of the weight matricesWl,l+1,Wl,l−1 andLl respectively

and the termcl = EQ[(zl − xl)
TLl(zl − xl)] = EQ[φT

l Llφl], which is zero assuming that

Lii = 0. 2

Self-Consistency Conditions of the Variational Approximation. The variational parameters

xl,i that minimize the distance betweenPB andPQ (1.2.13) are found by solving,

∂KL(PQ||PB)

∂xl,i
= 0 = a2

(
∑

k

W−
ikzl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikzl+1,k

)

+ log

(
z1 − xl,i + a4

xl,i − a4

)
− a3 , (1.2.17)

using a constant terma3 for the biasθl,i,3 and factoring outa2 from W+, W− andL (with a

slight abuse of notation, including factoring1a1
into a2, a3, see eq. 1.2.14). Setting (1.2.17) equal

to zero and solving forxl,i,

xl,i = f (vl,i)

vl,i =
∑

k

W−
ikzl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikzl+1,k , (1.2.18)

2The termcl = EQ[(zl − xl)
TLl(zl − xl)] = Tr[LlΣzl

], whereΣzl
is the covariance matrix

of zl underPQ. Sincezl is assumed conditionally independent underPQ, the non-diagonal
elements of the covariance matrix are zero. We will disallow self-feedback (i.e., Lii = 0), so
that Tr[LlΣzl

] is zero. However it is straightforward to handle the case whenLii 6= 0 given the
factorial form ofPQ.

3For simplicity we setθl,i = a3 for all l, i. However this assumption can be relaxed.
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wheref(·) is a sigmoid activation function parameterized bya = [a1, a2, a3, a4],

f(v) =
a1

1 + exp (−a2v + a3)
+ a4 . (1.2.19)

Defining φl,i = zl,i − xl,i to be the approximation error, the statez is equal tox plus a

random noise component,zl,i = xl,i + φl,i. This yields,

vl,i =
∑

k

W−
ik (xl−1,k + φl−1,k) +

∑

k

Likxl,k +
∑

k

W+
ik (xl+1,k + φl+1,k)

=
∑

k

W−
ikxl−1,k +

∑

k

Likxl,k +
∑

k

W+
ikxl+1,k + εl,i , (1.2.20)

where theφ terms have been collected intoεl,i. By collecting all the terms for each layer into a

vector we obtain the single equation,




x1

x2

x3

...

xn




= f







L1 W12 0 · · · 0

W21 L2 W23
...

0 W32 L3 W34
...

...
. .. . . .

...

0 · · · 0 Wn,n−1 Ln







x1

x2

x3

...

xn




+




ε1

ε2

ε3

...

εn







, (1.2.21)

which is theself-consistency conditionfor the variational approximation.

Simplified World Model Forms. Further collecting all the estimates for each layer into a

single vectorX = [xT
1 , . . . ,xT

n ]T and all the weights into a global weight matrixW, equation

(1.2.21) can be written concisely,

X = f(WX + ε) (SWM-E) , (1.2.22)

which is called thesimplified world model on the expected values(SWM-E), and where the

vector forms of the errors are,

Φ = Z −X

ε = (W− L)Φ . (1.2.23)

The SWM can be written equivalently in terms of the binary stateZ,

Z = f(WZ − LΦ) + Φ (SWM-B) , (1.2.24)
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and which is called theSWM on the binary state(SWM-B). The SWM can also be written

in an equivalent dual form on the pre-activation state. Collected thevl,i into a state vector

V ≡WX + ε (andX = f(V )), we have,

V = Wf(V ) + ε (SWM-P) , (1.2.25)

which is called theSWM on the pre-activation state(SWM-P). Equations (1.2.22), (1.2.24) and

(1.2.25) are self-consistency conditions for the SWM. We will return to these key results in

Section 1.3.2 where we discuss how to find solutions to these conditions through evolution of

updates in time. Note that with a slight abuse of notation we refer to the self-consistency condi-

tions themselves as the SWMs.

1.2.5 Relation to Other Work

Performing inference on a hierarchical GWM has long been a problem ofinterest in ma-

chine learning (Hinton and Sejnowski, 1983, Dayan et al., 1995, Hinton and Ghahramani, 1997),

and it has also been seen as an analogy to the computation performed in the brain, in which re-

gions of the visual system such as V1, V2, V4 and IT are mapped to the layers zl of the model

(e.g., see Lee and Mumford, 2003, who present such a model and suggest particle filtering as an

inference algorithm, but with no simulations). In Section 1.3 we perform inference by finding

an iterative-relaxation solution to the self-consistency conditions (1.2.22),a procedure which is

consistent with the type of computation assumed possible in the cortex (i.e., summingor integrat-

ing over an input field followed by a nonlinearity that determines firing rate),if a suitable-chosen

activation functionf(v) is used, which is the topic of the following section.

Using a factorial variational approximation (such asPQ) is also known as themean-field

(MF) approximationin analogy with concepts in statistical physics (Peterson and Anderson,

1987). What distinguishes our method is that we use an approximating distribution PQ that is

conditional on its neighboring layers. This removes less randomness (and allows more gener-

ative capability) than the full, unconditional MF approximation, or the MF approximation con-

ditioned on the visible layers (which is done in the Boltzmann machine). This approximation

is reasonable as it is equivalent to saying that the information about the world contained in any

layer is provided by its immediate neighboring layers, so if we condition on neighboring layers

then only random (“meaningless”) noise remains.
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Our SWM is also related to sigmoid (or logistic) belief networks (Neal, 1992) and their

MF approximations (Saul and Jordan, 1998) but with some key differences. First, while these

models are hierarchical, they do not include lateral connectionsL within each layer. More subtly,

their energy function has an additional non-quadratic term (eq. 11.81 ofHaykin, 1999) which

is difficult to handle and results from a marginalization over the hidden units asthe initial step

in the development of the probability of the state. In contrast, we find it is more convenient

to define the parametersWkl,Ll in PB so that the energy-like function is quadratic (1.2.10)

(contrast with the form of the conditional probability found in eq. 11.43 of Haykin, 1999).

1.2.6 Activation Functions Can Encourage Sparse Distributions

The parameterized sigmoid activation function (1.2.19) can be used to encouragesparse

activationin the layerszl by appropriate choice of parametersa. Figure 1.4 shows the activation

function (1.2.19) when parameterized witha = [1.1, 2.0, 4.0,−0.05], which are chosen to shift

it to the positive orthant so that small levels of activation do not lead to positive values off(v).

We can reasonably assume thatv = vl,i as given by (1.2.18) is a normally distributed

random variable due to the central limit theorem (Thomas, 1971) becausev is the sum of (nearly)

independent, identically distributed values with bounded variance.4 The densityP (x;a) can

then be found by transforming the normal densityP (v) = N (µ, σ2) by the activation function

(1.2.19) resulting in,

P (x;a) =
a1

a2(x− a1 − a4)(x− a4)
√

2πσ2

× exp

{
−1

2σ2

[
1

a2
ln

(
x− a4

−x + a1 + a4

)
+

a3

a2
− µ

]2
}

. (1.2.26)

For the values ofa given above and forµ = 0, σ2 = 1, Figure 1.5a shows thatP (x) is indeed

a sharply-peaked sparsity-inducing distribution. In contrast, Figure 1.5b showsP (x) after being

transformed by the sigmoid activation function with parametersa = [1, 1, 0, 0], which does not

lead to a sparsity-inducing distribution. Figure 1.4 also shows the derivative of the activation

function,

f ′(v) =
a1a2 exp (−a2v + a3)

{1 + exp(−a2v + a3)}2
, (1.2.27)

which will needed in the learning algorithm.

4The approximate normality ofv is confirmed by our simulations.
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Figure 1.4: (A) Activation functionf(v) and (B) derivativef ′(v) with parametersa = [1.1,
2.0, 4.0, −0.05], see Equations (1.2.19) and (1.2.27). The limits of the activation function are
[a4, a1 + a4] = [−.05, 1.05], and the slope is controlled bya2 and the shift (bias) is determined
with a3. The shape of the activation function encourages sparsity by ensuringthat small input
activitiesv < vl do not produce any positive output activity. In the simulations, the values of
x = f(v) are thresholded so thatx = [f(v)] ∈ [0, 1], however the values off ′(v) are kept for
use in the weight updates (see Section 1.5).

1.3 Recurrent Dynamic Network

Recognizing that the solutions to the important inferencing problems correspond to solu-

tions of the self-consistency conditions derived in Section 1.2.4, we generalize these condition

into a dynamic network capable of rapidly converge to a solution satisfying (1.2.21).

There aren layers in the network and the vector of activations for thel-th layer at timet

is denotedxl,t, l = 1 . . . n, with the sizes of the layers given bys = [s1 . . . sn]. The network

is designed to enforce rapid convergence to the self-consistency conditions (1.2.21) forxl, such

thatxl,t → xl. The state vector of all the layers at timet is denoted,

Xt =
[
xT

1 , xT
2 , . . . , xT

n

]T ∈ R
N , (1.3.1)

whereN is the size of the state vector (summed oversl) and dropping the time index onxl

inside the vector notation for clarity. The activity in all layersxl, is enforced to be sparse and

the diversity (number of non-zero elements) of the layers is denotedrt = [r1 . . . rn]. Figure

1.6 shows the four-layer network structure used for the experiments in thispaper. Dashed lines
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Figure 1.5: (A) The probability densityP (x;a) of a normal random variable after being trans-
formed by the activation function,f(v) in Equation 1.2.19, is a sparsity-inducing density if the
parameters are chosen properly. The parameters used in (1.2.26) area = [1.1, 2.0, 4.0,−0.05]
and µ = 0, σ2 = 1. (B) Probability ofx after transformation by activation functionf(v)
is not sparsity-inducing with the standard set of parameters for sigmoid activation functions,
a = [1, 1, 0, 0] andµ = 0, σ2 = 1.

indicate inputs and connections that are not used here, but are allowed inthe model.

1.3.1 Inputs and Outputs

The layers used for input and output depend on the type of inference required. In the present

work, inputs are usually injected at either the highest or lowest layer (although in general, we

may have inputs at any layer if additional types of inference are required). We define an input

vectorUX
t (again dropping the time index onul inside the vector),

UX
t =

[
uT

1 , uT
2 , . . . , uT

n

]T
, (1.3.2)

whereu1 is a sparsely coded input image (see below) andun is anm-out-of-n binary code

called theobject codewhich represents the classification of the object. The advantage of using

an m-out-of-n object code is that it allows more objects to be represented than the sizen of

the highest layer, which is the limitation of 1-out-of-n codes. The object code provides a high

representational capacity and robustness to the failure of any individual unit/neuron, both of

which are desirable from a biological perspective. In addition, we can represent new objects
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Figure 1.6: Dynamic network used in the experiments. Inputs imagesI are first sparsely coded
using the FOCUSS+ algorithm, which operates on non-overlapping patchesof the input image.
This sparse overcomplete codeu1 is used as bottom-up input to the four-layer hierarchical net-
work. Dashed lines indicate inputs (u3) and connections (L1) that are not used in the experiments
in this paper, but which are allowed by the network.
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without adjusting the size of the highest layer,un, by creating new random object codes.

For recognition and reconstruction, the input is the coded input image inu1, and the object

code input is zero,un = 0. When the network is used for imagination, the input is the object

code representation presented at the highest layerun and random noise atu2, and the output is

the reconstructed image the lowest layer. For expectation-driven segmentation, bothu1 andun

inputs are used. In this way, either the highest or lowest layer can serveas the input while the

other serves as the output. Table 1.1 show the layers used for input and output for each type of

inference (although we will use the expected valuexl for the output instead ofzl), and the types

of network connections needed. We note that for most inference types,we will not clamp the

statesxl to the input valuesul, (see below). The exception is imagination, in which the highest-

layer object code will be clamped during the iterations of the network. In general, a time-varying

sequence of inputsut can be presented, but the experiments in this paper deal only with static

objects (thought of as instantaneous snap-shots of the world).

Sparse Overcomplete Image Coding. Since all the layers of the network assume sparsely-

distributed activations, the input images must be encoded before presentation. We use the

FOCUSS-CNDL (FOCal Underdetermined System Solver-Column NormalizedDictionary Learn-

ing) algorithm for finding a sparse representation of small patches of the image (Murray and

Kreutz-Delgado, 2001, Kreutz-Delgado et al., 2003). FOCUSS-CNDLlearns an overcomplete

dictionary based on training data of images patches drawn from a similar statistical environment

as the images to be recognized. More discussion of the FOCUSS-CNDL algorithm and imple-

mentation is in Appendix 1.A. Using the learned dictionary, the FOCUSS+ algorithm finds a

non-negative sparse coding of the patches in the input image. The overcomplete codes for each

(non-overlapping) image patch are concatenated into the vectoru1 for presentation to the net-

work. The iterations of the FOCUSS+ algorithm induce sparsity and are assumed to perform

the function of the lateral inhibitory connections in layer 1 (Olshausen and Field, 1997), so the

layer 1 weightsL1 will not be used in the experiments below, but they are fully allowed by our

dynamic network (Figure 1.6).
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1.3.2 Dynamic Network Form

The update iteration of each layerl is a nonlinear functionf(·) of the current activation at

that layerxl, the activation at the next and previous layersxl+1,xl−1, the feedforward weight

matrix Wl,l−1, the feedback weightsWl,l+1, and the lateral weightsLl. The weight matrices

are initialized to be symmetric but are not required to stay symmetric.

The recurrent dynamic network (DN-E) is the time-dependent generalization of the self-

consistency conditions (1.2.21) of the SWM-E,




x1

x2

x3

...

xn


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
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t+1

,

(1.3.3)

which can be written in the compact form,

Xt+1 = f(WXt + εt) + UX
t+1 (DN-E) , (1.3.4)

whereUX
t is the input to the network which can include a sparsely-coded input imageu1 and/or

a top-downun consisting of an object code. The DN-E is a dynamic world model capable of

explaining a time-varying world.

Our assumption is that with an appropriately chosenW and transient or constant inputs

UX
t , the network (1.3.4) will rapidly converge to a steady-state. In this paper,we will attempt to

enforce the steady-state self-consistency behavior at finite time-horizont = τ , where the horizon

τ is a design parameter chosen large enough to ensure that information flowsfrom top-to-bottom

and bottom-to-top and small enough to have rapid convergence. Becauseof the block structure

of W, information can pass only to adjacent layers during one time stept. (We use the terms

time stepand iteration interchangeably.) For example, in a four layer network, it takes only

four time steps to propagate information from the highest to the lowest layer, while the network

may require more iterations to converge to an accurate estimate. A relatively small number of

iterations will be shown to work well, on the order of 8 to 15.
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1.3.3 Pre-Activation State-Space Model and Relation to Extended Kalman Filter

In the previous subsection we created a dynamic network on the state vectorXt based

on the SWM-E. By defining an equivalent model on the pre-activation vector Vt, we obtain a

nonlinear dynamic system that satisfies the Gauss-Markov properties, making it amenable to

solution with the extended Kalman filter (Anderson and Moore, 1979). Kalmanfilter models

have been proposed for many vision problems (Rao and Ballard, 1997).However, the approach

of Rao and Ballard (1997) is computationally expensive, and even thoughthey demonstrate many

of the types of visual inference discussed in Section 1.2.2, these were done with fairly limited

data sets and it appears difficult to scale their method to larger vision problems. So, while we

will not use the Kalman filter for inference, the move to the Gaussian state modelwill be useful

in deriving the learning algorithm of the next section.

Generalizing the pre-activation model (SWM-P, eq. 1.2.25) to a dynamic network as in the

previous section, we find the state-space model for the evolution of pre-activation stateVt,

Vt+1 = Wf(Vt) + εt+1 + UV
t+1 (DN-P) , (1.3.5)

whereVt is a Gaussian vector because of the presumed normality ofv as discussed in Section

1.2.6, andUV
t+1 is the input/inital conditions for the pre-activation state (compare withUX

t+1 for

the stateX). The DN-E and DN-P are equivalent representations of a dynamic generative world

model.

Interpreting the layers ofVt as the hidden states of the generative visual-world model, the

visible world is found with the read-out map,

Yt = C g(Vt) + noise, (1.3.6)

whereg(·) is the output nonlinearity, andC = [1, 0, . . . , 0 ] hides the internal states. If the

errorsεt are assumed independent across time and across and within layers, the system (1.3.5)-

(1.3.6) can be seen to be Gauss-Markov, and so the stateVt can be estimated with the extended

Kalman filter (EKF) (Anderson and Moore, 1979, Chapter 8). By appropriate choice of structure

in W to localize receptive fields, the model (1.3.5) can be seen to be closely related to the hier-

archical EKF approach used by Rao and Ballard (1997) (see their Figure 2). Note that the EKF

findsE[Vt|Yt] while the DN-E tracks the expected value of each layer given its neighbors. Table

1.2 summarizes the moves made from the generative visual-world model (GWM)of Section 1.2

to the dynamic networks of the present section.
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Table 1.2: Progression of models developed in Sections 1.2 and 1.3.

Hierarchical Generative World Model (GWM)

Inference given neighboring layers:

P (zl|zl−1, zl+1) (GWM, eq. 1.2.9)

⇓
Simplified World Model (SWM) (Self-consistency conditions)

Variational approximationEQ[Z] = X leads to:

X = f(WX + ε) (SWM-E, eq. 1.2.22)

Binary state:

Z = f(WZ − LΦ) + Φ (SWM-B, eq. 1.2.24)

Equivalent pre-activation state:

V = Wf(V ) + ε (SWM-P, eq. 1.2.25)

⇓
Dynamic Network (DN) (Discrete-time)

State update:

Xt+1 = f(WXt + εt) + UX
t+1 (DN-E, eq. 1.3.4)

Pre-activation state update (Gauss-Markov):

Vt+1 = Wf(Vt) + εt+1 + UV
t+1 (DN-P, eq. 1.3.5)

1.4 Finding a Cost Function for Learning the WeightsW

As an alternative to the EKF approach, the stochastic dynamic networks of the previous

section can perform visual inference by settling to the self-consistency conditions of the simpli-

fied world model (SWM). This can be done assuming that the weightsW are known. Now, we

turn to the problem of learning these weights given a set of training data. Inthis section we will

proceed in a general Bayesian framework assumingW is a random variable,5 and derive a cost

function after suitable approximations. In Section 1.5 we will derive a learning algorithm that

optimizes this cost function. The labeled training set is denotedY̌ = { Y̌ (1), . . . , Y̌ (K)}, where

thek-th elementY̌ (k) is a vector with a sparse coding of imagek at its first layeřy(k)
1 (Section

1.3.1 and Appendix 1.A) and the corresponding object codey̌
(k)
n at the highest layer and zero

5If a non-informative prior onW is used, this reduces to the maximum likelihood approach.
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vectors at the other layers,

Y̌ (k) =
[

y̌T
1 0 . . . 0 y̌T

n

]T
, (1.4.1)

where the superscript index of the patternk for each layer (i.e.̌y(k)
n ) has been omitted for clarity.

The cost function forW is derived using the DN-P dynamics on the pre-activation state

Vt (1.3.5). During training, for each patternk we create an input time seriesUX
t from the data

set as follows:UX
t = Y̌ (k) for t = 1, 2, 3 and UX

t = 0 for 4 ≤ t ≤ τ . This choice of

UX
t starts the dynamic network in the desired basin of attraction for the training pattern Y̌ (k)

(UX
t = Y̌ (k) for t = 1, 2, 3). The network is then allowed to iterate without input (UX

t = 0

for 4 ≤ t ≤ τ ), which with untrained weightsW will in general not converge to the same basin

of attraction. The learning process attempts to update the weights so that the training inputs are

basins of attraction, and to create middle layer states consistent with that input.The set of inputs

for patternk for all the time steps is denotedU(k) = {U (k)
1 . . . U

(k)
τ }, and for the entire data set

we haveU = {U(1) . . . U(K)}. Similarly, for each pattern in the pre-activation state we have

V
(k) = {V (k)

1 . . . V
(k)
τ }, and for the whole data set,V = {V(1) . . . V(K)}.

Assuming that the weightsW are random variables, their posterior distribution is found by

Bayes’ rule,

P (W|V; U) =
P (V|W; U)P (W)

P (V; U)
. (1.4.2)

Our goal is to find the weightsW that are most likely given the data and the generative model.

Themaximum a posteriori(MAP) method is used to estimate the network weights,

W = arg max
W

P (W|V; U)

= arg min
W

− lnP (V|W; U)− lnP (W) , (1.4.3)

due to the denominator in (1.4.2) not depending onW. Correct assumptions aboutW can be crit-

ical for successful learning, which requires some form of constraintsuch as prior normalization

to use all of the network’s capacity (see Section 1.6).

Assuming the patterns in the training set are independent,P (V|W; U) =
∏

k P (V(k)|W; U(k)),

W = arg min
W

[
−
∑

k

lnP (V(k)|W; U(k))− lnP (W)

]
. (1.4.4)
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Note that the dynamic system (1.3.5) is Markovian under our assumption thatεt are independent

(Bertsekas, 1976). Then, the probability of the sequence of time steps can be factored (omitting

the pattern indexk on theVt for clarity),

P (V(k)|W; U(k)) = P (Vτ , Vτ−1, Vτ−2, . . . , V1|W; U(k))

=
τ∏

t=1

P (Vt|Vt−1, W; U(k)) , (1.4.5)

from the chain rule of probabilities. The pre-activation state at each timeVt can be expressed in

terms of each layervl,t,

P (V
(k)
t |V

(k)
t−1, W; U(k)) =

n∏

l=1

P (v
(k)
l,t |V

(k)
t−1, W; U(k)) , (1.4.6)

if we assume that the layers are conditionally independent of each other att given the state at the

previous timeVt−1. Combining (1.4.4), (1.4.5) and (1.4.6),

W = arg min
W

[
−
∑

k

τ∑

t=1

n∑

l=1

lnP (v
(k)
l,t |V

(k)
t−1, W; U(k))− lnP (W)

]
. (1.4.7)

Sincevl,t is approximately normal (Section 1.2.6), for those layers where and when we have

target values ofyl,t from the data set and corresponding target states forvl,t,6 the probability of

the layer is,

Ptarg(vl,t|Vt−1, W; U) =
1

(2πσ2
v)

sl/2
exp

(
− 1

2σ2
v

εT
l,tεl,t

)
, (1.4.8)

whereσ2
v is the variance of each component (which is assumed identical). At other layers and

times, the state probabilities are also Gaussian by the central limit theorem, but wedo not have

a desired state and so we enforce sparsity in these cases. Due to the shape of the activation

functionf(·), we can enforce sparsity by controlling the shape of the tail ofvt in the positive

orthant. Therefore, instead of using a Gaussian we instead use a simpler exponential form for

our sparsity-enforcing distribution (assuming independent components of εt),

Pspar(vl,t|Vt−1, W; U) =

sl∏

j=1

c exp (−dv(vj,l,t)) , (1.4.9)

6We assume that noise = 0 in (1.3.6) and that givenYt we can solve for a corresponding value
of Vt.
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wherec is a constant to ensure that the function is a density andvj,l,t is the j-th element of

vl,t. The form ofdv(·) is chosen to give the density an asymmetric exponential form which

encourages negative values ofv, corresponding to sparse values ofx (see Figure 1.4),

dv(v) = [α1I{v > 0} − α2I{v ≤ 0}] v

= [(α1 + α2)I{v > 0} − α2] v , (1.4.10)

whereI{·} is an indicator function that evaluates to 1 if the expression is true and 0 otherwise.

Introducing an indicator variableβ that selects betweenPsparandPtarg, we defineβl,t = 1 if

we have target values for layerl at t, βl,t = 0 otherwise. The probability of each layer becomes,

P (vl,t|Vt−1, W; U) = βl,tPtarg(vl,t|Vt−1, W; U) + (1− βl,t)Pspar(vl,t|Vt−1, W; U) . (1.4.11)

Substituting (1.4.11) in (1.4.7) yields,

W = arg min
W





∑

k

τ∑

t=1



εT
t (εt ⊙ βt) + λ

N∑

j=1

(1− βj,t)dv(Vj,t)



− lnP (W)




 , (1.4.12)

whereβt ∈ R
N is the indicator vector for all elements ofVt, ⊙ is the element-wise vector

(Hadamard) product, and the constant terms depending onc andσ2
v have been combined into a

new constantλ (and again omitting thek inside the summation). We will solve the optimization

problem (1.4.12) with gradient descent in Section 1.5.

There are several things which should be noted about this formulation. First, the objective

function is derived in relation to the pre-activation vectorVt instead of the post-activation vector

Xt. This is done to use the Gaussian form of (1.4.8), and is reminiscent of the technique in the

generalized linear model literature of working with the “linear structure vector” of a nonlinear

model (Gill, 2001). Secondly, the cost function (1.4.12) is similar in form andderivation to the

cost function used in sparse overcomplete coding algorithms, which are unsupervised, and are

designed to minimize the reconstruction error using as sparse a code as possible (Olshausen and

Field, 1997, Kreutz-Delgado et al., 2003).

The cost function forW (1.4.12) is a function of the true stateVt and the errorεt, which we

generally do not have access to. In practice, we will resolve this problemby generating estimates

of the unknownVt using a current estimate of the weights from the dynamic network (DN-P)

under thecertainty equivalence approximation(Bertsekas, 1976). For each pattern in the data
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Figure 1.7: Prior onv which concentrates probability mass in the negative orthant and encour-
agesX to be sparse. This prior which captures the tail distribution in the positive orthant is used
in lieu of the Gaussian distribution in order to simplify the algorithm.

set, we run DN-P (1.3.5) using the input sequenceUV
t = vhUX

t , wherevh = f−1(1.0) (Figure

1.4). Running the network with certainty equivalence gives estimated states,

V̂t = Wf(V̂t−1) + UV
t . (1.4.13)

The errorŝεt needed for learning are then the difference betweenV̂t and desired target states

found from the data set,

ε̂t = V̂t − vhY (k) , (1.4.14)

where middle layer values of̂εt are set to 0 because they are ignored due to the effect ofβt.

1.5 Learning Algorithm for Weights W

Using the cost function derived in the previous section, we now find a learning algorithm

for the feedforward, lateral and feedback weights inW. The minimization (1.4.12) is closely

related to the cost function for the backpropagation-through-time-algorithm (BPTT) for training

recurrent networks (Williams and Peng, 1990). The main drawback of theBPTT algorithm

is that it is computationally inefficient due to the unrolling of the network for each time step.

Our approach overcomes this drawback by using a small number of time stepsτ and by taking

advantage of the sparsity of every layer to only update weights between units with some non-zero

activity.
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Our learning algorithm for updating the weightsW is derived in a manner analogous to

BPTT. Using the pre-activation cost function from (1.4.12) for an individual pattern,

JPA =
1

2

τ∑

t=1



εT
t (εt ⊙ βt) + λ

N∑

j=1

(1− βj,t)dv(Vj,t)



 , (1.5.1)

using the statesVt generated from running the network in certainty-equivalence mode. Theeffect

of the weight prior− lnP (W) will not be considered in this section, as our prior assumption is

that weights are normalized, and it was found that enforcing periodic weight normalization is

more computationally efficient than using prior constraints in every weight update (see Section

1.6).

To minimize the costJPA we update the weights using gradient descent

∆wji = −η
∂JPA

∂wji
= −η

τ∑

t=1

∂JPA

∂Vj,t
· ∂Vj,t

∂wji
, (1.5.2)

wherewji is the element from thej-th row andi-th column ofW. The second term on the right

is,

∂Vj,t

∂wji
=

∂

∂wji
Wj· Xt = Xi,t , (1.5.3)

whereWj· is thej-th row ofW. The first term on the right of (1.5.2) is divided into two parts,

∂JPA

∂Vj,t
= Bj,t + Dj,t

Bj,t =
∂

∂Vj,t



1

2

τ∑

ρ=1

εT
ρ (ερ ⊙ βρ)





Dj,t =
∂

∂Vj,t



λ

2

τ∑

ρ=1

N∑

k=1

(1− βj,ρ)dv(Vk,ρ)



 , (1.5.4)

whereB is used to minimize reconstruction error andD is used to minimize diversity (equivalent

to maximizing sparsity). Recursion expressions can be found forBj,t andDt,j with an approach

similar to that used in standard BPTT. As derived in Appendix 1.B, the general recursions are,

Bj,t =






−βj,tεj,t t = τ

−βj,tεj,t + f ′(Vj,t)
∑N

k=1 Bk,t+1wkj 1 ≤ t ≤ τ − 1

Dj,t =






λ
2 (1− βj,t)d

′
v(Vj,t) t = τ

λ
2 (1− βj,t)d

′
v(Vj,t) + f ′(Vj,t)

∑N
k=1 Dk,t+1wkj 1 ≤ t ≤ τ − 1

, (1.5.5)
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and the derivatives are,

f ′(v) =
a1a2 exp (−a2v + a3)

{1 + exp(−a2v + a3)}2

d′v(Vj,t1) =
λ

2
[(α1 + α2)I{vj,t1 > 0} − α2] .

The weight update (1.5.2) can be written using (1.5.3) and (1.5.4),

∆wji = −η
τ∑

t=1

(Bj,t + Dj,t)Xi,t . (1.5.6)

For computational efficiency when learning sparse patterns, only a small set of weightswji

is updated for each pattern. During our simulations,Xt is found by thresholding the activation

function outputf(Vt−1) to [0, 1], resulting in a sparseXt given certain conditions (Section 1.2.6).

Weights are then only updated between units when the source unitXi,t is active and when either

the the target unitXj,t is active or has non-zero errorεj,t. During initial epochs of learning,

there must be enough initial weight strength to cause activation throughoutthe middle layers.

As learning progress, the activity is reduced through the sparseness-enforcing term. Also note

that the weight update (1.5.6) is of the same form for every element inW, whether that weight

is feedforward, feedback or lateral.

1.6 Algorithm Implementation

This section summarizes the implementation details of the dynamic network and learning

algorithm developed above as used in the experiments.

Preparing the Data Set. The data set consists ofK images representingM unique objects,

where in general we have many different views or transformations of each object, soK > M .

For each objectm, we generate a sparse object codec(m) ∈ R
sn (the size of the highest layer)

with rn randomly-selected non-zero elements, which is used as the desired value of the highest

layer. For each imagek, we preprocess the image (as described in Section 1.7) and then sparsely

encode it using the FOCUSS+ algorithm (see Appendix A) which is used as the first layer input,

y1. The data set of all images išY = {Y̌ (1), . . . , Y̌ (K)} where each pattern is,

Y̌ (k) =
[

y̌T
1 0 . . . 0 y̌T

n

]T
, (1.6.1)

and the highest layer is the object code,y̌T
n = cT (m).
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Network initialization. The network weights are initialized with small random values uni-

formly distributed within certain ranges. The initial weight ranges are: feedforward and feed-

back weightsW ∈ [−0.01, 0.01], and lateral weightsL ∈ [−0.001, 0.000] (which enables only

lateral inhibition, not excitation). Self-feedback is not allowed,Lii = 0. Feedback weights are

initialized to be the transpose of the corresponding feedforward weights,Wlm = WT
ml but are

not restricted to stay symmetric during training.

Performing Inference Given Known Weights W. To run the network for the experiments

below, we create an input time seriesUX
t from the images and object codes in the data setY̌.

The input can includěy1 and/ory̌n as determined by the type of inference desired (see Table

1.1). For example, when the network is run for recognition, the inputs for thefirst few time steps

are the coded imagěy1, so that(UX
t )T = [ y̌T

1 , 0, . . . , 0 ]T , t = 1, 2, 3, andUX
t = 0, t ≥ 4.

When the network is run generatively, the object code is used as input, such that(UX
t )T =

[ 0 , . . . , y̌T
n ]T , t = 1, . . . , τ , and the network is then run forτ steps, after which the first layer

contains a representation of an imagined image.

Given a sequence of inputsUX
t the network is run (in certainty-equivalence mode, i.e. no

added noise) for a fixed number of discrete time steps,0 ≤ t ≤ τ (with τ being 8 to 15 for the

experiments below). With an initial statêX0 = 0, the network is run using,

V̂t = WX̂t

X̂t = f(V̂t−1) + UX
t 1 ≤ t ≤ τ , (1.6.2)

wheref(·) is the activation function (1.2.19). The statêXt is further restricted to be in the unit

cube,X̂t ∈ [0, 1]N . To maintain computational efficiency, only a limited number of non-zero

elements are allowed in each layer, and this maximum diversity,r̄ = [r̄1, . . . , r̄n], is enforced on

Vt at each layer by only allowing the highestr̄ of them to remain non-zero.

Learning Weights W. Training proceeds in an online epoch-wise fashion. In each epoch, a

subset of patterns is chosen from̌Y, and inputs are created with the coded-image in the first layer

for the first 3 time steps, so thatUX
t = [y̌T

1 , 0, 0, y̌T
n ] , t = 1, 2, 3, andUX

t = 0, t ≥ 4. The

stateX̂t and pre-activation statêVt from running the network (1.6.2) are saved for eacht ≤ τ .

The error vector for weight updates isε̂t = V̂t − vhY (k) (set to 0 in the middle layers, see eq.

1.4.14). If the errorŝεt are small enough then training on the pattern can be skipped. Otherwise,
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the weights are updated using∆wji given by (1.5.5)-(1.5.6). While in standard gradient-based

methods, weight updates will naturally be turned off when errors are smallenough, since we

use an additional sparsity enforcing term, even when both the highest andlowest layer errors are

small, weight updates will still occur in order to sparsify middle layers. By skipping learning

on patterns that are represented accurately, the algorithm can more efficiently tackle those pat-

terns which are still incorrectly learned. Training stops after a certain number of epochs have

completed.

Testing for Classification. For recognition, to classify an input image once the network has

settled into a stable state, the last layer’s activationxn is compared with the object codesc(m) to

find the class estimate,

Class(xn) = arg min
m∈{1...M}

‖xT
n − c(m)‖ . (1.6.3)

Weight Normalization. In early experiments with the learning algorithm, it was found that

some units were much more active than others, with corresponding rows in theweight matrices

much larger than average. This suggests that constraints need to be added to weight matrices to

ensure that all units have reasonably equal chances of firing. Theseconstraints can also can be

thought of as a way of avoiding certain units being starved of connection weights. A similar issue

arose in the development of our dictionary learning algorithm (Kreutz-Delgado et al., 2003), and

led us to enforce equality among the norms of each column of the weight matrix. Here, both

row and column normalization are performed on each weight matrix (feedforward, lateral and

feedback). Normalization values are set heuristically for each layer, withan initial value of 1.0

and increasing layer normalization until sufficient activity can be supported by that layer. The

normalization values remain constant during network training, and are adjusted from trial to trial.

1.7 Visual Recognition and Inference Experiments

In this section, we detail experiments with the learning algorithm developed above to

the demonstrate four types of visual inference: recognition, reconstruction, imagination and

expectation-driven segmentation.

The set of gray-scale images was generated using the Lightwave photorealistic rendering
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software7. Each of 10 objects was rotated360◦ through its vertical axis in2◦ increments, for a

total of 10 × 180 = 1800 images, of which 1440 were used for training and the 360 remaining

were held out for testing, see Figure 1.8. Before images can be presented to the network they

must be sparsely coded which is done with a sequence of preprocessing(Figure 1.9). First, each

image is edge-detected8 to simulate the on-center/off-center contrast enhancement performed by

the retina and LGN. Edge-detected images are then scaled by subtracting 128 and dividing by

256, so that values are∈ [−0.5, 0.5]. Next, each image is divided into 8x8 pixel patches and

sparsely coded with FOCUSS+ using a dictionary learned by FOCUSS-CNDL+ (as described in

Appendix A). Dictionaries of size 64x64, 64x128 and 64x196 were learned to compare the effect

of varying degrees of overcompleteness on recognition performance.(Figures 1.10-1.16 in this

section are from experiments with the 64x196 dictionary.) Table 1.3 shows theaccuracy and

diversity (number of non-zero elements) of the image codes. As dictionaryovercompleteness

increases from 64x128 to 64x196, both mean-square-error (MSE) and mean diversity decrease,

i.e. images are more accurately represented using a smaller number of activeelements (chosen

from the larger overcomplete dictionary). As seen in the bottom row of Figure 1.9, the recon-

structed images accurately represent the edge information even though they are sparsely coded

(on average 192 of 12288 coefficients are non-zero). Finally, the non-negative sparse codes are

thresholded to{0, 1} binary values before being presented to the network; any value greaterthan

0.02 is set to 1.

1.7.1 Recognition with a Four-Layer Network

To test recognition performance, a four-layer network was trained using the data set de-

scribed above. The training parameters of the network are given in Table1.4. Since there are

many parameters only a small range of parameter values was tested but performance appears

relatively robust to most. Note that all the lateral interactions were forced tobe inhibitory or 0,

and the no lateral connections were used in the first layer (as we assume the increase in sparsity

produced by the FOCUSS+ iterations model the layer 1 lateral connections). Coded images were

presented to the first layer of the network for the initial three time steps. Random object codes

7Available atwww.newtek.com/products/lightwave/
8Edge detection was done with XnView software (www.xnview.com) us-

ing the “edge detect light” filter which uses the3 × 3 convolution kernel[
0 −1 0 ; −1 4 −1 ; 0 −1 0

]
.
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A)

B)

Figure 1.8: (A) Objects used in the experiments, showing one of the 180 views of each object.
Images are 64x64 pixel gray-scale. (B) Sample rotated object images in thedata set.

with diversityr4 = 10 non-zero elements were used on the highest layer. Training took between

11 and 22 hours (depending on dictionary size) on a 2.8 Ghz Intel Xeon processor. Classification

performance reached 100% accuracy on the test set after 135 epochs, but training continued until

1000 epochs on those patterns that were not accurately reconstructedat the first layer. Figure

1.10 shows the time iterations of the network stateXt during classification of a test set image.

The first row shows the FOCUSS+ coded input image and the original. The next rows shows the

activity of each layer and the reconstructed image from the first layer. The object was presented

for three time steps and then removed, so that all activity on layer 1 at timest ≥ 4 results from

network feedback. As the iterations proceed, the reconstruction completes the outline of the air-

plane and becomes stronger in intensity. In the layer 4, the plot shape indicates whether the unit

is active and is part of the correct object code (“� ”), or is part of the object code but inactive

(“◦”), or is active but should not be (“×”). At t = 4, all 10 of the highest layer units in the

object code for airplane are active (“� ”), so that the image is classified correctly, however there

are four other units active that should not be (“×”). At later time iterations these extra incorrect
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Figure 1.9: Original images (top row), edge detected images (middle) and FOCUSS+ coded
images using a learned overcomplete dictionary.

units are deactivated (or “sparsified away”) so that att ≥ 5 only those units in the object code

are active, demonstrating the importance of lateral connections in the highest layer. Activity in

layers 2 and 3 also decreases with time.

Presenting rotated test-set views of the object shows that the network haslearned basins

of attraction for the other orientations. Figure 1.11 shows the state of the network at t = 7

after presenting various rotations of the airplane. The degree of invariance of the representation

also is shown to increase from layer 1 (with nearly completely different unitsactive) through

layer 3 (with many of the same units active) to layer 4 (which has identical activity for all four

orientations of the airplane).

1.7.2 Reconstruction of Occluded Images

Using the same network trained in Section 1.7.1, reconstruction is demonstratedusing oc-

cluded images from the test set. Approximately 50% of pixels are set to black by choosing

a random contiguous portion of the image to hide. Figure 1.12 shows the network iterations

during reconstruction, where an occluded image is presented for the first three time steps. By

t = 3, the feedback connections to the first layer have reconstructed much ofthe outline of the

answering-machine object, showing that feedback from the second layer contains much of the



38

Edges Object

Reconstruction

t =
 1

Layer 1 Layer 2 Layer 3 Layer 4

t =
 2

t =
 3

t =
 4

t =
 5

t =
 6

t =
 7

t =
 8

In
pu

t p
re

se
nt

ed

Figure 1.10: Recognition of test set object. Each row shows the network activity Xt at a time
step. In the layer 4, “�” indicates that the unit is active and is part of the correct object code,
“◦” that the unit is in the object code but inactive, and “×” that the unit is active but should not
be. Whent > 3, there is no external input and the reconstructed image in layer 1 is due onlyto
network feedback. Att = 4 in layer 4 there are four incorrectly activated units (“×”) but at later
times, the dynamics of the network suppress these incorrectly-active units.
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Table 1.3: Coding performance on 64x64 pixel images (blocked into 8x8 patches) using com-
plete and overcomplete dictionaries. Mean-squared-error (MSE) is calculated over all 8x8
patches in the image, and diversity is the number of non-zero coefficients inthe code.

Diversity

Dictionary size Layer 1 size MSE Max Mean Min

64x64 4096 0.00460 184 109 42

64x128 8192 0.00398 278 197 105

61x196 12288 0.00292 271 192 105

orientation-dependent information for this object. Further iterations increase the completion of

the outline (particularly of the bottom corner and lower-right panel). Figure 1.13 gives another

example of reconstruction.

The network also performs well when recognizing occluded objects. Accuracy is 90% on

the occluded test-set objects with the complete dictionary (64x64) and 96-97% with the over-

complete dictionaries. Figure 1.12 shows that (as above) there are incorrectly activated units

in layer 4 att = 4 which are suppressed during later times. In contrast with Figure 1.10, in

layer 2 here there is more activity as time progresses presumably due to the activation of missing

features during reconstruction.

1.7.3 Imagination: Running the Network Generatively

Imagination is the process of running the network generatively with input given as an object

code at the highest layer. For this experiment, the network trained in Section1.7.1 was used with

an object code presented on the highest layer for all time steps. Random activity was added to

the second layer att = 3 so that the network would have a means of choosing which view of the

object to generate. It was found that increasing the feedback strength(by multiplying feedback

weights by 5.0) to the first and second layer increased the activity and quality of the imagined

image at the first layer. (Without this increase, the layer 1 reconstruction was very likely to settle

to the 0 state). Figure 1.14 shows the results when the object code for the knight was presented.

At t = 4, the reconstruction is a superposition of many features of many objects butat later

times the outline of the object can be seen. The orientation of the generated image alternates

between a front view (t = 5, 7) and a side view (t = 6, 8), which is reminiscent of the bistable
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Table 1.4: Network parameters for training the 4-layer network with 64x196overcomplete dic-
tionary (corresponding to layer 1 size of 12288). For other sized dictionaries, the size of the first
layer was 8192 (64x128 dictionary) and 4096 (64x64 dictionary), with all other parameters as
listed below.

Network parameters

s (layer size) [12288, 512, 512, 256]

r̄ (maximum diversity of layer) [430, 100, 50, 14]

τ (time iterations per pattern) 8

η (learning rate) 0.005

λ (regularization parameter) 0.025

α1, α2 (prior shape) 1.0, 0.1

epoch size (number of patterns) 100

maximum number of epochs 1000

feedforward weight range [-5.0, 5.0]

feedback weight range [-5.0, 5.0]

lateral weight range [-5.0, 0.0]

layer 1 norms (FB) [ 12.0 ]

layer 2 norms (FF, L, FB) [ 12.0, 2.1, 2.1 ]

layer 3 norms (FF, L, FB) [ 5.9, 2.1, 1.5 ]

layer 4 norms (FF, L) [ 1.5, 1.5 ]

percept effect. Not all trials of this experiment result in a bistable state, themajority converged

to a single orientation. Interestingly, some orientations of certain objects appear to be generated

much more often than other orientations. These “canonical views” represent high probability

(low energy) states of the network.

1.7.4 Expectation-Driven Segmentation: Out from Clutter

In expectation-driven inference, both an input image and a top-down expectation are pre-

sented to the network, and the output can either be the highest-layer classification or the lowest-

layer reconstructed image. Here, we considered the later case where thedesired output is a

segmented image reconstructed from the first layer. The same network trained in Section 1.7.1 is

used here with increased feedback strength as described in Section 1.7.3. Cluttered input images

are created by combining many objects from the data set at random translations, overlayed with
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Figure 1.11: Each row is the network stateXt at t = 7 after presenting various rotated images of
the airplane (test set images, views unseen during training), demonstrating that multiple basins
of attraction can be learned for each object. Higher layers show more invariant representations
than lower layers, with layer 4 showing the fully-invariant representation of the airplane.

a portion of the desired image (the same portion, 50%, used in the reconstruction experiment).

This is a fairly difficult recognition problem as the clutter in each image is composed of features

from trained objects, so that competing features tend to confound recognition algorithms. The

problem of expectation-driven segmentation is different from recognition in that we ask the net-

work not “what object is this?” but “assuming object x is here, what features in the image most

likely correspond to it?” For this experiment, we present att = 2, 3 the image of the occluded

object in clutter and att = 1, . . . , 4 the expectation that the object is present at the highest layer.

Figure 1.15 shows the network states when presented with a cluttered image and top-level ex-

pectation of the knight object. The timing of the inputs was arranged so that thefeedback and

feedforward input first interact att = 3 in layer 3. Whent = 4, the input image is no longer pre-

sented and the network feedback has isolated some features of the object.Later time steps show

a sharper and more accurate outline of the knight, including edges that were occluded in the input

image. At the highest layer feedforward interactions from lower layers cause the correct object

code (presented whent ≤ 3) to degrade. Att = 12 all the units in the object code for knight

were active, as well as four incorrectly active units, which still allows correct classification. To

illustrate the need for the top-down expectation input in this case, Figure 1.16shows the states at
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Figure 1.12: Reconstruction of an occluded input image. As early ast = 3, feedback from layer
2 results in reconstruction of some of the outer edges of the objects. More detail is filled in at
later time steps. Layer 4 legend: “�” = unit is active and in correct object code, “◦” = unit is in
the object code but inactive, “×” = unit is active but should not be (not in object code).
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Figure 1.13: Another example of reconstructing an occluded input image, showing only t =
1, 3, 8. The occluded input was presented fort = 1, 2, 3, and some features were reconstructed
as early ast = 3.

t = 1, 4, 8 when no object code is presented at layer 4. The activity gradually decays and there

is no reconstruction at layer 1. Comparing Figure 1.14 (imagination) and Figure 1.15 shows that

the partial information provided in the cluttered image is enough to keep the network at a stable

estimate of segmentation, and in this case, prevent oscillations between two orientations (which

occurred when only top-down input is present).

1.7.5 Overcompleteness Improves Recognition Performance

One of the central questions addressed in this work is how a sparse overcomplete represen-

tation in the early stages of visual processing, e.g. V1 in humans and monkeys (Sereno et al.,

1995), could be useful for visual inference. As described in the beginning of this section, we

trained the network using learned dictionaries of varying degrees of overcompleteness: 64x64,

64x128 and 64x196, and corresponding sizes of the first layer: 4096, 8192 and 12288. Per-

formance was compared on the test set objects, occluded objects, and objects in clutter. The

cluttered images were created by overlaying the entire object on a cluttered background, result-

ing in a somewhat easier problem than the occluded-object-in-clutter images used in Section 1.7,

although here no top-down expectations were used to inform the recognition. Figure 1.17 shows
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Figure 1.14: Imagination using the object code for the knight as the top-down input and the
injection of random activity in layer 2 att = 3. The reconstruction is a bistable (oscillating)
pattern of the object from the front and side views.
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Figure 1.15: Expectation-driven segmentation using occluded objects over a cluttered back-
ground. The clutter input is presented at the lowest layer fort = 2, 3. Top-down expectations
(the object code for knight) are presented at the highest layer fort = 1, . . . , 4. By t = 12, the
network converges to a segmented outline of the knight in the correct orientation at the first layer.
Layer 4 legend: “�” = unit is active and in correct object code, “◦” = unit is in the object code
but inactive, “×” = unit is active but should not be (not in object code).
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Figure 1.16: Recognizing the occluded object in a cluttered background isdifficult without top-
down expectations. The same input image used in Figure 1.15 is presented for t = 1, 2, 3,
however no top-down inputs are present. A few representative time stepsshow that the activity
gradually decays over time, and no object is reconstructed at layer 1. Layer 4 legend: “�” = unit
is active and in correct object code, “◦” = unit is in the object code but inactive, “×” = unit is
active but should not be (not in object code).

the recognition accuracy on these three image sets. For the test set (complete images), all three

networks had performance at 99-100%, but for the occluded and cluttered images there is a gain

in accuracy when using overcomplete representations, and the effect ismore pronounced for the

more difficult cluttered images. For occluded objects, accuracy was 90% (324/360) for the com-

plete dictionary and 97% (349/360) for the 3x overcomplete dictionary. The most significant

improvement was with the cluttered images; accuracy was 44% (160/ 360) for the complete dic-

tionary, and 73% (263/360) for the 3x overcomplete dictionary. While the absolute classification

rate for the cluttered images might appear low (44-73%), many of the misclassified objects were

those of smaller size (e.g. the airplane and fire-hydrant) which allowed morefeatures from other

larger objects to be visible and confound the recognition. In addition, neither the dictionary nor

the network were trained on images with clutter, so the network had no previous experience with

this particular type of cluttered images.
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Figure 1.17: Recognition performance on the test set (full object), occluded images and cluttered
images with three different degrees of overcompleteness in Layer 1 representation and learned
dictionaries. Recognition performance improves with increased overcompleteness, particularly
in the difficult cluttered scenes. Test set size is 360 objects (36 views of 10 objects).

1.8 Discussion

In this section we discuss the motivations for our network (both biological and functional)

and place it in context by comparing it with other recurrent network models of vision.

1.8.1 Why Sparse Overcomplete Coding?

In the brain, early visual areas are highly overcomplete, with about 200-300 million neurons

in V1 compared to only about 1 million neurons that represent the retina in the lateral geniculate

nucleus (LGN) of the thalamus (Stevens, 2001, Ejima et al., 2003). As primateevolution has

progressed, there has been a consistent increase in the ratio of V1 to lateral geniculate nucleus

(LGN) size. While even the smallest of primates shows a high degree of overcompleteness,

the increase in higher primates is linked with increase in retinal resolution and presumably im-

proved visual acuity (e.g. 87x overcomplete for the tarsier monkey compared with over 300x for

humans).

Mathematically, sparse coding strategies are necessary to make efficient use of overcom-

plete dictionaries because the dictionary elements are generically non-orthogonal. To provide a

low-redundancy representation (Attneave, 1954, Barlow, 1959) a sparse set of elements must be

chosen that accurately represents the input. If we have faith in the generative model postulated
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in Figure 1.1, real-world images can be accurately modeled as being causedby a small number

of features and objects, supporting the choice of a sparse prior (evenin the case of complete

coding). Other benefits of sparse coding include: making it easier to find correspondences and

higher order correlations, increasing the signal-to-noise ratio, and increasing the storage and

representational capacity of associative memories like Hopfield and Boltzmann models (Field,

1994). Biological evidence for sparse coding ranges from the simple fact that average neural

firing rates are low, 4-10 Hz (Kreiman et al., 2000), to experiments that findsparseness in V1 in-

creases as larger patches of natural images are presented indicating that a concise representation

can be found by deactivating redundant features, presumably through the interaction of lateral

and feedback inhibition from non-classical-receptive-field neurons (Vinje and Gallant, 2000).

One of the successes of sparse-coding theory has been the learning of receptive fields that

resemble the orientation and location selectivity of V1 neurons (Olshausen and Field, 1997).

When trained on small patches of natural images, given the criteria of sparsity and accurate re-

construction, the learned receptive fields closely resemble Gabor functions, which are known

to have certain optimality properties and to model biological neurons in the visual cortex accu-

rately (Daugman, 1989). Sparse coding (and the closely relatedindependent component analy-

sis, ICA) have been extended to motion, color and stereo images, with similar promising results

(Olshausen, 2000, Hoyer and Hyvärinen, 2000). Efforts have also been made to model complex

cell receptive fields (Hyv̈arinen and Hoyer, 2001, Hoyer and Hyvärinen, 2002).

In this work, we show that sparse overcomplete coding can be extended toa hierarchical

model capable of performing many types of visual recognition and inference. In addition, we

show that increasing the degree of overcompleteness can improve recognition performance on

difficult tasks (Figure 1.17). While the complete code proves adequate forthe easier task of

recognizing pre-segmented images, on the cluttered-image task the overcomplete representation

provides a large advantage. Our intuition as to why these benefits arise is that higher represen-

tational capacity and more basins of attraction can be formed using an overcomplete code in the

first layer of the network.

1.8.2 Feedback and Lateral Connections in the Hierarchy

While overcompleteness and sparse-coding are important features of early vision in V1,

perhaps the most striking aspect of higher visual areas is the amount of lateral and feedback
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connections within and between areas. Felleman and Van Essen (1991) present an overview

of the range of reciprocal connections in the visual system, and show that there are pathways

between not just adjacent (such as V1 and V2) but between most regions in the occipital cortex

(e.g. between V3 and V1, V4 and V1, etc.) and that most of these connections are bidirectional

(see their Table 3). Even in V1, lateral and feedback input from other cortical areas accounts for

about 65% of activity, with only 35% of response directly due to feedforward connections from

the LGN (Olshausen and Field, 2005).

While we develop our model in the more traditional hierarchical framework (where only

adjacent layers communicate), we showed in Section 1.2 that feedback andlateral connections

are required for many types of inference. In some recognition tasks, there is evidence that the

brain is fast enough to complete recognition without extensive recurrentinteraction (Thorpe

et al., 1996). Consistent with this, our model is capable of quickly recognizing objects in tasks

such as Figure 1.10, where the correct object code is found att = 5. However, more difficult

tasks such as segmentation (Figure 1.15) require recurrence and wouldtake longer for the brain

(Lee et al., 1998). The other connections not included in our model, suchas from V4 to V1/V2,

might be useful in tasks like imagination. Consider Figure 1.14: if the task were“imagine the

knight in a side-view” instead of “imagine any knight”, a connection from layer 4 to layer 1 or

2 could instantiate that orientation (in contrast, we injected random noise into layer 2 to create a

randomly-oriented imagined object).

1.8.3 Related Work: Biologically Motivated Models of Vision

There have been many hierarchical models created to explain vision, and these fall into two

main categories: feedforward and recurrent (which include various types of feedback and lateral

connections between layers). Some examples of the feedforward class are the Neocognitron

model of Fukushima and Miyake (1982); VisNet of Wallis and Rolls (1997),Rolls and Milward

(2000); and the invariant-recognition networks of Földiák (1991) and Riesenhuber and Poggio

(1999). While many of these models use sparsity with some form of winner-take-all competition

which is usually interpreted as lateral interaction, since they do not include feedback connections

they are not capable of the range of inference described in Section 1.2.2, and will not be discussed

further here.

One of the more closely related prior works is the dynamic network developedby Rao and
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Ballard (1997). A stochastic generative model for images is presented and a hierarchical net-

work is developed to estimate the underlying state. Their network includes multiplelayers with

feedforward and feedback connections which are interpreted as passing the residuals from pre-

dictions at higher levels back to lower levels (but with no explicit learnable lateral connections,

nor overcomplete representations). Experiments demonstrate recognition,reconstruction of oc-

cluded images, learned biologically plausible receptive fields and ability to tell that an object had

not been seen during training. Their dynamic network can be viewed as a layering of extended

Kalman filters (EKF), which as discussed in Section 1.3.3 provides an alternative way of estimat-

ing the states in our dynamic network (DN-P). Forward and backward weights are learned using

the minimum description length (MDL) principle, in which a Bayesian prior induces a penalty

term on complex models, much in the spirit of the prior terms we use in (1.4.9). However, the

priors used by Rao and Ballard (1997) are Gaussian, which do not enforce sparsity in the same

sense that the priors used here do. The weight update is a form of Hebbian learning which may

be more biologically plausible than our gradient descent rule, although it does require several

matrix inversions per iteration (see their Section 6) and appears more computationally expen-

sive than our algorithm. Perhaps because of the computational requirements, only fairly limited

recognition experiments were performed, using only five objects (one orientation per object) and

rotation invariant recognition with two objects (each with 36 views used for training and testing)

Rao (1999).

The layered EKF model was also used to explain non-classical receptivefield effects ob-

served in the brain (Rao and Ballard, 1999). In one such effect, end-stopping, a V1 cell that

responds to an oriented line has its response reduced when the line extends outside of its classi-

cal receptive field (thesurround suppressioneffect). The predictive coding model explains this

effect by postulating that higher cortical regions can predict the longer line more accurately (be-

cause it is more representative of natural image statistics), and that this moreaccurate prediction

results in a smaller residual response by the V1 cell. In contrast, other models show that the

surround suppression effect can be explained in terms of reduced top-down feedback from other

cortical areas, without needing residuals from predictions directly (Sullivan and de Sa, 2005).

Further investigation of our model could show if this effect is present, andpossibly provide ev-

idence for one of these hypotheses (in that we have not restricted feedforward connections to

carry only residual information).

Lee and Mumford (2003) present a Bayesian hierarchical frameworkfor modeling the vi-
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sual cortex in which feedforward and feedback connections pass messages about their beliefs

to adjacent layers (similar to our Equation 1.2.7). Exact inference on this model is, as usual,

intractable and particle filtering (for an overview, see Djuric et al., 2003) issuggested as an

approximation method, although no implementation is given. In particle filtering, a number of

estimates of the true state, termedparticles, are maintained during an iterative update proce-

dure. When certain particles are found to be very unlikely, they are replaced with more likely

candidates through a resampling procedure (Djuric et al., 2003, pg. 22). An advantage of par-

ticle filtering is that it can reduce the severity of local-optima problems: since there are many

particles, if one gets stuck in a local-minimum, the others may be able to escape. For vision,

this means that multiple hypotheses about confusing or cluttered images (suchas in Figure 1.15)

can be maintained at lower levels until there has been sufficient feedbackfrom higher levels

to disambiguate. These theories build on those authors earlier work interpreting V1 as a high-

resolution buffer, which forms a more accurate interpretation of the visualscene through time

(Lee et al., 1998).

The Leabra model is a biologically motivated neural network designed to simulate learning

and memory in the cortex (O’Reilly, 1996). Leabra uses a combination of error-driven and Heb-

bian (unsupervised) learning, and generates sparse activations using a soft k-Winners-Take-All

(kWTA, allowing 0 . . . k non-zero elements) which is meant to model the action of inhibitory

interneurons (lateral connections) (O’Reilly, 2001). Similarly, our modeluses lateral connec-

tions and sparsity-enforcing learning to determine the number of non-zerounits, which allows

the complexity of the representation to depend on the complexity of the stimulus. For the exper-

iments described above, the number of non-zero units in layers 1-3 averaged about 25-50% of

the the maximum allowed diversity,̄rl, in Table 1.4. Results with overcomplete representations

have not been reported for Leabra.

Newer versions of the Neocognitron include feedback connections andare demonstrated

for recognition and reconstruction (Fukushima, 2005). The model positstwo types of cells in

each region of the system, S-cells and C-cells in analogy with the simple and complex cells cat-

egorized by Hubel and Wiesel (1959). The S-cells are feature detectors and the C-cells pool the

output of S-cells to create invariant feature detectors. To solve the reconstruction problem, fur-

ther cell types and layers are added, and many of the layers have different learning rules. While

there are many neuron types in the cortex both in terms of anatomical differences (pyramidal,

stellate, etc., Kandel et al., 2000) and functional differences (simple andcomplex cells), we be-
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lieve it is best to begin with as simple a model as possible that can perform the desired inference

in accordance with the principle of cortical similarity (Mountcastle, 1978).

While we do not consider the detailed neurological mechanisms required to perform in-

ference and learning (and concentrate instead on the larger-scale features of the brain, i.e. re-

currence, overcompleteness of V1, sparse-coding, etc.) there havebeen many theories of how

neurons can be perform such tasks. Rao (2004) presents a model ofhow Bayesian inference

can be performed using common neural modeling assumptions in a recurrentcircuit. O’Reilly

(2001) discusses biologically plausible implementations of error-driven learning, a class of algo-

rithms which includes backpropagation and our learning rule of Section 1.5.Lee and Mumford

(2003) sketch a biological foundation for how inference in hierarchical models could be imple-

mented involving message-passing between cortical regions and bound together by spike-timing

synchrony. Raizada and Grossberg (2003) present a model of howfeedforward, feedback and

lateral connections could be arranged in the laminar structure of the cortex, which provides

a mechanism that allows the visual system to distinguish between top-down mediated activity

(such as reconstruction of occluded images or illusory contours) and bottom-up visual input.

This distinction is important so that the brain can tell reality from perception andprevent hallu-

cinations.

1.9 Conclusions

We have developed a framework and learning algorithm for visual recognition and other

types of inference such as imagination, reconstruction of occluded objects and expectation-

driven segmentation. Guided by properties of biological vision, particularly sparse overcom-

plete representations, we posit a stochastic generative world model. Visual tasks are formulated

as inference problems on this model in which inputs can be presented at the highest layer, low-

est layer, or both depending on the task. A variational approximation (the simplified world

model) is developed for inference which is generalized into a discrete-time dynamic network.

One form of this dynamic system is shown to be Gauss-Markov, which can be estimated with

the extended Kalman filter, thus providing a principled derivation of the hierarchical EKF vision

system of Rao and Ballard (1997). While the model of Rao and Ballard (1997) is important for

demonstrating the role of predictive coding and can perform many types ofvisual inference, it is

computationally expensive. Instead of the EKF approach, we use an efficient dynamic network
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designed to rapidly converge to the self-consistency conditions of the variational approximation.

An algorithm is derived for learning the weights in the dynamic network, with sparsity-

enforcing priors and error-driven learning based on the pre-activated state vector. Experiments

with rotated objects show that the network dynamics quickly settle into easily-interpretable

states. We demonstrate the importance of top-down connections for expectation-driven seg-

mentation of cluttered and occluded images. Four types of inference were demonstrated using

the same network architecture, learning algorithm and training data. We showthat an increase

in overcompleteness directly leads to improved recognition and segmentation in occluded and

cluttered scenes. Our intuition as to why these benefits arise is that overcomplete codes allow

the formation of more basins of attraction and higher representational capacity.
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1.A Image Preprocessing with Learned Overcomplete Dictionaries

The dynamic network and learning algorithm presented above require thatthe inputsul

(whether top-down or bottom-up) be sparse vectors. To transform the input image into a suit-

able sparse vector, we use thefocal under-determinded-system-solver(FOCUSS) algorithm for

finding solutions to inverse problems. The FOCUSS algorithm represents data in terms of a lin-

ear combination of a small number of vectors from a (possibly overcomplete)dictionary. Other

methods for sparsely-coding signals include matching pursuit (Mallat and Zhang, 1993b), basis
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pursuit (Chen and Donoho, 1998), and sparse Bayesian learning (Tipping, 2001), which were

also evaluated for image coding (Murray and Kreutz-Delgado, 2005). The overcomplete dictio-

nary is learned using the FOCUSS-CNDL (column-normalized dictionary learning) algorithm

developed by Murray and Kreutz-Delgado (2001).

The problem that FOCUSS-CNDL addresses here is that of representing a small patch of

an imagey ∈ R
m using a small number of non-zero components in the source vectorx ∈ R

n

under the linear generative model,

y = Ax , (1.A.1)

where the dictionaryA may be overcomplete,n ≥ m. 9 The dictionaryA and the sourcesx are

taken to be unknown random variables. With a set of training image patches,Y = {yk}, we find

the maximum a posteriori (MAP) estimateŝA andX̂ = {xk} such that

(Â, X̂) = arg min
A,X

N∑

k=1

‖yk −Axk‖2 + λdp(xk) (1.A.2)

wheredp(x) is a diversity measure that in some sense measures the number of non-zeroele-

ments of a source vectorxk. We use thep-norm-like prior,dp(xk) = ‖xk‖pp =
∑n

i=1 |xi,k|p.

The regularized optimization problem (1.A.2) attempts to minimize the squared errorof the re-

construction ofyk while minimizing the diversity measuredp and hence the number of non-zero

elements in̂xk. The basic problem formulation is similar to ICA in that both model the input

dataY as being linearly generated by unknownsA andX, but ICA attempts to learn a new

matrix W which (byWyk = x̂k) linearly produces estimateŝxk in which the componentŝxi,k

are as statistically independent as possible. ICA in general does not result in as sparse solutions

as FOCUSS-CNDL which uses the non-linear iterative FOCUSS algorithm to find x̂k.

We now summarize the FOCUSS-CNDL algorithm which is more fully discussed by Kreutz-

Delgado et al. (2003). The algorithm in Section 1.5 requires non-negative values of the elements

xi,k, i.e. xk ∈ R
n
+, so a modified version of FOCUSS-CNDL is used here in which after each

FOCUSS iteration update, the negative elements ofx̂k are set to zero. Creating a non-negative

version of FOCUSS (denoted FOCUSS+) amounts to using a one-side prioronxk, instead of a

symmetric prior (Murray and Kreutz-Delgado, 2005). TheA update (1.A.4) does not depend on

the prior onxk and so remains unchanged from Kreutz-Delgado et al. (2003). For each of the

9The notation in Appendix A is different than in the body of this paper in orderto be consis-
tent with our earlier work.
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data vectorsyk in Y , we update the sparse source vectorsx̂k using the FOCUSS+ algorithm:

Π−1(x̂k) = diag(|x̂k[i]|2−p)

λk = λmax

(
1− ‖yk − Âx̂‖

‖yk‖

)
, λk > 0

x̂k ← Π−1(x̂k)Â
T
(
λkI + ÂΠ−1(x̂k)Â

T
)−1

yk

x̂i,k ←






0 x̂i,k < 0

x̂i,k x̂i,k ≥ 0

( FOCUSS+ ) (1.A.3)

whereλk is a heuristically adapted regularization term, limited by the parameterλmax which

controls the tradeoff between sparsity and reconstruction accuracy in the FOCUSS step (higher

values ofλ lead to more sparse solutions, at the cost of increased reconstruction error). After

updating theN source vectorsxk, k = 1...n, the dictionaryÂ is re-estimated,

Σyx̂ =
1

N

N∑

k=1

ykx̂
T
k , Σx̂x̂ =

1

N

N∑

k=1

x̂kx̂
T
k

δÂ = Â Σx̂x̂ − Σyx̂

Â ← Â− γ
(
δÂ− tr (ÂT δÂ)Â

)
, γ > 0 , (1.A.4)

whereγ controls the learning rate. For the experiments here the block size isN = 200. During

each epoch all training vectors are updated using (1.A.3), with dictionary update over every

block onN data vectors using (1.A.4). After each dictionary update,Â is normalized to have

unit Frobenius norm,‖Â‖F = 1 and equal column-norms. Parameters for FOCUSS-CNDL are:

data set size = 20000 image patches, dictionary size = 64x64, 64x128, 64x196, diversity measure

p = 1.0, regularization parameterλmax = 2× 10−4, learning rateγ = 0.01, number of training

epochs = 150, reinitialization every 50 epochs. Figure 1.18 shows the learned 64x196 dictionary

after training on edge-detected patches of man-made objects (the data set described in Section

1.7).

Once the dictionarŷA has been learned, input images for the dynamic network (DN) are

coded using the FOCUSS+ algorithm. The input images are divided into consecutive non-

overlapping patches of the same 8x8 size used for dictionary learning. The FOCUSS+ algorithm

consists of repeated iterations of (1.A.3) over an image patchyk to estimatexk. Eachxk is

updated for 15 iterations withp = 0.5.
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Figure 1.18: Overcomplete dictionary (64x196) learned with FOCUSS-CNDL+, trained on
edge-detected images.

1.B Derivation of Learning Algorithm for W

We derive recursions for the updates ofB andD in the learning algorithm of Section 1.5.

First, some notation: thej-th row of the weight matrixW is denotedWj· and the element from

the j-th row andi-th column iswji. Beginning with the error-enforcing termB (omitting the

binary indicator variableβ for notational clarity),

Bj,t =
∂

∂Vj,t



1

2

τ∑

ρ=1

εT
ρ ερ



 . (1.B.1)

ForBj,t, at the last time step in (1.5.2) whent = τ only theρ = τ terms depend onVj,τ ,

Bj,τ =
∂

∂Vj,τ

[
1

2
εT

τ ετ

]

= εT
τ

∂

∂Vj,τ
ετ

= −εj,τ , (1.B.2)

whereεj,t is thej-th element of the error vectorεt. Whent = τ − 1,

Bj,τ−1 =
∂

∂Vj,τ−1

[
1

2
εT

τ ετ +
1

2
εT

τ−1ετ−1

]
. (1.B.3)
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The second term on the right can be found to be−εj,τ−1 as in (1.B.2). For the first term,

∂

∂Vj,τ−1

1

2
εT

τ ετ = εT
τ

∂

∂Vj,τ−1
ετ

= −εT
τ W

∂

∂Vj,τ−1
f(Vτ−1)

= εT
τ W




0
...

f ′(Vj,τ−1)
...

0




= −f ′(Vj,τ−1)ε
T
τ W·j

= −f ′(Vj,τ−1)

N∑

k=1

εk,τwkj . (1.B.4)

Substituting (1.B.4) and (1.B.2) into the expression forBj,τ−1 (1.B.3),

Bj,τ−1 = −εj,τ−1 + f ′(Vj,τ−1)
N∑

k=1

Bk,τwkj . (1.B.5)

The general recursion forBt,j is (after reintroducing the indicator variableβ),

Bj,t =






−βj,tεj,t t = τ

−βj,tεj,t + f ′(Vj,t)
∑N

k=1 Bk,t+1wkj 1 ≤ t ≤ τ
. (1.B.6)

Turning to the sparsity-enforcing term (again omittingβ),

Dj,t =
∂

∂Vj,t



λ

2

τ∑

ρ=1

N∑

k=1

dv(Vk,ρ)



 . (1.B.7)
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Following similarly to the derivation forB above, whent = τ ,

Dj,τ =
∂

∂Vj,τ



λ

2

τ∑

ρ=1

N∑

k=1

dv(Vk,ρ)





=
λ

2

N∑

k=1

∂

∂Vj,τ
dv(Vk,τ )

=
λ

2
d′v(Vj,τ ) =

λ

2
[(α1 + α2)I{vj,τ > 0} − α2]

=






λ
2 (α1) vj,τ > 0

λ
2 (−α2) vj,τ ≤ 0

. (1.B.8)

For t = τ − 1,

Dj,τ−1 =
∂

∂Vj,τ−1

[
λ

2
dv(Vj,τ−1) +

λ

2

N∑

k=1

dv(Vk,τ )

]
. (1.B.9)

The first term can be evaluated as in (1.B.8), while the term inside the sum is expanded recur-

sively,

∂

∂Vj,τ−1
dv(Vk,τ ) = d′v(Vk,τ )

∂

∂Vj,τ−1
Vk,τ

∂

∂Vj,τ−1
Vk,τ =

∂

∂Vj,τ−1
Wf(Vτ−1)

= wkjf
′(Vj,τ−1) , (1.B.10)

which can be inserted into (1.B.9),

Dj,τ−1 =
λ

2

[
d′v(Vj,τ−1) +

N∑

k=1

d′v(Vk,τ )f
′(Vj,τ−1)wkj

]

=
λ

2
d′v(Vj,τ−1) + f ′(Vj,τ−1)

N∑

k=1

Dk,τwkj . (1.B.11)

The general recursion forDj,t is (reintroducingβ),

Dj,t =






λ
2 (1− βj,t)d

′
v(Vj,t) t = 1

λ
2 (1− βj,t)d

′
v(Vj,t) + f ′(Vj,t)

∑N
k=1 Dk,t+1wkj 1 ≤ t ≤ τ − 1

. (1.B.12)

The D term can be either Hebbian or anti-Hebbian depending on the sign of the derivative,

reducing or increasing weight strengthen between coactive units.
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The weight update (1.5.2) for the algorithm can be written using (1.5.3) and (1.5.4),

∆wji = −η
τ∑

t=1

(Bj,t + Dj,t)Xi,t . (1.B.13)



Chapter 2

Dictionary Learning Algorithms

Abstract

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are devel-

oped to obtain maximum likelihood and maximum a posteriori dictionary estimates basedon the

use of Bayesian models with concave/Schur-concave (CSC) negative log-priors. Such priors are

appropriate for obtaining sparse representations of environmental signals within an appropriately

chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted

as ‘concepts,’ ‘features’ or ‘words’ capable of succinct expression of events encountered in the

environment (the source of the measured signals). This is a generalizationof vector quantiza-

tion in that one is interested in a description involving a few dictionary entries (the proverbial ‘25

words or less’), but not necessarily as succinct as one entry. To learn an environmentally-adapted

dictionary capable of concise expression of signals generated by the environment, we develop

algorithms that iterate between a representative set of sparse representations found by variants

of FOCUSS, and an update of the dictionary using these sparse representations.

Experiments were performed using synthetic data and natural images. For complete dictio-

naries, we demonstrate that our algorithms have improved performance over Independent Com-

ponent Analysis (ICA) methods, measured in terms of signal-to-noise ratiosof separated sources.

In the overcomplete case, we show that the true underlying dictionary and sparse sources can be

accurately recovered. In tests with natural images, learned overcompletedictionaries are shown

to have higher coding efficiency than complete dictionaries, i.e. images encoded with an over-

complete dictionary have both higher compression (fewer bits/pixel) and higher accuracy (lower

60
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mean-square error).

2.1 Introduction

FOCUSS stands for “FOCal Underdetermined System Solver” and is an algorithm designed

to obtain suboptimally (and, at times, maximally) sparse solutions to the followingm×n, under-

determined linear inverse problem1 (Gorodnitsky et al., 1995, Rao, 1997, Rao and Gorodnitsky,

1997, Gorodnitsky and Rao, 1997, Adler et al., 1996, Rao and Kreutz-Delgado, 1997, Rao, 1998)

y = Ax , (2.1.1)

for knownA. The sparsity of a vector is the number of zero-valued elements (Donoho,1994),

and is related to thediversity, the number of non-zero elements,

sparsity = #{x[i] = 0}

diversity = #{x[i] 6= 0}

diversity = n− sparsity.

Since our initial investigations into the properties of FOCUSS as an algorithm for providing

sparse solutions to linear inverse problems in relatively noise-free environments (Gorodnitsky

et al., 1995, Rao, 1997, Rao and Gorodnitsky, 1997, Gorodnitsky andRao, 1997, Adler et al.,

1996, Rao and Kreutz-Delgado, 1997), we now better understand the behavior of FOCUSS in

noisy environments (Rao and Kreutz-Delgado, 1998a,b) and as an interior point-like optimiza-

tion algorithm for optimizing concave functionals subject to linear constraints (Rao and Kreutz-

Delgado, 1999, Kreutz-Delgado and Rao, 1997, 1998c,b,a, 1999, Kreutz-Delgado et al., 1999b,

Engan et al., 2000, Rao et al., 2002). In this paper, we consider the useof the FOCUSS algorithm

in the case where the matrixA is unknown and must belearned. Towards this end, we will first

briefly discuss how the use of concave (and Schur concave) functionals enforces sparse solutions

to (2.1.1). We also discuss the choice of the matrix,A, in (2.1.1) and its relationship to the set

of signal vectorsy for which we hope to obtain sparse representations. Finally, we presentalgo-

rithms capable of learning an environmentally adapted dictionary,A, given a sufficiently large

and statistically representative sample of signal vectors,y, building on ideas originally presented

in (Kreutz-Delgado et al., 1999c,a, Engan et al., 1999).

1For notational simplicity, in this paper we consider the real case only.
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We refer to the columns of the full row-rankm× n matrixA,

A = [a1, · · · , an] ∈ R
m×n , n≫ m, (2.1.2)

as adictionaryand they are assumed to be a set of vectors capable of providing a highly succinct

representation formost(and, ideally, all) statistically representative signal vectorsy ∈ R
m. Note,

that with the assumption that rank(A) = m, every vectory has a representation; the question

at hand is whether this representation is likely to be sparse. We call the statistical generating

mechanism for signals,y, theenvironmentand a dictionary,A, within which such signals can be

sparsely represented anenvironmentally adapteddictionary.

Environmentally generated signals typically have significant statistical structure, and can

be represented by a set of basis vectors spanning a lower dimensional submanifold of meaning-

ful signals (Field, 1994, Ruderman, 1994). These environmentally-meaningful representation

vectors can be obtained by maximizing the mutual information between the set of these vec-

tors (the dictionary) and the signals generated by the environment (Comon,1994, Bell, 1995,

Deco and Obradovic, 1996, Olshausen and Field, 1996, Zhu et al., 1997, Wang et al., 1997).

This procedure can be viewed as a natural generalization of Independent Component Analysis

(ICA) (Comon, 1994, Deco and Obradovic, 1996). As initially developed, this procedure usu-

ally results in obtaining aminimal spanning set of spanning vectors (i.e., a true basis). More

recently, the desirability of obtaining “overcomplete” sets of vectors (or “dictionaries”) has been

noted (Olshausen and Field, 1996, Lewicki and Sejnowski, 2000, Coifman and Wickerhauser,

1992, Mallat and Zhang, 1993a, Donoho, 1994, Rao and Kreutz-Delgado, 1997). For example,

projecting measured noisy signals onto the signal submanifold spanned by aset of dictionary

vectors results in noise reduction and data compression (Donoho, 1994,1995). These dictionar-

ies can be structured as asetof bases from which asinglebasis is to be selected to represent the

measured signal(s) of interest (Coifman and Wickerhauser, 1992), oras a single, overcomplete,

set of individual vectors from within which a vector,y, is to be sparsely represented (Mallat

and Zhang, 1993a, Olshausen and Field, 1996, Lewicki and Sejnowski, 2000, Rao and Kreutz-

Delgado, 1997).

The problem of determining a representation from a full row-rank overcomplete dictionary,

A = [a1, ..., an], n ≫ m, for a specific signal measurement,y, is equivalent to solving an un-

derdetermined inverse problem,Ax = y which is nonuniquely solvable for anyy. The standard

least squares solution to this problem has the (at times) undesirable featureof involving all the
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dictionary vectors in the solution2 (the “spurious artifact” problem), and does not allow for the

extraction of a categorically or physically meaningful solution. That is, it is not generally the

case that a least-squares solution yields a concise representation allowingfor a precise semantic

meaning3. If the dictionary is large and rich enough in representational power, a measured signal

can be matched to a very few (perhaps even just one) dictionary words.In this manner we can

obtain concise semantic content about objects or situations encountered in natural environments

(Field, 1994). Thus, there has been a significant interest in finding “sparse” solutions,x, (so-

lutions having a minimum number of nonzero elements) to the signal representation problem.

Interestingly, matching aspecificsignal to a sparse set of dictionary words/vectors can be related

to entropyminimizationas a means of elucidating statistical structure (Watanabe, 1981). Finding

a sparse representation (based on the use of a “few” code/dictionary words) can also be viewed

as a generalization of vector quantization where a match to a single “code vector” (word) is al-

ways sought (taking “code book” = “dictionary”)4. Indeed, we can refer to a sparse solution,x,

as a sparse coding of the signal instantiation,y .

2.1.1 Stochastic Models

It is well known (Basilevsky, 1994) that the stochastic generative model

y = Ax + ν , (2.1.3)

can be used to develop algorithms enabling coding ofy ∈ R
m via solving the inverse problem for

a sparse solutionx ∈ R
n for the undercomplete (n < m) and complete (n = m) cases. In recent

years there has been a great deal of interest in obtaining sparse codings ofy via this procedure

for theovercomplete(n > m) case (Mallat and Zhang, 1993a, Field, 1994). In our earlier work

we have shown that given an overcomplete dictionary,A, (with the columns of A comprising the

dictionary vectors) a MAP estimate of the source vector,x, will yield a sparse coding of y in the

2This fact comes as no surprise when the solution is interpreted within a Bayesian framework,
using a gaussian (maximum entropy) prior.

3Taking “semantic” here to mean categorically or physically interpretable.
4For example,n = 100 corresponds to100 features encoded via vector quantization (”one

column = one concept”). If we are allowed to represent features using up to four columns, we can

encode

(
100
1

)
+

(
100
2

)
+

(
100
3

)
+

(
100
4

)
= 4, 087, 975 concepts showing a combinatorial

boost in expressive power
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low-noise limit if the negative log-prior,− log(P (x)), is Concave/Schur-Concave (CSC) (Rao,

1998, Kreutz-Delgado and Rao, 1999), as discussed further below.For P (x) factorizable into

a product of marginal probabilities, the resulting code is also known to provide an Independent

Component Analysis (ICA) representation ofy. More generally, a CSC prior results in a sparse

representation even in the non-factorizable case (withx then forming a “Dependent Component

Analysis,” or DCA, representation).

Given iid data,Y = Y N = (y1, ..., yN ), which is assumed to be generated by the model

(2.1.3), a maximum likelihood estimate,̂AML , of the unknown (but nonrandom) dictionaryA can

be determined as (Olshausen and Field, 1996, Lewicki and Sejnowski, 2000)

ÂML = arg max
A

P (Y ; A) .

This requires integrating out the unobservable iid source vectors,X = XN = (x1, ..., xN ), in

order to computeP (Y ; A) from the (assumed) known probabilitiesP (x) andP (ν). In essence

X is formally treated as a set of nuisance parameters which, in principle, can be removed via

integration. However, because the priorP (x) is generally taken to be supergaussian, this inte-

gration is intractable or computationally unreasonable. Thus approximations tothis integration

are performed which result in an approximation toP (Y ; A) which is then maximized with re-

spect to Y. A new, better, approximation to the integration can then be made andthis process is

iterated until the estimate of the dictionaryA has (hopefully) converged (Olshausen and Field,

1996). We refer to the resulting estimate as an Approximate Maximum Likelihood (AML) es-

timate of the dictionaryA (denoted here bŷAAML ). No formal proof of the convergence of this

algorithm to the true maximum likelihood estimate,Aml, has been given in the prior literature,

but it appears to perform well in various test cases (Olshausen and Field, 1996). Below, we dis-

cuss the problem of dictionary learning within the framework of our recentlydeveloped log-prior

model-based sparse source vector learning approach which for aknownovercomplete dictionary

can be used to obtain sparse codes (Rao, 1998, Kreutz-Delgado and Rao, 1997, 1998c,b, Rao

and Kreutz-Delgado, 1999, Kreutz-Delgado and Rao, 1999). Such sparse codes can be found

using FOCUSS, an affine scaling transformation (AST)-like iterative algorithm which finds a

sparse locally optimal MAP estimate of the source vectorx for an observationy. Using these

results, we can develop dictionary learning algorithms, both within the Approximate Maximum

Likelihood framework mentioned above and for obtaining a MAP-like estimate,ÂMAP, of the

(now assumed random) dictionary,A, assuming in the latter case that the dictionary belongs to a
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compact submanifold corresponding to unit Frobenius norm. Under certain conditions, conver-

gence to a local minimum of a MAP-loss function which combines functions of thediscrepancy

e = (y −Ax) and the degree of sparsity inx can be rigorously proved.

2.1.2 Related Work

Previous work includes efforts to solve (2.1.3) in the overcomplete case within the Max-

imum Likelihood (ML) framework. An algorithm for finding sparse codes was developed in

(Olshausen and Field, 1997) and tested on small patches of natural images, resulting in Gabor-

like receptive fields. Lewicki and Sejnowski (2000) present anotherML algorithm which uses

the Laplacian prior to enforce sparsity. The values of the elements ofx are found with a modified

conjugate gradient optimization (which has a rather complicated implementation) asopposed to

the standard ICA (square mixing matrix) case where the coefficients are found by inverting the

A matrix. The difficulty that arises when using ML is that finding the estimate of the dictionary

A requires integrating over all possible values of the coefficient posteriordensityP (x| y, A) as

a function ofx. In (Olshausen and Field, 1997) this is handled by assuming the posterior isa

delta-function, while in (Lewicki and Sejnowski, 2000) it is approximated bya gaussian. The

fixed-point FastICA (Hyv̈arinen et al., 1999) has also been extended to generate overcomplete

representations. The FastICA algorithm can find the basis functions (columns of the dictio-

nary A) one at a time by imposing a quasi-orthogonality condition, and can be thoughtof as

a “greedy” algorithm. It also can be run “in parallel” meaning all columns ofA are updated

together.

Other methods to solve (2.1.3) in the overcomplete case have been developedusing a com-

bination of the expectation-maximization (EM) algorithm and variational approximation tech-

niques. Independent Factor Analysis (Attias, 1999) uses a mixture-of-gaussians to approximate

the prior density of the sources, which avoids the difficulty of integrating out the parametersX

and allows different sources to have different densities. In another method (Girolami, 2001) the

source priors are assumed to be supergaussian (heavy-tailed) and a variational lower-bound is

developed which is used in the EM estimation of the parametersA andX. It is noted by Giro-

lami (2001) that the mixtures used in Independent Factor Analysis are moregeneral than may

be needed for the sparse overcomplete case, and they can be computationally expensive as the

dimension of the data vector and number of mixtures increases.
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In Zibulevsky and Pearlmutter (2001), the blind source separation problem is formulated

in terms of a sparse source underlying each unmixed signal. These sparse sources are expanded

into the unmixed signal with a predefined wavelet dictionary, which may be overcomplete. The

unmixed signals are linearly combined via a different mixing matrix to create the observed sensor

signals. The method is shown to give better separation performance than ICA techniques. The

use of learned dictionaries (instead of being chosena priori) is suggested.

2.2 FOCUSS: Sparse Solutions for Known Dictionaries

2.2.1 Known Dictionary Model.

A Bayesian interpretation is obtained from the generative signal model (2.1.3) by assuming

thatx has the parameterized (generally nongaussian) pdf,

Pp(x) = Z−1
p e−γp dp(x) , Zp =

∫
e−γp dp(x)dx , (2.2.1)

with parameter vectorp. Similarly, the noiseν is assumed to have a parameterized (possibly

nongaussian) densityPq(ν) of the same form as (2.2.1) with parameter vectorq. It is assume

thatx andν have zero means and that their densities obey the propertyd(x) = d(|x|), for | · |
defined component-wise. This is equivalent to assuming that the densities are symmetric with

respect to sign changes in the components ofx, x[i] ← −x[i], and therefore that the skews of

these densities are zero. We also assume thatd(0) = 0. With a slight abuse of notation, we allow

the differing subscriptsq andp to indicate thatdq anddp may befunctionallydifferent as well

as parametrically different. We refer to densities like (2.2.1), for suitable additional constraints

ondp(x), as Hypergeneralized Gaussian Distributions (Kreutz-Delgado and Rao, 1999, Kreutz-

Delgado et al., 1999b).

If we treatA, p, andq asknownparameters, thenx andy are jointly distributed as

P (x, y) = P (x, y; p, q, A) .

Bayes’ rule yields,

P (x|y; p, A) =
1

β
P (y|x; p, A) · P (x; p, A) =

1

β
Pq(y −Ax) · Pp(x) (2.2.2)

β = P (y) = P (y; p, q, A) =

∫
P (y|x) · Pp(x)dx . (2.2.3)
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Usually the dependence onp andq is notationally suppressed and we writeβ = P (y; A), etc.

Given an observation,y, maximizing (2.2.2) with respect tox yields a MAP estimatêx. This

ideally results in a sparse coding of the observation, a requirement which places functional con-

straints on the probability density functions, and particularly ondp. Note thatβ is independent

of x and can be ignored when optimizing (2.2.2) with respect to the unknown source vectorx.

The MAP estimate equivalently is obtained from minimizing the the negative logarithmof

P (x|y), which is,

x̂ = arg min
x

dq(y −Ax) + λ dp(x) , (2.2.4)

whereλ = γp/γq, anddq(y−Ax) = dq(Ax− y) by our assumption of symmetry. The quantity
1
λ is interpretable as a signal-to-noise ratio (SNR). Furthermore, assuming that bothdq anddp

areConcave/Schur–Concave(CSC) as defined below in Section 2.4, then the termdq(y − Ax)

in (2.2.4) will encourage sparse residuals,e = y − Ax̂, while the termdp(x) encourages sparse

source-vector estimates,x̂. A given value ofλ then determines a trade-off between residual and

source vector sparseness.

This most general formulation will not be used in this paper. Although we areinterested

in obtaining sparse source-vector estimates, we will not enforce sparsityon the residuals but

instead, to simplify the develoment, will assume theq = 2 iid gaussian measurement noise case

(ν gaussian with known covarianceσ2 · I), which corresponds to taking,

γq dq(y − Âx̂) =
1

2σ2
‖y − Âx̂‖2 . (2.2.5)

In this case, problem (2.2.4) becomes,

x̂ = arg min
x

1

2
‖y −Ax‖2 + λ dp(x) . (2.2.6)

In either case, we note thatλ → 0 asγp → 0 which (consistent with the generative model

(2.1.3)) we refer to as thelow noise limit. Because the mappingA is assumed to be onto, in the

low noise limit the optimization (2.2.4) is equivalent to the linearly constrained problem,

x̂ = arg min dp(x) subject to Ax = y . (2.2.7)

In the low-noise limit, no sparseness constraint need be placed on the residuals,e = y − Ax̂,

which are assumed to be zero. It is evident that the structure ofdp(·) is critical for obtaining a

sparse coding,̂x, of the observationy (Kreutz-Delgado and Rao, 1997, Rao and Kreutz-Delgado,
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1999). Throughtout this paper the quantitydp(x) is always assumed to be CSC (enforcing sparse

solutions to the inverse problem (2.1.3)). As mentioned above, and as will beevident during the

development of dictionary learning algorithms below, we do not impose a sparsity constraint on

the residuals; instead the measurement noiseν will be assumed to be Gaussian (q = 2).

2.2.2 Independent Component Analysis (ICA) and Sparsity Inducing Priors.

An important class of densities is given by thegeneralized gaussiansfor which

dp(x) = ‖x‖pp =
n∑

k=1

|x[k]|p , (2.2.8)

for p > 0 (Kassam, 1982). This is a special case of the largerℓp class (the “p-class”) of functions

which allowsp to be negative in value (Rao and Kreutz-Delgado, 1999, Kreutz-Delgado and Rao,

1997). Note that this function has the special property ofseparability,

dp(x) =
n∑

k=1

dp(x[k]) ,

which corresponds tofactorizabilityof the densityPp(x),

Pp(x) =
n∏

k=1

Pp(x[k]) ,

and hence toindependence of the components ofx. The assumption of independent components

allows the problem of solving the generative model (2.1.3) forx to be interpreted as an Inde-

pendent Component Analysis (ICA) problem (Comon, 1994, Pham, 1996, Olshausen and Field,

1996, Roberts, 1998). It is of interest, then, to consider the development of a large class of pa-

rameterizable separable functionsdp(x) consistent with the ICA assumption (Rao and Kreutz-

Delgado, 1999, Kreutz-Delgado and Rao, 1997). Note that given such a class, it is natural to

examine the issue of finding a best fit within this class to the “true” underlying prior density

of x. This is a problem of parametric density estimation of the true prior where one attempts

to find an optimal choice of the model densityPp(x) by an optimization over the parametersp

which define the choice of a prior from within the class. This is, in general, adifficult problem

which may require the use of Monte-Carlo, evolutionary programming, and/or stochastic search

techniques.

Can the belief that supergaussian priors,Pp(x), are appropriate for finding sparse solu-

tions to (2.1.3) (Field, 1994, Olshausen and Field, 1996) be clarified or made rigorous? It is
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well known that the generalized gaussian distribution arising from the use of (2.2.8) yields su-

pergaussian distributions (positive kurtosis) forp < 2 and subgaussian (negative kurtosis) for

p > 2. However, one can argue (see Section 2.5 below) that the condition for obtaining sparse

solutions in the low noise limit is the stronger requirement thatp ≤ 1, in which case the separa-

ble functiondp(x) is concave and Schur-concave. This indicates that supergaussianess (positive

kurtosis) alone isnecessarybut not sufficientfor inducing sparse solutions. Rather, sufficiency

is given by the requirement that− log Pp(x) ≈ dp(x) be Concave/Schur-Concave (CSC).

We have seen that the functiondp(x) has an interpretation as a (negative logarithm of) a

Bayesian prioror as a penalty function enforcing sparsity in (2.2.4) wheredp(x) should serve as

a “relaxed counting function” on the nonzero elements ofx. Our perspective emphasizes the fact

thatdp(x) servesbothof these goals simultaneously. Thus, good regularizing functions,dp(x),

should be flexibly parameterizable so thatPp(x) can be optimized over the parameter vectorp to

provide a good parametric fit to the underlying environmental probability density function,and

the functions should also have analytical properties consistent with the goal of enforcing sparse

solutions. Such properties are discussed in the next section.

2.2.3 Majorization and Schur-Concavity

In this section, we discuss functions which are both concave and Schur–concave (Con-

cave/ Schur–Concave, or CSC, functions)(Marshall and Olkin, 1979). We will call functions,

dp(·), which are Concave/ Schur–Concave,Diversity Functions, Anti–Concentration Functions

or Anti–sparsity Functions. The larger the value of the CSC functiondp(x), the more diverse

(i.e., the less concentrated or sparse), the elements of the vectorx are. Thus minimizingdp(x)

wrt x results in less–diverse (more concentrated or sparse) vectorsx.

Schur-Concave Functions.

A measure of the sparsity of the elements of a solution vectorx (or the lack thereof, which

we refer to as thediversityof x) is given by a partial ordering on vectors known as theLorentz

order. For any vector in the positive orthant,x ∈ Rn
+, define thedecreasing rearrangement

x
.
= (x⌊1⌋, · · · , x⌊n⌋) , x⌊1⌋ ≥ · · · ≥ x⌊n⌋ ≥ 0
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and thepartial sums(Marshall and Olkin, 1979, Wickerhauser, 1994),

Sx[k] =
k∑

i=1

x⌊n⌋ , k = 1, · · · , n .

We say thaty majorizesx, y ≻ x, iff for k = 1, · · · , n,

Sy[k] ≥ Sx[k] ; Sy[n] = Sx[n] ,

and the vectory is said to be more concentrated, or lessdiverse, thanx. This partial order defined

by majorization then defines the Lorentz order.

We are interested in scalar-valued functions ofx which are consistent with majorization.

Such functions are known asSchur-Concavefunctions,d(·) : Rn
+ → R. They are defined to be

precisely the class of functions which areconsistent with the Lorentz order,

y ≻ x ⇒ d(y) < d(x) .

In words, ify is less diverse thanx (according to the Lorentz order) thend(y) is less thand(x)

for d(·) Schur-concave. We assume that Schur-Concavity is anecessary conditionfor d(·) to be

a goodmeasure of diversity(anti-sparsity).

Concavity yields sparse solutions.

Recall that a functiond(·) is concaveon the positive orthantRn
+ iff (Rockafellar, 1970)

d ((1− γ)x + γy) ≥ (1− γ)d(x) + γd(y) ,

∀x, y ∈ Rn
+ ,∀γ, 0 ≤ γ ≤ 1. In addition, a scalar function is said to be permutation invariant

if its value is independent of rearrangements of its components. An importantfact is that for

permutation invariant functionsconcavity is a sufficient condition for Schur-Concavity:

Concavity + Permutation Invariance⇒ Schur-Concavity.

Now consider the low-noise sparse inverse problem (2.2.7). It is well known that subject

to linear constraints, a concave function onRn
+ takes its minima on theboundaryof Rn

+ (Rock-

afellar, 1970), and as a consequence these minima are thereforesparse. We take concavity to

be asufficient conditionfor a permutation invariantd(·) to be a measure of diversity and we

obtain sparsity as constrained minima ofd(·). More generally, a diversity measure should be
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somewhere between Schur-concave and concave. In this spirit, one can definealmost concave

functions (Kreutz-Delgado and Rao, 1997), which are Schur-concave and (locally) concave in

all n directions but one, which also are good measures of diversity.

Separability, Schur-Concavity, and ICA.

The simplest way to ensure thatd(x) be permutation invariant (a necessary condition for

Schur-concavity) is to use functions that areseparable. Recall that separability ofdp(x) corre-

sponds tofactorizabilityof Pp(x). Thusseparabilityof d(x) corresponds to the assumption of

independent componentsof x under the model (2.1.3). We see that from a Bayesian perspective,

separability ofd(x) corresponds to a generative model fory thatassumes a source,x, with inde-

pendent components.With this assumption, we are working within the framework of Indepen-

dent Component Analysis (ICA) (Nadal and Parga, 1994, Pham, 1996, Roberts, 1998). We have

developed effective algorithms for solving the optimization problem (2.2.7) for sparse solutions

whendp(x) is separable and concave (Kreutz-Delgado and Rao, 1997, Rao and Kreutz-Delgado,

1999).

It is now evident that relaxing the restriction of separability generalizes thegenerative model

to the case were the source vector,x, hasdependent components. We can reasonably call an

approach based on a non-separable diversity measured(x) a Dependent Component Analysis

(DCA). Unless care is taken, this relaxation can significantly complicate the analysis and de-

velopment of optimization algorithms. However, one can solve the low-noise DCA problem, at

least in principle, provided appropriate choices of non-separable diversity functions are made.

2.2.4 Supergaussian Priors and Sparse Coding

TheP -class of diversity measures for0 < p ≤ 1 result in sparse solutions to the low-noise

coding problem (2.2.7). These separable and concave (and thus Schur-concave) diversity mea-

sures correspond to supergaussian priors, consistent with the “folk theorem” that supergaussian

priors are sparsity enforcing priors. However, taking1 ≤ p < 2 results in supergaussian priors

which arenotsparsity enforcing. Takingp to be between1 and2 yields adp(x) which isconvex,

and thereforenot concave. This is consistent with the well-known fact that for this range of

p, thepth-root of dp(x) is a norm. Minimizingdp(x) in this case drivesx towards the origin,

favoring “concentrated” rather than “sparse” solutions. We see that ifa sparse coding is to be
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found based on obtaining a MAP estimate to the low-noise generative model (2.1.3) then, in a

sense, supergaussianess is a necessary but not sufficient condition for a prior to be sparsity en-

forcing. A sufficient condition for obtaining a sparse MAP coding is that the negative log-prior

be Concave/Schur-concave (CSC).

2.2.5 The FOCUSS Algorithm.

Locally optimal solutions to the known–dictionary sparse inverse problems in gaussian

noise, equations (2.2.6) and (2.2.7), are given by the FOCUSS algorithm. This is an Affine-

Scaling Transformation (AST)-like (interior point) algorithm originally proposed for the low

noise case (2.2.7) in (Rao and Kreutz-Delgado, 1997, Kreutz-Delgadoand Rao, 1997, Rao and

Kreutz-Delgado, 1999), and extended via regularization to the non-trivial noise case (2.2.6) in

(Rao and Kreutz-Delgado, 1998a, Engan et al., 2000, Rao et al., 2002). In these references it is

shown that the FOCUSS algorithm has excellent behavior for concave functions (which includes

the the CSC concentration functions)dp(·). For such functions FOCUSS quickly converges to a

local minimum yielding a sparse solutions to the problems (2.2.7) and (2.2.6).

One can quickly motivate the development of the FOCUSS algorithm appropriate for solv-

ing the optimization problem (2.2.6) by considering the problem of obtaining the stationary

points of the objective function. These are given as solutions,x∗, to

AT (Ax∗ − y) + λ∇xdp(x
∗) = 0 (2.2.9)

In general (2.2.9) is nonlinear and cannot be explicitly solved for a solution x∗. However, we

proceed by assuming the existence of agradient factorization,

∇xdp(x) = α(x)Π(x)x , (2.2.10)

whereα(x) is a positive scalar function andΠ(x) is symmetric, positive–definite and diago-

nal. As discussed by Kreutz-Delgado and Rao (1997, 1998c), Rao and Kreutz-Delgado (1999),

this assumption is generally true for CSC sparsity functionsdp(·) and is key to understanding

FOCUSS as a sparsity-inducing interior-point (AST-like) optimization algorithm.5

5This interpretation, which is not elaborated on in this paper, follows from defining a diagonal
postive definite affine scaling transformation matrixW (x) by the relation,

Π(x) = W−2(x) .
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With the gradient factorization (2.2.10), the stationary points of (2.2.9) are readily shown

to be solutions to the (equally nonlinear and implicit) system,

x∗ =
(
AT A + β(x∗)Π(x∗)

)−1
AT y (2.2.11)

= Π−1(x∗)AT
(
β(x∗)I + AΠ−1(x∗)AT

)−1
y , (2.2.12)

whereβ(x) = λα(x) and the second equation follows from identity (2.A.18) given in Appendix

2.A. Although (2.2.12) is also not generally solvable in closed form, it does suggest the following

relaxation algorithm,

x̂ ← Π−1(x̂)AT
(
β(x̂)I + AΠ−1(x̂)AT

)−1
y , (2.2.13)

which is to be repeatedly reiterated until convergence.

Takingβ ≡ 0 in (2.2.13) yields the FOCUSS algorithm which is proved in (Kreutz-Delgado

and Rao, 1997, 1998c, Rao and Kreutz-Delgado, 1999) to convergeto a sparse solution of (2.2.7)

for CSC sparsity functionsdp(·). The caseβ 6= 0 yields the regularized FOCUSS algorithm

which will converge to a sparse solution of (2.2.6) (Rao, 1998, Engan etal., 2000, Rao et al.,

2002). More computationally robust variants of (2.2.13) are discussed elsewhere (Gorodnitsky

and Rao, 1997, Rao and Kreutz-Delgado, 1998a).

Note that for the general regularized FOCUSS algorithm (2.2.13), we haveβ(x̂k) = λα(x),

whereλ is the regularization parameter in (2.2.4). The functionβ(x) is usually generalized to be

a function ofx̂k, yk and the iteration number. Methods for choosingλ include the quality-of-fit

criteria, the sparsity critera, and theL-curve(Engan, 2000, Engan et al., 2000, Rao et al., 2002).

The quality-of-fit criteria attempts to minimize the residual errory−Ax (Rao, 1997) which can

be shown to converge to a sparse solution (Rao and Kreutz-Delgado, 1999). The sparsity critera

requires that a certain number of elements of eachxk be non-zero.

The L-curve method adjustsλ to optimize the trade-off between the residual and sparsity

of xk. The plot ofdp(xk) versusdq(yk −Axk) has an L-shape, the corner of which provides the

best trade-off. The corner of the L-curve is the point of maximum curvature, and can be found

by a one-dimensional maximization of the curvature function (Hansen and O’Leary, 1993).

A hybrid approach known as themodified L-curve methodcombines the L-curve method

on a linear scale and the quality-of-fit critera, which is used to place limits on therange ofλ that

can be chosen by the L-curve (Engan, 2000). The modified L-curve method was shown to have
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good performance, but it requires a one-dimensional numerical optimization step for eachxk at

each iteration, which can be computationally expensive for large vectors.

2.3 Dictionary Learning

2.3.1 Unknown, Nonrandom Dictionaries

The Maximum Likelihood Estimation framework treats parameters to be estimated as un-

known but deterministic (nonrandom). In this spirit we take the dictionary,A, to be the set of

unknown, but deterministic, parameters to be estimated from the observation set Y = Y N . In

particular, givenY N the maximum likelihood estimatêAML is found from maximizing the likeli-

hood functionL(A |Y N ) = P (Y N ; A). Under the assumption that the observations are iid, this

corresponds to the optimization,

ÂML = arg max
A

N∏

k=1

P (yk; A) , (2.3.1)

P (yk; A) =

∫
P (yk, x; A)dx =

∫
P (yk|x; A)·Pp(x)dx =

∫
Pq(yk−Ax)·Pp(x)dx . (2.3.2)

Defining the sample average of a functionf(y) over the sample setY N = (y1, · · · , yN ) by

〈f(y)〉N =
1

N

N∑

k=1

f(yk) ,

the optimization (2.3.1) can be equivalently written as

ÂML = arg min
A
−〈log(P (y; A))〉N . (2.3.3)

Note thatP (yk; A) is equal to the normalization factorβ encountered earlier above, but now

with the dependence ofβ on A and the particular sample,yk, made explicit. The integration

in (2.3.2) in general is intractable, and various approximations have been proposed to obtain

an Approximate Maximum Likelihood estimate,̂AAML (Olshausen and Field, 1996, Lewicki and

Sejnowski, 2000).

In particular, the following approximation has been proposed (Olshausenand Field, 1996),

Pp(x) ≈ δ(x− x̂k(Â)) , (2.3.4)
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where

x̂k(Â) = arg max
x

P (yk, x; Â) , (2.3.5)

for k = 1, · · · , N , assuming a current estimate,Â, for A. This approximation corresponds to

assuming that the source vectorxk for whichyk = Axk is known and equal tôxk(Â). With this

approximation, the optimization (2.3.3) becomes,

ÂAML = arg min
A

〈
dq(y − Âx̂) + λ dp(x̂)

〉

N
, (2.3.6)

which is an optimization over the sample average〈 · 〉N of the functional (2.2.4) encountered

earlier. Updating our estimate for the dictionary,

Â← ÂAML , (2.3.7)

we can iterate the procedure (2.3.5)–(2.3.6) untilÂAML has converged, hopefully (at least in the

limit of large N ) to ÂML = ÂML(Y
N ) as the maximum likelihood estimatêAML(Y

N ) has well-

known desirable asymptotic properties in the limitN →∞.

Performing the optimization in (2.3.6) for theq = 2 iid gaussian measurement noise case

(ν gaussian with known covarianceσ2 · I) corresponds to taking

dq(y − Âx̂) =
1

2σ2
‖y − Âx̂‖2 , (2.3.8)

in (2.3.6). In Appendix 2.A it is shown that we can readily obtain the unique ‘batch’ solution,

ÂAML = Σyx̂Σ−1
x̂x̂ , (2.3.9)

Σyx̂ =
1

N

N∑

k=1

ykx̂
T
k , Σx̂x̂ =

1

N

N∑

k=1

x̂kx̂
T
k . (2.3.10)

Appendix 2.A actually derives the maximum likelihood estimate ofA for the ideal case ofknown

source vectorsX = (x1, · · · , xN ),

Known Source Vector Case:AML = ΣyxΣ−1
xx ,

which is, of course, actually not computable since the actual source vectors are assumed to be

‘hidden.’
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As an alternative to using the explicit solution (2.3.9), which requires an often prohibitive

n × n inversion, we can obtainAAML iteratively via gradient descent on equations (2.3.6) and

(2.3.8),

ÂAML ← ÂAML − µ
1

N

N∑

k=1

ekx̂
T
k , (2.3.11)

ek = ÂAML x̂k − yk , k = 1, · · · , N ,

for an appropriate choice of the (possibly adaptive) positive step-sizeparameterµ. The iteration

(2.3.11) can be initialized aŝAAML = Â.

A general iterative dictionary learning procedure is obtained by nesting the iteration (2.3.11)

entirely within the iteration defined by repeatedly solving (2.3.5) every time a newestimate,

ÂAML , of the dictionary becomes available. However performing the optimization required in

(2.3.5) is generally nontrivial (Olshausen and Field, 1996, Lewicki andSejnowski, 2000). Re-

cently we have shown how the use of the FOCUSS algorithm results in an effective algorithm

for performing the optimization required in (2.3.5) for the case whenν is gaussian (Rao and

Kreutz-Delgado, 1998a, Engan et al., 1999). This approach solves (2.3.5) using the Affine-

Scaling Transformation (AST)-like algorithms recently proposed for the lownoise case (Rao

and Kreutz-Delgado, 1997, Kreutz-Delgado and Rao, 1997, Rao andKreutz-Delgado, 1999)

and extended via regularization to the non-trivial noise case (Rao and Kreutz-Delgado, 1998a,

Engan et al., 1999). As discussed above in Subsection 2.2.5, for the current dictionary estimate,

Â, a solution to the optimization problem (2.3.5) is provided by the repeated iteration,

x̂k ← Π−1(x̂k)Â
T
(
β(x̂k)I + ÂΠ−1(x̂k)Â

T
)−1

yk , (2.3.12)

k = 1, · · · , N , with Π(x) defined as in equation (2.3.18) given below. This is the regularized

FOCUSS algorithm (Rao, 1998, Engan et al., 1999) which has an interpretation as an AST-like

concave function minimization algorithm. The proposed dictionary learning algorithm alter-

natesbetween the iteration (2.3.12) and the iteration (2.3.11) (or the direct batch solution given

by (2.3.9), if the inversion is tractable). Extensive simulations show the ability of the AST-based

algorithm to completely recover an unknown20× 30 dictionary matrixA (Engan et al., 1999).
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2.3.2 Unknown, Random Dictionaries

We now generalize to the case where the dictionary,A, and the source vector setX =

XN = (x1, · · · , xN ) are jointly random and unknown. We add the requirement that the dictio-

nary is known to obey the constraint,

A ∈ A = compact submanifold ofRm×n.

A compact submanifold ofRm×n is necessarily closed and bounded. On the constraint subman-

ifold the dictionaryA has the prior probability density functionP (A), which in the sequel we

assume has the simple (uniform onA) form,

P (A) = cX (A ∈ A) , (2.3.13)

whereX (·) is the indicator function andc is a positive constant chosen to ensure that

P (A) =

∫

A
P (A) dA = 1 .

The dictionaryA and the elements of the setX are also all assumed to be mutually independent,

P (A, X) = P (A)P (X) = P (A)Pp(x1) · · ·Pp(xN ) .

With the set of iid noise vectors,(ν1, · · · , νN ) also taken to be jointly random with, and inde-

pendent of,A andX, the observation setY = Y N = (y1, · · · yN ) is assumed to be generated

via the model (2.1.3). With these assumptions we have

P (A, X|Y ) = P (Y |A, X)P (A, X)/P (Y ) (2.3.14)

= cX (A ∈ A)P (Y |A, X)P (X)/P (Y )

=
cX (A ∈ A)

P (Y )

N∏

k=1

P (yk|A, xk)Pp(xk)

=
cX (A ∈ A)

P (Y )

N∏

k=1

Pq(y −Axk)Pp(xk) ,

using the facts that the observations are conditionally independent andP (yk|A, X) = P (yk|A, xk).

The jointly Maximum A Posteriori (MAP) estimates

(ÂMAP, X̂MAP) = (ÂMAP, x̂1,MAP, · · · , x̂N,MAP)
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are found by maximizinga posterioriprobability densityP (A, X|Y ) simultaneously with re-

spect toA ∈ A andX. This is equivalent to minimizing the negative logarithm ofP (A, X|Y ),

yielding the optimization problem,

(ÂMAP, X̂MAP) = arg min
A∈A, X

〈dq(y − Ax) + λ dp(x)〉N . (2.3.15)

Note that this is ajoint minimization of the sample average of the functional (2.2.4), and as such

is a natural generalization of the single (with respect to the set of source vectors) optimization

previously encountered in (2.3.6). By finding joint MAP estimates ofA andX, we obtain a

problem that is much more tractable than the one of finding the single MAP estimate of A

(which involves maximizing the marginal posterior densityP (A|Y )).

The requirement thatA ∈ A, whereA is a compact and henceboundedsubset ofRm×n, is

sufficient for the optimization problem (2.3.15) to avoid the degenerate solution,6

for k = 1, · · · , N , yk = Axk , with ‖A‖ → ∞ and‖xk‖ → 0 . (2.3.16)

This solution is possible for unboundedA becausey = Ax is almost always solvable forx

since learned overcompleteA’s are (generically) onto and for any solution pair(A, x) the pair

( 1
αA, α x) is also a solution. This fact shows that the inverse problem of finding a solution pair

(A, x) is generally ill-posedunlessA is constrained to be bounded (as we’ve explicitly done

here) or the cost functional is chosen to ensure that boundedA’s are learned (e.g., by adding a

term monotonic in the matrix norm‖A‖ to the cost function in (2.3.15)).

A variety of choices for the compact setA are available. Obviously, since different choices

of A correspond to differenta priori assumptions on the set of admissible matrices,A, the

choice of this set can be expected to affect the performance of the resulting dictionary learning

algorithm. We will consider two relatively simple forms forA.

2.3.3 Unit Frobenius–Norm Dictionary Prior

For the iidq = 2 gaussian measurement noise case of (2.3.8), algorithms that provably

converge (in the low step-size limit) to a local minimum of (2.3.15) can be readily developed for

the very simple choice,

AF = {A | ‖A‖F = 1} ⊂ R
m×n , (2.3.17)

6‖A‖ is any suitable matrix norm onA.



79

where‖A‖F denotes the Frobenius norm of the matrixA,

‖A‖2F = tr (AT A) , trace(AT A) ,

and it is assumed that the priorP (A) is uniformly distributed onAF as per condition (2.3.13).

As discussed in Appendix 2.A,AF is simply connected and there exists a path inAF between any

two matrices inAF.

Following the gradient factorization procedure (Kreutz-Delgado and Rao, 1997, Rao and

Kreutz-Delgado, 1999), we factor the gradient ofd(x) as

∇d(x) = α(x)Π(x)x , α(x) > 0 , (2.3.18)

where it is assumed thatΠ(x) is diagonal and positive-definite for all nonzerox. For example,

in the case whered(x) = ‖x‖pp,

Π−1(x̂k) = diag(|x̂k[i]|2−p).

Factorizations for other diversity measuresd(x) are given by Kreutz-Delgado and Rao (1997).

We also defineβ(x) = λα(x). As derived and proved in Appendix 2.A, a learning law which

provably converges to a minimum of (2.3.15) on the manifold (2.3.17) is then given by,

d

dt
x̂k = −Ωk

{(
ÂT Â + β(x̂k)Π(x̂k)

)
x̂k − ÂT yk

}
,

d

dt
Â = −µ

(
δÂ− tr (ÂT δÂ)Â

)
, µ > 0 , (2.3.19)

for k = 1, · · ·N , whereÂ is initialized to‖Â‖F = 1, Ωk aren × n positive definite matrices,

and the “error”δÂ is

δÂ =
〈
e(x̂)x̂T

〉
N

=
1

N

N∑

k=1

e(x̂k)x̂
T
k , e(x̂k) = Âx̂k − yk , (2.3.20)

and which can be rewritten in the perhaps more illuminating form (cf. equations(2.3.9) and

(2.3.10)),

δÂ = Â Σx̂x̂ − Σyx̂ . (2.3.21)

A formal convergence proof of (2.3.19) is given in Appendix 2.A, where it is also shown that the

right-hand-side of the second equation in (2.3.19) corresponds to projecting the error termδÂ

onto the tangent space ofAF thereby ensuring that the derivative ofÂ lies in the tangent space.
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Convergence of the algorithm to a local optimum of (2.3.15) is formally provedby interpreting

the loss functional as a Lyapunov function whose time derivative along thetrajectories of the

adapted parameters(Â, X̂) is guaranteed to be negative-definite by the choice of parameter time

derivatives shown in (2.3.19). As a consequence of the La Salle invariance principle, the loss

functional will decrease in value and the parameters will converge to the largest invariant set for

which the time derivative of the loss functional is identically zero (Khalil, 1996).

Equation (2.3.19) is a set of coupled (betweenÂ and the vectorŝxk) nonlinear differential

equations which correspond to simultaneous, parallel updating of the estimates Â andx̂k. This

should be compared to the alternated separate (nonparallel) update rules (2.3.11) and (2.3.12)

used in the AML algorithm described in Section 3.1. Note also that (except for the trace term)

the right-hand side of the dictionary learning update in (2.3.19) is of the same form as for the

AML update law given earlier in (2.3.11) (see also the discretized version of (2.3.19) given

in (2.3.27) below). The key difference is the additional trace term in (2.3.19). This difference

corresponds to a projection of the update onto the tangent space of the manifold (2.3.17), thereby

ensuring a unit Frobenius norm (and hence boundedness) of the dictionary estimate at all times

and avoiding the ill-posedness problem indicated in (2.3.16). It is also of interest to note that

choosingΩk to be the positive-definite matrix

Ωk = ηk

(
ÂT Â + β(x̂k)Π(x̂k)

)−1
, ηk > 0 (2.3.22)

in (2.3.19), followed by some matrix manipulations (see (2.A.18) in Appendix 2.A), yields the

alternative algorithm,

d

dt
x̂k = −ηk

{
x̂k −Π−1(x̂k)Â

T
(
β(x̂k)I + ÂΠ−1(x̂k)Â

T
)−1

yk

}
(2.3.23)

with ηk > 0. In any event (regardless of the specific choice of the positive definitematricesΩk

as shown in Appendix 2.A), the proposed algorithm outlined here converges to a solution(x̂, Â)

which satisfies the implicit and nonlinear relationships,

x̂ = Π−1(x̂)ÂT
(
β(x̂)I + ÂΠ−1(x̂)ÂT

)−1
y ,

Â = ΣT
yx̂ (Σx̂x̂ − cI)−1 ∈ AF , (2.3.24)

for scalarc = tr
(
ÂT δÂ

)
.
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To implement the algorithm (2.3.19) (or the variant using (2.3.23)) in discrete time, a 1st-

order forward difference approximation at timet = tl can be used,

d

dt
x̂k(tl) ≈

x̂k(tl+1)− x̂k(tl)

tl+1 − tl

,
x̂k[l + 1]− x̂k[l]

∆l
. (2.3.25)

Applied to (2.3.23), this yields

x̂k[l + 1] = (1− µl)x̂k[l] + µlx̂
FOCUSS
k [l]

x̂FOCUSS
k [l] = Π−1(x̂k)Â

T
(
β(x̂k)I + ÂΠ−1(x̂k)Â

T
)−1

yk

µl = ηk∆l ≥ 0. (2.3.26)

Similarly discretizing theÂ-update equation and takingµl = 1 yields the learning rule (2.3.27)

given below. More generally takingµl to have a value between zero and one,0 ≤ µl ≤ 1 yields

an updated valuêxk[l + 1] which is linear interpolation between the previous valuex̂k[l] and

x̂FOCUSS
k [l].

When implemented in discrete time, the resulting Bayesian learning algorithm has theform

(for µl = 1) of acombined iterationwhere we loop over the operations,

x̂k ← Π−1(x̂k)Â
T
(
β(x̂k)I + ÂΠ−1(x̂k)Â

T
)−1

yk ,

k = 1, · · · , N and

Â ← Â− γ
(
δÂ− tr (ÂT δÂ)Â

)
γ > 0 . (2.3.27)

We call this FOCUSS-based, Frobenius-normalized dictionary-learning algorithm the FOCUSS-

FDL algorithm. Again, thismergedprocedure should be compared to theseparateiterations in-

volved in the maximum likelihood approach given in (2.3.11)-(2.3.12) above.Equation (2.3.27),

with δÂ given by (2.3.20), corresponds to performing a finite step-size gradient descent on the

manifoldAF. This projection in (2.3.27) of the dictionary update onto the tangent plane ofAF

(see the discussion in Appendix 2.A) ensures the well-behavedness of the MAP algorithm7. The

7Because of the discrete-time approximation in (2.3.27), and even more generally because of
numerical round-off effects in (2.3.19), a renormalization,

Â← Â/‖A‖F ,

is usually performed at regular intervals.
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specific step-size choiceµl = 1, which results in the first equation in (2.3.27), is discussed at

length for the low-noise case in (Rao and Kreutz-Delgado, 1999).

2.3.4 Column–Normalized Dictionary Prior

Although mathematically very tractable, the unit–Frobenius norm prior (2.3.17)appears to

be somewhat too–loose, judging from simulation results given below. In simulations with the

Frobenius norm constraintAF , some columns ofA can tend towards zero; a phenomenon which

occurs more often in highly overcompleteA. This problem can be understood by remembering

that we are using thedp(x), p > 0 diversity measure which penalizes columns associated with

terms inx with large magnitudes. If a column has a small relative magnitude, the weights of its

xi coefficients can be large and it will be penalized more than a column with a larger norm. This

leads to certain columns being underused, which is especially problematic in theovercomplete

case.

An alternative, and more restrictive, form of the constraint setA is obtained by enforcing

the requirement that the columnsai of A each be normalized (with respect to the Euclidean 2–

norm) to the same constant value (Murray and Kreutz-Delgado, 2001). This constraint can be

justified by noting thatAx can be written as the non-unique weighted sum of the columnsai,

Ax =

n∑

i=1

aix[i] =

n∑

i=1

(
ai

αi

)
(αix[i]) = A′x′ , for anyαi > 0 , i = 1...n ,

showing that there is acolumn–wiseambiguity that remains even after theoverallunit–Frobenius

norm normalization has occurred, as one can now Frobenius-normalize the new matrixA′.

Therefore, consider the set of matrices on which has been imposed the column–wise con-

straint that,

AC =

{
A

∣∣∣∣ ‖ai‖2 = aT
i ai =

1

n
, i = 1, · · ·n

}
. (2.3.28)

The setAC is anmn − n = n(m − 1)–dimensional submanifold ofRm×n. Note that every

column of a matrix inAC has been normalized to the value1√
n

. In fact, any constant value

for the column normalization can be used (including the unit normalization), but,as shown in

Appendix 2.B, the particular normalization of1
n results inAC being a proper sub–manifold of

themn− 1 dimensional unit Frobenius manifoldAF,

AC ⊂ AF ,
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indicating that a tighter constraint on the matrixA is being imposed. Again, it is assumed that

the priorP (A) is uniformly distributed onAC in the manner of equation (2.3.13). As shown in

Appendix 2.B,AC is simply connected.

A learning algorithm is derived for the constraintAC in Appendix 2.B, following much

the same approach as in Appendix 2.A. Because the derivation of thex̂k update to find sparse

solutions does not depend on the form of the constraintA, only theÂ update in the algorithm

(2.3.27) needs to be modified. Each columnai is now updated independently (see (2.B.17)),

ai ← ai − µ
(
I − âiâ

T
i

)
δai

i = 1, · · · , n , (2.3.29)

whereδai is thei-th column ofδÂ in (2.3.20). We call the resulting column-normalized dictionary-

learning algorithm the FOCUSS-CNDL algorithm. The implementation details of the FOCUSS-

CNDL algorithm are presented in Section 2.4.2.

2.4 Algorithm Implementation

The dictionary learning algorithms derived above are an extension of the FOCUSS algo-

rithm used for obtaining sparse solutions to the linear inverse problemy = Ax to the case

where dictionary learning is now required. We refer to these algorithms generally as FOCUSS-

DL algorithms, with the unit Frobenius–norm prior–based algorithm denotedby FOCUSS-FDL

and the column-normalized prior–base algorithm by FOCUSS-CNDL. In this section the algo-

rithms are stated in the forms implemented in the experimental tests and it is shown thatthe

column normalization–based algorithm achieves higher performance in the overcomplete dictio-

nary case.

2.4.1 Unit Frobenius-Norm Dictionary Learning Algorithm

We now summarize the FOCUSS-FDL algorithm which was derived in Section 2.3.2. For

each of the data vectorsyk, we update the sparse source vectorsxk using the FOCUSS algorithm:

Π−1(x̂k) = diag(|x̂k[i]|2−p)

x̂k ← Π−1(x̂k)Â
T
(
λkI + ÂΠ−1(x̂k)Â

T
)−1

yk (FOCUSS) (2.4.1)
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whereλk is the regularization parameter. After updating theN source vectorsxk, k = 1...n, the

dictionaryÂ is reestimated,

Σyx̂ =
1

N

N∑

k=1

ykx̂
T
k

Σx̂x̂ =
1

N

N∑

k=1

x̂kx̂
T
k

δÂ = Â Σx̂x̂ − Σyx̂

Â ← Â− γ
(
δÂ− tr (ÂT δÂ)Â

)
, γ > 0 , (2.4.2)

whereγ controls the learning rate. For the experiments in Section 2.5 the data block size is

N = 100. During each iteration all training vectors are updated using (2.4.1), with a corre-

sponding number of dictionary updates using (2.4.2). After each update of the dictionaryÂ, it is

renormalized to have unit Frobenius norm,‖Â‖F = 1.

The learning algorithm is a combined iteration, meaning that the FOCUSS algorithmis

only allowed to run for one iteration (not until full convergence) beforetheA update step. This

means that during early iterations, thex̂k are in general not sparse. To facilitate learningA, the

covariancesΣyx̂ andΣx̂x̂ are calculated with sparsified̂xk that have all but thẽr largest elements

set to zero. The value of̃r is usually set to the largest desired number of non-zero elements, but

this choice does not appear to be critical.

The regularization parameterλk is taken to be a monotonically increasing function of the

iteration number,

λk = λmax tanh(10−3 · (iter − 1500)) + 1). (2.4.3)

While this choice ofλk does not have the optimality properties of the modified L-curve method

(see Section 2.2.5), it does not require a one-dimensional optimization for each x̂k and so is

much less computationally expensive. This is further discussed below.

2.4.2 Column Normalized Dictionary Learning Algorithm

The improved version of the algorithm called FOCUSS-CNDL, which provides increased

accuracy especially in the overcomplete case, was proposed in (Murrayand Kreutz-Delgado,

2001). The three key improvements are: column normalization that restricts thelearnedÂ, an
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efficient way of adjusting the regularization parameterλk, and reinitialization to escape from

local optima.

The column-normalized learning algorithm discussed in Section 2.3.4 and derived in Ap-

pendix 2.B is used. Because thex̂k update does not depend on the constraint setA, the FOCUSS

algorithm in (2.4.1) is used to updateN vectors as discussed in Section 2.4.1 above. After every

N source vectors are updated, each column of the dictionary is then updatedas,

ai ← ai − µ
(
I − âiâ

T
i

)
δai

i = 1, · · · , n , (2.4.4)

whereδai are the columns ofδÂ, which is found using (2.4.2). After updating eachai, it is

renormalized to‖ai‖2 = 1/n by,

ai ←
ai√

n‖ai‖
, (2.4.5)

which also ensures that‖Â‖F = 1 as shown in Appendix 2.B.1.

The regularization parameterλk may be set independently for each vector in the training set,

and a number of methods have been suggested, including quality-of-fit (which requires a certain

level of reconstruction accuracy), sparsity (requiring a certain number of non-zero elements),

and the L-curve which attempts to find an optimal tradeoff (Engan, 2000). The L-curve method

works well, but it requires solving a one-dimensional optimization for eachλk which becomes

computationally expensive for large problems. Alternatively, we use a heuristic method that

allows the tradeoff between error and sparsity to be tuned for each application, while letting

each training vectoryk have its own regularization parameterλk to improve the quality of the

solution,

λk = λmax

(
1− ‖yk − Âx̂k‖

‖yk‖

)
, λk, λmax > 0. (2.4.6)

For data vectors that are represented accurately,λk will be large, driving the algorithm to find

more sparse solutions. If the signal-to-noise ratio (SNR) can be estimated, we can setλmax =

(SNR)−1.

The optimization problem (2.3.15) is concave whenp ≤ 1, so there will be multiple local

minima. The FOCUSS algorithm is only guaranteed to converge to one of these local minima,

but in some cases it is possible to determine when that has happened by noticing if the sparsity

is too low. Periodically (after a large number of iterations) the sparsity of the solutions x̂k is
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checked, and if found too low,̂xk is reinitialized randomly. The algorithm is also sensitive

to initial conditions and prior information may be incorporated into the initialization to help

convergence to the global solution.

2.5 Experimental Results

Experiments were performed using complete dictionaries(n = m) and overcomplete dic-

tionaries(n > m) on both synthetically generated data and natural images. Performance was

measured in a number of ways. With synthetic data, performance measures include the signal-

to-noise ratio (SNR) of the recovered sourcesxk compared to the true generating source and

comparing the learned dictionary with the true dictionary. For images of natural scenes, the true

underlying sources are not known, so the accuracy and efficiency of the image coding are found.

2.5.1 Complete dictionaries: Comparison with ICA

To test the FOCUSS-FDL and FOCUSS-CNDL algorithms, simulated data were created

following the method of (Engan et al., 1999, Engan, 2000). The dictionaryA of size 20 x 20 was

created by drawing each elementaij from a normal distribution withµ = 0, σ2 = 1 (written

asN (0, 1)) followed by a normalization to ensure that‖A‖F = 1. Sparse source vectorsxk,

k = 1 . . . 1000 were created withr = 4 non-zero elements, where ther nonzero locations are

selected at random (uniformly) from the20 possible locations. The magnitudes of each non-zero

element were also drawn fromN (0, 1) and limited so thatxkl > 0.1. The input datayk were

generated usingy = Ax (no noise was added).

For the first iteration of the algorithm, the columns of the initialization estimate,Âinit,

were taken to be the firstn = 20 training vectorsyk. The initialxk estimates were then set to the

pseudoinverse solution̂xk = ÂT
init(ÂinitÂ

T
init)

−1yk. The constant parameters of the algorithm

were set as follows:p = 1.0, γ = 1.0, andλmax = 2×10−3 (low noise, assumed SNR≈ 27 dB).

The algorithms were run for 200 iterations through the entire data set, and during each iteration

Â was updated after updating 100 data vectorsx̂k.

To measure performance, the SNR between the recovered sourcesx̂k and the the true

sourcesxk were calculated. Each elementxk[i] was considered as a time series vector with
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Signal-to-noise ratio (SNR) of recovered sources

15.0 18.0 21.0 24.0 27.0 30.0

Fast ICA

Extended ICA

FOCUSS-DL

FOCUSS-CNDL

SNR (dB)  (+/- std dev)

Figure 2.1: Comparison between FOCUSS-FDL, FOCUSS-CNDL, Extended ICA and FastICA
on synthetically generated data with a complete dictionaryA size 20x20. The signal-to-noise
ratio (SNR) was computed between the recovered sourcesx̂k and the true sourcesxk. The mean
SNR and standard deviation were computed over 20 trials.

1000 elements, and SNRi for each was found using,

SNRi = 10 log10

( ‖xk[i]‖2
‖xk[i]− x̂k[i]‖2

)
(2.5.1)

The final SNR is found by averaging SNRi over thei = 1 . . . 20 vectors and 20 trials of the

algorithms. Because the dictionaryA is only learned to within a scaling factor and column

permutations, the learned sources must be matched with corresponding true sources and scaled

to unit norm before the SNR calculation is done.

The FOCUSS-FDL and FOCUSS-CNDL algorithms were compared with Extended ICA

(Lee et al., 1999) and FastICA8 (Hyvärinen et al., 1999). Figure 2.1 shows the SNR for the

tested algorithms. The SNR for FOCUSS-FDL is 27.7 dB which is a 4.7 dB improvement over

Extended ICA, and for FOCUSS-CNDL the SNR is 28.3 dB. The average run time for FOCUSS-

FDL/CNDL was 4.3 minutes, for FastICA 0.10 minutes and for Extended ICA 0.19 minutes on

a 1.0 GHz Pentium III Xeon computer.

8Matlab and C versions of Extended ICA can be found at:
http://www.cnl.salk.edu/∼tewon/ICA/code.html. Matlab code for Fast ICA can be found
at: http://www.cis.hut.fi/projects/ica/fastica/ .
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2.5.2 Overcomplete dictionaries

To test the ability to recover the trueA andxk solutions in the overcomplete case, dictionar-

ies of size 20x30 and 64x128 were generated. Diversityr was set to fixed values (4 and 7) and

randomly (5..10 and 10..15). The elements ofA and the sourcesxk were created as in Section

2.5.1.

The parameters were set as follows:p = 1.0, γ = 1.0, λmax = 2 × 10−3. The algorithms

were run for 500 iterations through the entire data set, and during each iterationÂ was updated

after updating 100 data vectorsx̂k.

As a measure of performance, we find the number of columns ofA that were matched

during learning. BecauseA can only be learned to within column permutations and sign and

scale changes, the columns are normalized so that||âi|| = ||aj || = 1 and Â is rearranged

columnwise so that̂aj is given the index of the closest match inA (in the minimum 2-norm

sense). A match is counted if

1− |aT
i âi| < 0.01. (2.5.2)

Similarly, the number of matchinĝxk are counted (after rearranging the elements in accordance

with the indices of the rearranged̂A)

1− |xT
i x̂i| < 0.05. (2.5.3)

If the data is generated by anA that is not column normalized, other measures of performance

need to be used to comparexk andx̂k.

The performance is summarized in Table 2.1, which compares the FOCUSS-FDL with the

column normalized algorithm (FOCUSS-CNDL). For the 20x30 dictionary 1000 training vectors

were used, and for the 64x128 dictionary 10,000 were used. Results are averaged over four or

more trials. For the 64x128 matrix andr = 10..15, FOCUSS-CNDL is able to recover 99.5%

(127.4/128) of the columns ofA and 94.6% (9463/10,000) of the solutionsxk to within the

tolerance given above. This shows a clear improvement over FOCUSS-FDL which only learns

80.3% of theA columns and 40.1% of the solutionsxk.

Learning curves for one of the trials of this experiment (Figure 2.2) showthat most of the

columns ofA are learned quickly within the first 100 iterations, and that the diversity of the

solutions drops to the desired level. Figure 2.2b shows that it takes somewhat longer to correctly

learn thexk, and that reinitialization of the low sparsity solutions (at iterations 175 and 350)
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Figure 2.2: Performance of the FOCUSS-CNDL algorithm with overcomplete dictionaryA size
64x128. (A) The number of correctly learned columns ofA at each iteration.(B) The number
of sourcesxk learned.(C) The average diversity (n - sparsity) of thexk. The spikes in graphs
(B) and (C) indicate where some solutionsx̂k were reinitialized because they were not sparse
enough.

helps to learn additional solutions. Figure 2.2c shows the diversity at eachiteration, measured

as the average number of elements of eachx̂k that are larger than1× 10−4.

2.5.3 Image data experiments

Previous work has shown that learned basis functions can be used to code data more effi-

ciently than traditional Fourier or wavelet bases (Lewicki and Olshausen, 1999). The algorithm

for finding overcomplete bases of Lewicki and Olshausen (1999) is alsodesigned to solve the

problem (2.1.1), but differs from our method in a number of ways, including using only the
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Table 2.1: Synthetic data results

LearnedA columns Learnedx

Algorithm Size ofA r Avg. SD % Avg. SD %

FOCUSS-FDL 20x30 7 25.3 3.4 84.2% 675.9 141.0 67.6%

FOCUSS-CNDL 20x30 7 28.9 1.6 96.2% 846.8 97.6 84.7%

FOCUSS-CNDL 64x128 7 125.3 2.1 97.9% 9414.0 406.5 94.1%

FOCUSS-CNDL 64x128 5-10 126.3 1.3 98.6% 9505.5 263.8 95.1%

FOCUSS-FDL 64x128 10-15 102.8 4.5 80.3% 4009.6 499.6 40.1%

FOCUSS-CNDL 64x128 10-15 127.4 1.3 99.5% 9463.4 330.3 94.6%

Laplacian prior (p = 1), and using conjugate gradient optimization for finding sparse solutions

(whereas we use the FOCUSS algorithm). It is widely believed that overcomplete representations

are more efficient than complete bases, but in (Lewicki and Olshausen, 1999) the overcomplete

code was less efficient (measured in bits/pixel entropy), and it was suggested that different priors

could be used to improve the efficiency. Here, we show that our algorithm isable learn more

efficient overcomplete codes for priors withp < 1.

The training data consisted of 10,000 8x8 image patches drawn at random from black and

white images of natural scenes. The parameterp was varied from0.5..1.0, and the FOCUSS-

CNDL algorithm was trained for 150 iterations. The complete dictionary (64x64) was compared

with the 2x overcomplete dictionary (64x128). Other parameters were set:γ = 0.01, λmax =

2 × 10−3. The coding efficiency was measured using the entropy (bits/pixel) method de-

scribed in (Lewicki and Olshausen, 1999). Figure 2.4 plots the entropy vs. reconstruction error

(root-mean-square-error, RMSE), and shows that whenp < 0.9 the entropy is less for the

overcomplete representation at the same RMSE.

An example of coding an entire image is shown in Figure 2.3. The original test image

(Figure 2.3a) of size 256x256 was encoded using the learned dictionaries. Patches from the

test image were not used during training. Table 2.2 gives results for low and high compression

cases. In both cases, coding with the overcomplete dictionary (64x128) gives higher compression

(lower bits/pixel) and lower error (RMSE). For the high compression case(Figure 2.3b and

c), the 64x128 overcomplete dictionary gives compression of 0.777 bits/pixel at error 0.328,

compared to the 64x64 complete dictionary at 0.826 bits/pixel at error 0.329.The amount of
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Table 2.2: Image compression results

Dictionary p Compression RMSE Average

size (bits/pixel) diversity

64x64 0.5 2.450 0.148 17.3

64x128 0.6 2.410 0.141 15.4

64x64 0.5 0.826 0.329 4.5

64x128 0.6 0.777 0.328 4.0

compression was selected by adjustingλmax (the upper limit of the regularization parameter). For

high compressionλmax = 0.02 and for low compressionλmax = 0.002.

2.6 Discussion and Conclusions

In this paper, we have applied a variety of tools and perspectives (including ideas drawn

from Bayesian estimation theory, nonlinear regularized optimization, and the theory of majoriza-

tion and convex analysis) to the problem of developing algorithms capable ofsimultaneously

learning overcomplete dictionaries and solving sparse source-vector inverse problems.

The test experiment described in Section 2.5.2 is a difficult problem designed to determine

if the proposed learning algorithm can solve for the knowntrue solutions forA and the spare

source vectorsxk to the underdetermined inverse problemyk = Axk. Such testing, which does

not appear to be regularly done in the literature, shows how well an algorithm can extract stable

and categorically meaningful solutions from synthetic data. The ability to perform well on such

test inverse-problems would appear to be at least a necessary conditionfor an algorithm to be

trustworthy in domains where a physically or biologically meaningful sparse solution is sought,

such as occurs in biomedical imaging, geophysical seismic sounding, multitarget tracking, etc.

The experimental results presented in Section 2.5.2 show that the FOCUSS-DL algorithms

can recover the dictionary and the sparse sources vectors. This is particularly gratifying when

one considers that little, or no, optimization of the algorithm parameters has been done. Further-

more, the convergence proofs given in the appendices only shows convergence to a local optima,

whereas one expects that there will be many local optima in the cost function because of the
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(A)

(B)

(C)

Figure 2.3: Image compression using complete and overcomplete dictionaries.Coding with an
overcomplete dictionary is more efficient (fewer bits/pixel) and more accurate(lower RMSE).
(A) Original image of size 256x256 pixels.(B) Compressed with 64x64 complete dictionary
to 0.826 bits/pixel at RMSE = 0.329.(C) Compressed with 64x128 overcomplete dictionary to
0.777 bits/pixel at RMSE = 0.328.



93

2 2.5 3 3.5 4 4.5
0.10

0.15

0.20

0.25


0.30

Comparison of image coding efficiency

Entropy (bits/pixel)

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r 

(R
M

S
E

)

64x64   complete     

64x128 overcomplete

Figure 2.4: Comparing the coding efficiency of complete and 2x overcompleterepresentations
on 8x8 pixel patches drawn from natural images. The points on the curveare the results from
different values ofp, at the bottom right,p = 1.0, and at the top left,p = 0.5. For smallerp, the
overcomplete case is more efficient at the same level of reconstruction error (RMSE).

concave prior and the generally multimodal form of the cost function.

One should note that the algorithm (2.3.27) was constructed precisely with thegoal of

solving inverse problems of the type considered here, and therefore one must be careful when

comparing the results given here with other algorithms reported in the literature. For instance,

the mixture-of-gaussians prior used in (Attias, 1999) does not necessarily enforce sparsity. While

other algorithms in the literature might perform well on this test experiment, to the best of our

knowledge, possible comparably-performing algorithms such as (Attias, 1999, Girolami, 2001,

Hyvärinen et al., 1999, Lewicki and Olshausen, 1999) have not been tested on large overcom-

plete matrices to determine their accuracy in recoveringA and so any comparison along these

lines would be premature. In Section 2.5.1, the FOCUSS-DL algorithms were compared to the

well-known Extended ICA and FastICA algorithms, in a more conventional test with complete

dictionaries. Performance was measured in terms of the accuracy (SNR) of the recovered sources

xk, and both FOCUSS-DL algorithms were found to have significantly better performance (al-

beit with longer run-times).

We have also shown that the FOCUSS-CNDL algorithm can learn an overcomplete repre-

sentation which can encode natural images more efficiently than complete bases learned from
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data (which in turn are more efficient than standard non-adaptive bases, such as Fourier or

wavelet bases (Lewicki and Olshausen, 1999)). Studies of the human visual cortex have shown a

higher degree of overrepresentation of the fovea compared to the othermammals, which suggests

an interesting connection between overcomplete representations and visual acuity and recogni-

tion abilities (Popovic and Sjöstrand, 2001).

Because the coupled dictionary learning and sparse-inverse solving algorithms are merged

and run in parallel, it should be possible to run the algorithms in real-time to track dictionary evo-

lution in quasistationary environments once the algorithm has essentially converged. One way to

to this would be to constantly present randomly encountered new signals,yk, to the algorithm at

each iteration instead of the original training set. One also has to ensure thatdictionary learning

algorithm is sensitive to the new data so that dictionary tracking can occur. This would be done

by an appropriate adaptive filtering of the current dictionary estimate driven by the new-data

derived corrections, similarly to techniques used in the adaptive filtering literature (Kalouptsidis

and Theodoridis, 1993).
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2.A The Frobenius–Normalized Prior Learning Algorithm

Here we provide a derivation of the algorithm (2.3.19)-(2.3.20) and prove that it converges

to a local minimum of (2.3.15) on the manifoldAF = {A | ‖A‖F = 1} ⊂ R
m×n defined in

(2.3.17). Although we focus on the development of the learning algorithm onAF, the derivations

in subsections 2.A.2 and 2.A.3, and the beginning of subsection are done for a general constraint

manifoldA.
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2.A.1 Admissible Matrix Derivatives.

The Constraint Manifold AF . In order to determine the structural form of admissible deriv-

atives,Ȧ = d
dtA for matrices belonging toAF,9 it is useful to viewAF as embedded in the finite

dimensional Hilbert space of matrices,R
m×n, with inner product

〈A, B〉 = tr (AT B) = tr (BT A) = tr (ABT ) = tr (BAT ) .

The corresponding matrix norm is theFrobenius norm,

‖A‖ = ‖A‖F =
√

tr AT A =
√

tr AAT .

We will call this space theFrobenius Spaceand the associated inner product theFrobenius inner

product. It is useful to note the isometry,

A ∈ R
m×n ⇐⇒ A = vec(A) ∈ R

mn ,

whereA is themn-vector formed by “stacking” the columns ofA. Henceforth, bolding repre-

sents the stacked version of a matrix (e.g.,B = vec(B)). The stacked vectorA belongs to the

standard Hilbert spaceRmn, which we shall henceforth refer to as theStacked Space. This space

has the standard Euclidean inner product and norm,

〈A,B〉 = ATB , ‖A‖ =
√

ATA .

It is straightforward to show that

〈A, B〉 = 〈A,B〉 and ‖A‖ = ‖A‖ .

In particular, we have

A ∈ AF ⇐⇒ ‖A‖ = ‖A‖ = 1 .

Thus, the manifold (2.3.17) corresponds to the (mn−1)–dimensional unit sphere in the Stacked

Space,Rmn (which, with a slight abuse of notation, we will continue to denote byAF). It is

evident thatAF is simply connected so that a path exists between any two elements ofAF and,

in particular, a path exists between any initial value for a dictionary,Ainit ∈ AF, used to initialize

a learning algorithm, and a desired target value,Afinal ∈ AF.10

9Equivalently, we want to determine the structure of elementsȦ of the tangent space,TAF,
to the smooth manifoldAF at the pointA.

10For example, for0 ≤ t ≤ 1, take thet–parameterized path

A(t) =
(1− t)Ainit + tAfinal

‖(1− t)Ainit + tAfinal‖
.
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Derivatives on AF: The Tangent SpaceTAF . Determining the form of admissible deriv-

atives on (2.3.17) is equivalent to determining the form of admissible derivatives on the unit

R
mn–sphere. On the unit sphere, we have the well-known fact that

A ∈ AF =⇒ d

dt
‖A‖2 = 2AT Ȧ = 0 =⇒ Ȧ ⊥ A .

This shows that the general form ofȦ is Ȧ = ΛQ, whereQ is arbitrary and

Λ =

(
I− AAT

‖A‖2
)

=
(
I−AAT

)
(2.A.1)

is the Stacked Space projection operator onto the tangent space of the unitR
mn–sphere at the

point A (note that we used the fact that‖A‖ = 1). The projection operatorΛ is necessarily

idempotent,Λ = Λ2. Λ is also self–adjoint,Λ = Λ∗, where the adjoint operatorΛ∗ is defined

by the requirement that,

〈Λ∗Q1,Q2〉 = 〈Q1,ΛQ2〉 , for all Q1,Q2 ∈ R
mn ,

showing thatΛ is an orthogonal projection operator. In this case,Λ∗ = ΛT , so that self–

adjointness corresponds toΛ being symmetric. One can readily show that an idempotent, self–

adjoint operator is non–negative, which in this case corresponds to the symmetric, idempotent

operatorΛ being a positive semidefinite matrix.

This projection can be easily rewritten in the Frobenius Space,

Ȧ = ΛQ = Q− 〈A,Q〉A⇐⇒ Ȧ = ΛQ = Q− 〈A, Q〉A = Q− tr (AT Q)A . (2.A.2)

Of course this result can be derived directly in the Frobenius Space using the fact that

A ∈ AF =⇒ d

dt
‖A‖2 = 2

〈
A, Ȧ

〉
= 2 tr (AT Ȧ) = 0 ,

from which it is directly evident that

Ȧ ∈ TAF at A ∈ AF ⇔
〈
A, Ȧ

〉
= tr AT Ȧ = 0 , (2.A.3)

and thereforeȦ must be of the form11

Ȧ = ΛQ = Q− tr (AT Q)

tr (AT A)
A = Q− tr (AT Q)A . (2.A.4)

11I.e., it must be the case thatΛ = I − |A〉〈A|
‖A‖2 = I − |A〉 〈A|, using the physicist’s “bra-ket”

notation.
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One can verify thatΛ is idempotent and self–adjoint and is therefore a non–negative, orthogonal

projection operator. It is the orthogonal projection operator fromR
m×n onto the tangent space

TAF.

In the Stacked Space (with some additional abuse of notation) we represent the quadratic

form for a positive semidefinite symmetric matricesW as

‖A‖2W = ATWA .

Note that this is a weighted norm if, and only if,W is positive definite, which might not be

the case by definition. In particular, whenW = Λ, the quadratic form‖A‖2Λ is only positive

semidefinite. Finally, note from (2.A.4) that∀A ∈ AF,

ΛQ = 0⇐⇒ Q = c A , with c = tr (AT Q) . (2.A.5)

2.A.2 Minimizing the Loss Function Over a General ManifoldA

Consider the Lyapunov function,

VN(X,A) = 〈dq(y − Ax) + λ dp(x)〉N , A ∈ A , (2.A.6)

whereA is some arbitrary, but otherwise appropriately defined, constraint manifold associated

with the prior (2.3.13). Note that this is precisely the loss function to be minimized in (2.3.15). If

we can determine smooth parameter trajectories (i.e., a parameter-vector adaptation rule)(Ẋ, Ȧ)

such that along these trajectoriesV̇ (X, A) ≤ 0, then as a consequence of the La Salle invariance

principle (Khalil, 1996) the parameter values will converge to the largest invariant set (of the

adaptation rule viewed as a nonlinear dynamical system) contained in the set

Γ =
{

(X, A) | V̇N (X, A) ≡ 0 andA ∈ A
}

. (2.A.7)

The setΓ contains the local minima ofVN . With some additional technical assumptions (gen-

erally dependent upon the choice of adaptation rule), the elements ofΓ will contain only local

minima ofVN .

Assuming the iidq = 2 gaussian measurement noise case of (2.3.8),12 the loss (Lyapunov)

12Note that in the appendix, unlike the notation used in equation (2.3.8)et seq., the “hat”
notation has been dropped. Nonetheless, it should be understood that the quantitiesA andX are
unknown parameters to be optimized over in (2.3.15), while the measured signal-vectorsY are
known.
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function to be minimized is then,

VN(X,A) =

〈
1

2
‖Ax− y‖2 + λ dp(x)

〉

N

, A ∈ A , (2.A.8)

which is essentially the loss function to be minimized in (2.3.15).13

Suppose for the moment, as in (2.3.4)–(2.3.9), thatX is assumed to be known and note that

then (ignoring constant terms depending onX andY ) VN can be rewritten as

VN (A) =
〈

tr (Ax− y)(Ax− y)T
〉
N

=
〈

tr (AxxT AT )− 2 tr (AxyT ) + tr(yyT )
〉
N

= tr AΣxxAT − 2 tr AΣxy

VN (A) = tr
{
AΣxxAT − 2AΣxy

}
,

for Σxx andΣxy = ΣT
yx defined as in (2.3.10). Using standard results from matrix calculus

(Dhrymes, 1984), we can show thatVN (A) is minimized by the solution (2.3.9). This is done by

setting,
∂

∂A
VN (Â) = 0 ,

and using the identities (valid forW symmetric),

∂

∂A
tr AWAT = 2AW and

∂

∂A
tr AB = BT .

This yields (assuming thatΣxx is invertible),

∂

∂A
VN (Â) = 2ÂΣxx − 2ΣT

xy = 2
(
ÂΣxx − Σyx

)
= 0 ,

⇒ Â = Σyx̂Σ−1
x̂x̂ ,

which is (2.3.9) as claimed. ForΣxx non-singular, the solution is unique and globally optimal.

This is, of course, a well-known result.

Now return to the general case (2.A.8), where bothX andA are unknown. For the data

indexed byk = 1, · · · , N , define the quantities

dk = dp(xk) , e(x) = Ax− y , and ek = Axk − yk .

13The factor 1
2 is added for notational convenience and does not materially affect the

derivation.
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The loss function and its time derivative can be written,

VN (X, A) =

〈
1

2
eT (x)e(x) + λ dp(x)

〉

N

V̇N (X, A) =
〈
eT (x)ė(x) + λ∇T dp(x) ẋ

〉
N

=
〈
eT (x)(Aẋ + Ȧx) + λ∇T dp(x) ẋ

〉

N

Then, to determine an appropriate adaptation rule, note that

V̇N = T1 + T2 , (2.A.9)

where

T1 =
〈(

eT (x)A + λ∇T dp(x)
)
ẋ
〉
N

=
1

N

N∑

k=1

(
eT
k A + λ∇T dk

)
ẋk (2.A.10)

and

T2 =
〈
eT (x)Ȧx

〉

N
=

1

N

N∑

k=1

eT
k Ȧxk . (2.A.11)

Enforcing theseparateconditions

T1 ≤ 0 andT2 ≤ 0 , (2.A.12)

(as well as the additional condition thatA ∈ A) will be sufficient to ensure thaṫVN ≤ 0 onA.

In this case the solution-containing setΓ of (2.A.7) is given by

Γ = {(X, A) |T1(X, A) ≡ 0 , T2(X, A) ≡ 0 andA ∈ A} . (2.A.13)

Note that ifA is known and fixed, thenT2 ≡ 0 and only the first condition of (2.A.12) (which

enforces learning of the source vectors,xk) is of concern. Contrawise, if source vectors,xk,

which ensure thate(xk) = 0 are fixed and know, thenT1 ≡ 0, and the second condition of

(2.A.12) (which enforces learning of the dictionary matrix,A) is at issue.

2.A.3 Obtaining thexk solutions with the FOCUSS algorithm

We now develop the gradient factorization based derivation of the FOCUSS algorithm,

which provides estimates ofxk while satisfying the first convergence condition of (2.A.12). The

constraint manifoldA is still assumed to be arbitrary. To enforce the conditionT1 ≤ 0 and
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derive the first adaptation rule given in (2.3.19), we note that we can factor∇dk = ∇d(xk) as

(Kreutz-Delgado and Rao, 1997, Rao and Kreutz-Delgado, 1999)

∇dk = αkΠkxk

with αk = αxk
> 0 andΠxk

= Πk positive definite and diagonal for all nonzeroxk. Then,

definingβk = λαk > 0 and selecting an arbitrary set of (adaptable) symmetric positive-definite

matricesΩk, we choose the learning rule

ẋk = −Ωk

{
AT ek + λ∇dk

}
= −Ωk

{(
AT A + βkΠk

)
xk −AT yk

}
, k = 1, · · · , N ,

(2.A.14)

which is the adaptation rule for the state estimatesxk = x̂k given in the first line of (2.3.19).

With this choice we obtain

T1 = −
〈
‖AT e(x) + λ∇d(x)‖2Ω

〉

= − 1

N

N∑

k=1

‖AT ek + λ∇dk‖2Ωk

= − 1

N

N∑

k=1

‖
(
AT A + βkΠk

)
xk −AT yk‖2Ωk

≤ 0 , (2.A.15)

as desired. Assuming convergence to the set (2.A.13) (which will be seento be the case af-

ter we show below how to ensure that we also haveT2 ≤ 0), we will asymptotically obtain

(reintroducing the “hat” notation to now denote converged parameter estimates)

‖
(
ÂT Â + βkΠk

)
x̂k − ÂT yk‖2Ωk

≡ 0 , k = 1, · · · , N ,

which is equivalent to

x̂k =
(
ÂT Â + βkΠk

)−1
ÂT yk , k = 1, · · · , N , (2.A.16)

at convergence. This is also equivalent to the condition given in the firstline of (2.3.24), as

shown below.

Exploiting the fact thatΩk in (2.A.14) are arbitrary (subject to the symmetry and positive-

definiteness constraint), let us make the specific choice shown in (2.3.22),

Ωk = ηk

(
AT A + βkΠk

)−1
, ηk > 0 , k = 1, · · · , N . (2.A.17)
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Also note the (trivial) identity,

(
AT A + βΠ

)
Π−1AT = AT

(
AΠ−1AT + βI

)
,

which can be recast nontrivially as

(
AT A + βΠ

)−1
AT = Π−1AT

(
βI + AΠ−1AT

)−1
. (2.A.18)

With (2.A.17) and (2.A.18), the learning rule (2.A.14) can be recast as

ẋk = −ηk

{
xk −Π−1

k AT
(
βkI + AΠ−1

k AT
)−1

yk

}
, k = 1, · · · , N , (2.A.19)

which is the alternative learning algorithm (2.3.23). At convergence (when T1 ≡ 0) we have the

condition shown in the first line of (2.3.24),

x̂k = Π−1ÂT
(
βkI + ÂΠ−1ÂT

)−1
yk . (2.A.20)

This also follows from the convergence condition (2.A.16) and the identity (2.A.18), showing

that the result (2.A.20) is independent of the specific choice ofΩk > 0. Note from (2.A.14) and

(2.A.15) thatT1 ≡ 0 also results iṅxk ≡ 0 for k = 1, · · · , N , so that we will have converged to

constant values,̂xk, which satisfy (2.A.20).

For the case ofknown, fixedA, the learning rule derived here will converge to sparse solu-

tions,xk, and when discretized as in Section 2.3.3, yields (2.3.26) which is the known dictionary

FOCUSS algorithm (Rao and Kreutz-Delgado, 1998a, 1999).

Note that the derivation of the sparse source-vector learning algorithm here, which enforces

the conditionT1 ≤ 0, is entirely independent of any constraints placed onA (such as, for ex-

ample, the unit Frobenius-norm and column-norm constraints consideredin this paper) or of the

form of theA-learning rule. Thus alternative choices of constraints placed onA, as considered

in (Murray and Kreutz-Delgado, 2001) and described in Appendix 2.B,will not change the form

of thexk-learning rule derived here. Of course, because thexk learning rule is strongly coupled

to theA-learning rule, algorithmic performance and speed of convergence may well be highly

sensitive to conditions placed onA and the specificA learning algorithm used.

2.A.4 Learning the dictionary A

General Results. We now turn to the enforcement of the second convergence condition,T2 ≤
0 and the development of the dictionary adaptation rule shown in (2.3.19). First, as in (2.3.20)
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we define the error termδA as

δA =
〈
e(x)xT

〉
N

=
1

N

N∑

k=1

e(xk)x
T
k = A Σxx − Σyx , (2.A.21)

using the fact thate(x) = Ax− y. Then, from (2.A.11), we have

T2 =
〈
eT (x)Ȧx

〉

N
=
〈

tr
(
xeT (x)Ȧ

)〉

N
= tr

(〈
xeT (x)

〉
N

Ȧ
)

= tr
(
δAT Ȧ

)
= δAT Ȧ .

(2.A.22)

So far, these steps are independent of any specific constraints that maybe placed onA, other

than the manifoldA be smooth and compact. WithA constrained to lie on a specified smooth,

compact manifold, to ensure correct learning behavior it is sufficient to impose the constraint

thatȦ lies in the tangent space to the manifold and the condition thatT2 ≤ 0.

Learning on the Unit Frobenius Sphere,AF. To ensure thatT2 ≤ 0 and thatȦ is in the

tangent space of the unit sphere in the Frobenius spaceR
mn, we take

Ȧ = −µΛδA⇐⇒ Ȧ = −µΛδA = −µ
(
δA− tr (AT δA)A

)
, µ > 0 , (2.A.23)

which is the adaptation rule given in (2.3.19). With this choice, and using the positive semidefi-

niteness ofΛ, we have

T2 = −µ‖δA‖2Λ ≤ 0 ,

as required. Note that at convergence, the conditionT2 ≡ 0, yieldsȦ ≡ 0, so that we will have

converged to constant values for the dictionary elements, and

0 = ΛδÂ = Λ
(
ÂΣx̂x̂ − Σyx̂

)
=⇒ δÂ =

(
ÂΣx̂x̂ − Σyx̂

)
= c Â , (2.A.24)

from (2.A.5), wherec = tr
(
ÂT δÂ

)
. Thus, the steady-state solution is

Â = Σy,x̂ (Σx̂x̂ − cI)−1 ∈ AF . (2.A.25)

Note that (2.A.20) and (2.A.25) are the steady state values given earlier in (2.3.24).

2.B Convergence of the Column–Normalized Learning Algorithm

The derivation and proof of convergence of the column–normalized learning algorithm,

applicable to learning members ofAC, is accomplished by appropriately modifying key steps of
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the development given above in Appendix 2.A. As in Appendix A, the standard Euclidean norm

and inner product apply to column vectors, while the Frobenius norm and inner product apply to

m× n matrix elements ofRm×n.

2.B.1 Admissible Matrix Derivatives

The Constraint Manifold AC . Let ei = (0 · · · 0 1 0 · · · 0)T ∈ R
n be the canonical unit

vector whose components are all zero except for the value “1” in thei-th location. Then

I =
n∑

i=1

eie
T
i and ai = Aei .

Note that

‖ai‖2 = aT
i ai = (Aei)

T Aei = eT
i AT Aei = tr eie

T
i AT A = tr MT

i A = 〈Mi, A〉 ,

where

Mi , Aeie
T
i = aie

T
i = [0 0 · · · 0 ai 0 · · · 0] ∈ R

m×n . (2.B.1)

Note that only thei-th column ofMi is nonzero and is equal toai = i-th column ofA. We

therefore have that

A =
n∑

i=1

Mi . (2.B.2)

Also, for i, j = 1, · · · , n,

〈Mi, Mj〉 = trMT
i Mj = tr eie

T
i AT Aeje

T
j = tr eT

i AT Aeje
T
j ei = ‖ai‖2 δi,j , (2.B.3)

whereδi,j is the Kronecker delta. Note, in particular, that‖ai‖ = ‖Mi‖.
Let A ∈ AC, whereAC is the set of column-normalized matrices, as defined by (2.3.28).

AC is anmn− n = n(m− 1)–dimensional submanifold of the Frobenius spaceR
m×n as each

of then columns ofA is normalized as

‖ai‖2 = ‖Mi‖2 ≡
1

n
,

and

‖A‖2 = tr AT A = tr
n∑

i=1

MT
i

n∑

j=1

Mj =

n∑

i=1

‖ai‖2 =
n

n
= 1 ,
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using linearity of the trace function and property (2.B.3). It is evident, therefore, that

AC ⊂ AF ,

for AF defined by (2.3.17).

We can readily show thatAC is simply connected, so that a continuous path exists between

any matrixA = Ainit ∈ AC to any other column normalized matrixA′ = AFinal ∈ AC. Indeed, let

A andA′ be such that

A = [a1, ..., an] , A′ = [a′1, ..., a
′
n] ,

||ai|| = ||a′j || = 1/
√

n , ∀ i, j = 1, · · · , n .

There is obviously a continuous path entirely inAC from A ∈ AC to the intermediate matrix

[a′1, a2, ..., an] ∈ AC. Similarly, there is a continuous path entirely inAC from [a′1, a2, ..., an]

to [a′1, a
′
2, ..., an], and so on to[a′1, ..., a

′
n] = A′. To summarize,AC is a simply–connected

(nm − n)–dimensional submanifold of the simply connected(nm − 1)–dimensional manifold

AF and they are both submanifolds of the(nm)–dimensional Frobenius spaceR
m×n.

Derivatives onAC: The Tangent SpaceTAC . For convenience, fori = 1, · · · , n define

âi =
ai

‖ai‖
=
√

n ai , ‖âi‖ = 1 ,

and M̂i =
Mi

‖Mi‖
=
√

n Mi = âie
T
i , ‖M̂i‖ = 1 .

Note that (2.B.3) yields, 〈
M̂i, M̂j

〉
= tr M̂T

i M̂j = δi,j (2.B.4)

For anyA ∈ AC we have for eachi = 1, · · · , n,

0 =
d

dt
‖ai‖2 =

d

dt
aT

i ai =
d

dt
eT
i AT Aei = 2 eT

i AT Ȧei = 2 tr eie
T
i AT Ȧ = 2 tr MT

i Ȧ ,

or

A ∈ AC ⇒
〈
Mi, Ȧ

〉
= tr MT

i Ȧ = 0 for i = 1, · · · , n . (2.B.5)

In fact,

Ȧ ∈ TAC at A ∈ AC ⇔
〈
M̂i, Ȧ

〉
= tr M̂T

i Ȧ = 0 for i = 1, · · · , n . (2.B.6)
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Note from (2.B.2) and (2.B.5) that

〈
A, Ȧ

〉
=

〈
n∑

i=1

Mi, Ȧ

〉
= 0 ,

showing that (see (2.A.3))TAC ⊂ TAF, as expected from the fact thatAC ⊂ AF.

An important, and readily proven fact, is that for eachi = 1, · · · , n,

tr M̂T
i Ȧ = 0 ⇔ Ȧ = PiQi (2.B.7)

for some matrixQi and projection operator,Pi, defined by

PiQ , Q− M̂i

〈
M̂i, Q

〉
= Q− M̂i tr M̂T

i Q . (2.B.8)

From (2.B.4), it can be shown that the projection operatorscommute,

PiPj = PjPi , i 6= j , i, j = 1, · · · , n , (2.B.9)

and areidempotent,

P 2
i = Pi , i = 1, · · · , n . (2.B.10)

Indeed, it is straightforward to show from (2.B.4) that for allQ,

PiPjQ = PjPiQ = Q− M̂i

〈
M̂i, Q

〉
− M̂j

〈
M̂j , Q

〉
, for all i 6= j , (2.B.11)

and

P 2
i Q = Q− M̂i

〈
M̂i, Q

〉
= PiQ , i = 1, · · · , n . (2.B.12)

It can also be shown that,

〈PiQ1, Q2〉 = 〈Q1, PiQ2〉

showing thatPi is self–adjoint,Pi = P ∗
i .

Define the operator,

P = P1 · · ·Pn . (2.B.13)

Note that because of the commutativity of thePi, the order of multiplication in the right hand

side of (2.B.11) is immaterial and it is easily determined thatP is idempotent,

P 2 = P .



106

By induction on (2.B.11), it is readily shown that

PQ = Q− M̂1

〈
M̂1, Q

〉
− · · · − M̂n

〈
M̂n, Q

〉
= Q−

n∑

i=1

M̂i

〈
M̂i, Q

〉
. (2.B.14)

Either from the self–adjointness and idempotency of eachPi, or directly from (2.B.14), it can be

shown thatP itself is self–adjoint,P = P ∗,

〈PQ1, Q2〉 = 〈Q1, PQ2〉 .

ThusP is the orthogonal projection operator fromRm×n ontoTAC.

As a consequence, we have the key result that.

Ȧ ∈ TAC at A ⇔ Ȧ = PQ , for some matrixQ ∈ R
m×n. (2.B.15)

This follows from the fact that givenQ, then the right hand side of (2.B.6) is true forȦ = PQ.

On the other hand, if the right hand side of (2.B.6) is true forȦ, we can takeQ = Ȧ in (2.B.15).

Note that for theTAF–projection operatorΛ given by (2.A.2), we have that

P = ΛP = PΛ ,

consistent with the fact thatTAC ⊂ TAF.

Let qi, i = 1, · · · , n be the columns ofQ = [q1 · · · qn]. The operationQ′ = PjQ, corre-

sponds to

q′i = qi , i 6= j , and q′j = (I − âj â
T
j )qj ,

while the operationQ′ = PQ, corresponds to

q′i = (I − âiâ
T
i )qi , i = 1, · · · , n .

2.B.2 Learning on the Manifold AC

The development of equations (2.A.6)–(2.A.22) is independent of the precise nature of the

constraint manifoldA and can be applied here to the specific case ofA = AC. To ensure that

T2 ≤ 0 in equation (2.A.22) and thaṫA ∈ TAC, we can use the learning rule,

Ȧ = −µPδA = −µ

(
δA−

n∑

i=1

M̂i tr M̂iδA

)
, (2.B.16)
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for µ > 0 andδA given by (2.A.21). With thei-th column ofδA denoted byδai, this corresponds

to the learning rule,

ȧi = −µ
(
I − âiâ

T
i

)
δai , i = 1, · · · , n . (2.B.17)

With the rule (2.B.16), we have

T2 =
〈
δA, Ȧ

〉
= −µ 〈δA, PδA〉 = −µ

〈
δA, P 2δA

〉
= −µ 〈PδA, PδA〉 = −µ‖PδA‖2 ≤ 0 ,

where we have explicitly shown that the idempotency and self–adjointness ofP corresponds to

it being a non–negative operator. Thus we will have convergence to thelargest invariant set for

which Ȧ ≡ 0, which from (2.B.16) is equivalent to the set for which

PδA = δA−
n∑

i=1

M̂i

〈
M̂i, δA

〉
≡ 0 . (2.B.18)

This, in turn, is equivalent to

δA =
n∑

i=1

M̂i

〈
M̂i, δA

〉
=

n∑

i=1

n Mi 〈Mi, δA〉 =
n∑

i=1

ci Mi , (2.B.19)

with

ci , n 〈Mi, δA〉 = n aT
i δai , i = 1, · · · , n .

An equivalent statement to (2.B.19) is

δai = ci ai , i = 1, · · · , n .

Defining the diagonal matrix

C = diag [ci, · · · , cn]

and recalling the definitions (2.A.21) and (2.B.1), we obtain from (2.B.19) that

AΣxx − Σyx = δA = AC ,

which can be solved as,

A = Σyx (Σxx − C)−1 . (2.B.20)

This is the general form of the solution found by theAC–learning algorithm.



Chapter 3

Sparse Overcomplete Image Coding

Abstract

Images can be coded accurately using a sparse set of vectors from a learned overcomplete

dictionary, with potential applications in image compression and feature selection for pattern

recognition. We present a survey of algorithms that perform dictionary learning and sparse

coding and make three contributions. First, we compare our overcomplete dictionary learning

algorithm (FOCUSS-CNDL) with overcomplete independent component analysis (ICA). Sec-

ond, noting that once a dictionary has been learned in a given domain the problem becomes

one of choosing the vectors to form an accurate, sparse representation, we compare a recently

developed algorithm (sparse Bayesian learning with adjustable variance Gaussians, SBL-AVG)

to well known methods of subset selection: matching pursuit and FOCUSS. Third, noting that

in some cases it may be necessary to find a non-negative sparse coding,we present a modified

version of the FOCUSS algorithm that can find such non-negative codings. Efficient parallel

implementations in VLSI could make these algorithms more practical for many applications.

3.1 Introduction

Most modern lossy image and video compression standards have as a basiccomponent

the transformation of small patches of the image. The discrete cosine transform (DCT) is the

most popular, and is used in the JPEG and MPEG compression standards (Gonzales and Woods,

1993). The DCT uses a fixed set of basis vectors (discrete cosines ofvarying spatial frequencies)

108
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to represent each image patch, which is typically 8x8 pixels. In recent years, many algorithms

have been developed that learn a transform basis adapted to the statistics of the input signals. Two

widely used basis-learning algorithms areprincipal component analysis(PCA), which finds an

orthogonal basis using second-order statistics (Oja, 1982), andindependent component analysis

(ICA) which finds a non-orthogonal representation using higher order statistics (Pham and de-

Figueiredo, 1989, Jutten and Hérault, 1991). The set of bases used by PCA and ICA are complete

or undercomplete, i.e. the matrix defining the transformationA ∈ R
m×n hasm ≥ n, implying

that the output has the same or lower dimensionality as the input. Newer classesof algorithms

(Kreutz-Delgado et al., 2003, Lewicki and Sejnowski, 2000) allow the use of an overcomplete

A, which we will refer to as adictionaryto distinguish it from a basis, which must by definition

be linearly independent (although some authors use the termbasiseven when referring to an

overcomplete set). Dictionaries are also referred to asframes(Engan et al., 2001).

We discuss the problem of representing images with a highly sparse set of vectors drawn

from a learned overcomplete dictionary. The problem has received considerable attention since

the work of Olshausen and Field (1997), who suggest that this is the strategy used by the visual

cortex for representing images. The implication is that a sparse, overcomplete representation is

especially suitable for visual tasks such as object detection and recognitionthat occur in higher

regions of the cortex. Non-learned dictionaries (often composed of Gabor functions) are used to

generate the features used in many pattern recognition systems (Weber andCasasent, 2001), and

we believe that recognition performance could be improved by using learned dictionaries that

are adapted to the image statistics of the inputs.

The sparse overcomplete coding problem has two major parts: learning the dictionary

adapted to the input environment, and sparsely coding new patterns using that dictionary. We

present and compare experimentally algorithms for both of these tasks. In Section 3.2, we dis-

cuss sparse coding assuming a known, fixed dictionary using the followingalgorithms: focal-

underdetermined system solver (FOCUSS) (Rao and Kreutz-Delgado, 1999), sparse Bayesian

learning with adjustable-variance Gaussians (SBL-AVG) (Tipping, 2001) and modified match-

ing pursuit (MMP) (Cotter et al., 1999). With earlier algorithms such as PCA,ICA and DCT

transforms, finding the coefficients requires only a matrix multiply, however with an overcom-

plete dictionary the representation of a signal is underdetermined, so an additional criteria such

as sparseness must be used. In Section 3.3, we discuss algorithms for learning the dictionary:

FOCUSS-CNDL (column-normalized dictionary learning) (Murray and Kreutz-Delgado, 2001,
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Kreutz-Delgado et al., 2003), and an overcomplete extension of ICA (Lewicki and Olshausen,

1999). Section 3.4 explains the evaluation method for comparing image codings, and Section

3.5 presents the experimental results.

A key result of work in sparse overcomplete coding is that images (and other data) can

be coded more efficiently using a learned dictionary than with a non-adaptedbasis (e.g. DCT,

wavelet or Gabor) (Lewicki and Olshausen, 1999, Engan, 2000). For example, it is shown in

(Engan, 2000) (see their Table 5.3) that with from 1 to 12 vectors per imagepatch, the distor-

tion with learned dictionaries is less than with DCT. Our earlier work using learned dictionaries

has shown that overcomplete codes can be more efficient than learned complete codes in terms

of entropy (bits/pixel), even though there are many more coefficients than image pixels in an

overcomplete coding (Kreutz-Delgado et al., 2003). When sparse overcomplete dictionaries are

used in complete compression systems, they have shown improved compression over standard

techniques. A compression system based on methods closely related to thosepresented here

was shown to improve performance over JPEG for bit rates of 0.4 bits/pixeland lower (Engan

et al., 2001). The tradeoff for this increased compression is that overcomplete coding is more

computationally demanding, but since the algorithms are based on matrix algebrathey are easily

parallelizable and have potential for implementation in DSP or custom VLSI hardware, as dis-

cussed in Section 3.6. Sparse coding has many other applications in signal processing including

high-resolution spectral estimation, direction-of-arrival estimation, speech coding, biomedical

imaging and function approximation (see Rao and Kreutz-Delgado (1999) for more references

to these applications).

In some problems, we may desire (or the physics of the problem may dictate) non-negative

sparse codings. An example of such a problem is modeling pollution, where the amount of

pollution from any particular factory is non-negative (Paatero and Tapper, 1994). Methods for

non-negative matrix factorization were developed by Lee and Seung (1999) and applied to im-

ages and text. A multiplicative algorithm for non-negative coding was developed and applied

to images by Hoyer (2002). A non-negative Independent Component Analysis (ICA) algorithm

was presented by Plumbley (2003) (which also discusses other applications). In Lee and Seung

(1999), Hoyer (2002), Plumbley (2003) only the complete case was considered. Here, in Sec-

tion 3.2.1, we present an algorithm that can learn non-negative sourcesfrom an overcomplete

dictionary, which leads naturally to a learning method that adapts the dictionaryfor such sources.
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3.2 Sparse Coding and Vector Selection

The problem of sparse coding is that of representing some datay ∈ R
m (e.g. a patch of

an image) using a small number of non-zero components in a source vectorx ∈ R
n under the

linear generative model

y = Ax + ν , (3.2.1)

where the full-row rank dictionaryA ∈ R
m×n may be overcomplete (n > m), and the additive

noiseν is assumed to be Gaussian,pν = N (0, σ2
ν). By assuming a priorpX(x) on the sources,

we can formulate the problem in a Bayesian framework and find the maximuma posteriori

solution forx,

x̂ = arg max
x

p(x|A,y)

= arg max
x

[log p(y|A,x) + log pX(x)] . (3.2.2)

By making an appropriate choice for the priorpX(x), we can find solutions with high sparsity

(i.e. few non-zero components). We definesparsityas the number of elements ofx that are

zero, and the related quantitydiversityas the number of non-zero elements, so that diversity=

(n − sparsity). Assuming the prior of the sourcesx is a generalized exponential distribution of

the form,

pX(x) = ce−λ dp(x) , (3.2.3)

where the parameterλ and functiondp(x) determine the shape of distribution andc is a normal-

izing constant to ensurepX(x) is a density function. A common choice for the prior onx is for

the functiondp(x) to be thep-norm-like measure,1

dp(x) = ‖x‖pp =
n∑

i=1

|xi|p , 0 ≤ p ≤ 1 , (3.2.4)

wherexi are the elements of the vectorx. Whenp = 0, dp(x) is a count of the number of non-

zero elements ofx (diversity), and sodp(x) is referred to as adiversity measure(Kreutz-Delgado

et al., 2003).

With these choices fordp(x) andpν , we find that,

x̂ = arg max
x

[log p(y|A,x) + log pX(x)]

= arg min
x
‖y −Ax‖2 + λ‖x‖pp . (3.2.5)

1Forp < 1, ‖x‖p = (dp(x))
1

p is not a norm.
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The parameterλ can be seen as a regularizer that adjusts the tradeoff between sparse solutions

(highλ) and accurate reconstruction (lowλ). In the limit thatp → 0 we obtain an optimization

problem that directly minimizes the reconstruction error and the diversity ofx. Whenp = 1

the problem no longer directly minimizes diversity, but the right-hand-side of(3.2.5) has the

desirable property of being globally convex and so has no local minima. Thep = 1 cost func-

tion is used inbasis pursuit(Chen and Donoho, 1998), where the resulting linear programming

problem is usually solved with an interior point method.

Some recent theoretical results have determined conditions under which thep = 1 (basis

pursuit) solution finds the true (p = 0) sparsest solution (Donoho and Elad, 2003). However,

an evaluation of these bounds has shown that the conditions are restrictive, and that in fact the

global optima associated withp = 1 only finds the sparsest solution when that sparsity is very

high (Wipf and Rao, 2004a). These results and related experiments showthat in practice the

p = 1 cost function does not always correspond with the sparsest solution,and thatp < 1 often

provides a more desirable cost function (Wipf and Rao, 2004b).

3.2.1 FOCUSS and Non-negative FOCUSS

For a given, known dictionaryA, thefocal underdetermined system solver(FOCUSS) was

developed to solve (3.2.5) forp ≤ 1 (Gorodnitsky et al., 1995, Rao and Kreutz-Delgado, 1999).

The FOCUSS algorithm was first applied to the problem of magnetoencephalography (MEG),

where spatially localized signals in the brain mix with each other before reaching the sen-

sors, leading to the related problems of localizing the sources and removing undesired artifacts

(Gorodnitsky et al., 1995, Viǵario and Oja, 2000).

FOCUSS is an iterative re-weighted factored-gradient approach, andhas consistently shown

better performance than greedy vector-selection algorithms such as basispursuit and matching

pursuit, although at a cost of increased computation (Rao and Kreutz-Delgado, 1999). Previous

versions of FOCUSS have assumed thatx is unrestricted onRn. In some cases however, we

may require that the sources be non-negative,xi ≥ 0. This amounts to a change of prior onx

from symmetric to one-sided, but this results in nearly the same optimization problem as (3.2.5).

To create a non-negative FOCUSS algorithm, we need to ensure that thexi are initialized to

non-negative values, and that each iteration keeps the sources in the feasible region. To do

so, proposing a one-sided (asymmetrical) diversity measuredp(x), thenon-negativeFOCUSS
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algorithm can be derived,

Π−1(x̂) = diag(|x̂i|2−p)

λ = λmax

(
1− ‖y −Ax̂‖

‖y‖

)
, λ > 0

x̂ ← Π−1(x̂)AT
(
λI + AΠ−1(x̂)AT

)−1
y

x̂i ←






0 x̂i < 0

x̂i x̂i ≥ 0

, (3.2.6)

whereλ is a heuristically-adapted regularization term, limited byλmax which controls the tradeoff

between sparsity and reconstruction error (higher values ofλ lead to more sparse solutions, at the

cost of increased error). We denote this algorithm FOCUSS+, to distinguish from the FOCUSS

algorithm (Kreutz-Delgado et al., 2003) which omits the last line of (3.2.6). The estimate ofx

is refined over iterations of (3.2.6) and usually 10 to 50 iterations are needed for convergence

(defined as the change inx being smaller than some threshold from one iteration to the next).

That the form of the nonnegative FOCUSS+ is closely related to FOCUSS is afortunate

property of the prior structure used here, and it is not the case in general that the nonnegative

version of a sparse coding algorithm will be of similar form to the unrestrictedversion. The

SBL-AVG algorithm of the next section is an example of a sparse coding algorithm that cannot

easily be used for nonnegative coding.

3.2.2 Sparse Bayesian Learning with Adjustable-Variance Gaussian Priors (SBL-

AVG)

Recently, a new class of Bayesian model characterized by Gaussian prior sources with

adjustable variances has been developed (Tipping, 2001). These modelsuse the linear generating

model (3.2.1) for the datay but instead of using a non-Gaussian sparsity inducing prior on the

sourcesx (as FOCUSS does), they use a flexibly-parameterized Gaussian prior,

pX(x) = p(x|γ) =
n∏

i=0

N (xi|0, γi) , (3.2.7)

where the variance hyperparameterγi can be adjusted for each componentxi. Whenγi ap-

proaches zero, the density ofxi becomes sharply peaked making it very likely that the source will

be zero, increasing the sparsity of the code. The algorithm for estimating thesources has been
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termedsparse Bayesian learning(SBL), but we find this term to be too general, as other algo-

rithms (including the earlier FOCUSS algorithm) also estimate sparse components ina Bayesian

framework. We use the term SBL-AVG (adjustable-variance gaussian) tobe more specific.

To insure that the prior probabilityp(x|γ) is sparsity-inducing, an appropriate prior on the

hyperparameterγ must be chosen. In general, the Gamma(γ−1
i |a, b) distribution can be used for

the prior ofγi, and in particular witha = b = 0, the prior onγi becomes uniform. As shown

in Section 3.2 of Bishop and Tipping (2003), this leads top(xi) having a Student’s t-distribution

which qualitatively resembles theℓp-norm-like distributions (with0 < p < 1) used to enforce

sparsity in FOCUSS and other algorithms.

SBL-AVG has been used successfully for pattern recognition, with performance compara-

ble to support vector machines (SVMs) (Tipping, 2001, Bishop and Tipping, 2003). In these

applications the known dictionaryA is a kernel matrix created from the training examples in

the pattern recognition problem just as with SVMs. The performance of SBL-AVG was similar

to SVM in terms of error rates, while using far fewer support vectors (non-zeroxi) resulting in

simpler models. Theoretical properties of SBL-AVG for subset selection have been elucidated

by Wipf and Rao (2004b), and simulations on synthetic data show superior performance over

FOCUSS and other basis selection methods. To our knowledge, results have not been previously

reported for SBL-AVG on image coding.

The posterior density ofx is a multivariate Gaussian,

p(x|y, Γ, σ2) = N (µ, Σx) , (3.2.8)

which has mean and covariance,

µ = σ−2ΣxATy

Σx =
(
σ−2AT A + Γ−1

)−1
, (3.2.9)

where the matrixΓ contains the hyperparametersγi, i.e. Γ = diag(γ). To implement the SBL-

AVG algorithm for findingx̂, we perform iterations of the update,

x̂← ΓAT (σ2I + AΓAT )−1y

γi ← (Σx)i,i + µ2
i . (3.2.10)
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Iterative updates for the parameterσ2 are given by,

σ2 ← 1

m
‖y −Aµ‖2 +

σ2

m

n∑

i=1

[
1− (γ−1

i (Σx)i,i

]
. (3.2.11)

The iterations for the varianceσ2 and hyperparametersγi were derived by Wipf and Rao (2004b)

using the expectation maximization (EM) algorithm and are assumed to be updatedin paral-

lel at each iteration. As the iterations proceed, some values ofγi will be driven to 0, which

leads to those componentsxi → 0, increasing the sparsity of the solution. For compression

and coding applications, it is desirable to have a parameter that controls compression, and for

SBL-AVG we use a constantσ2 (instead of the update forσ2 in eq. 3.2.11). Higher values

of σ2 admit more error in the reconstruction, and so result in higher compression. Interest-

ingly, the updates (3.2.10) are quite similar in form and computational complexity tothe FO-

CUSS iterations (3.2.6) even though they are derived with different Bayesian priors, with the

main difference being the update of the weighting matrices (Π−1(x̂) for FOCUSS andΓ for

SBL-AVG). Software called “SparseBayes” that implements SBL-AVG canbe found athttp:

//www.research.microsoft.com/mlp/RVM/default.htm, which was used in the

experiments below. Note that the algorithm in (3.2.10) is functionally equivalent to those pre-

sented by Tipping (2001), Bishop and Tipping (2003) and that we have rewritten it to be consis-

tent with our notation and emphasize the computational similarity to FOCUSS. However, creat-

ing a non-negative version of SBL-AVG proves much more difficult than for FOCUSS because

of the need to integrate a Gaussian distribution with non-diagonal covariance over the positive

orthant (Muirhead, 1982). Naively adding a non-negative constraint to SBL-AVG (such as in the

last line of eq. 3.2.6) does not result in a working algorithm.

3.2.3 Modified Matching Pursuit (MMP): Greedy vector selection

Many variations on the idea of matching pursuit, or greedy subset selection, have been

developed (Mallat and Zhang, 1993b, Cotter, 2001). Here, we use modified matching pursuit

(MMP) (Cotter et al., 1999) which selects each vector (in series) to minimize theresidual repre-

sentation error. The simpler matching pursuit (MP) algorithm is more computationally efficient,

but provides less accurate reconstruction. For the case of non-negative sources, matching pursuit

can be suitably adapted, and we call this algorithm MP+.

In MMP, the maximum number of vectors to select,r, is prespecified. At each iteration
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t = 1 . . . r, a vector is added to the set of selected vectorsIt = {k1 . . . kt},

kt = arg max
l
|aT

l bt−1| , l /∈ It−1 , (3.2.12)

whereal are the columns ofA andbt−1 is the residual at iterationt− 1. The selected vector at

iterationt is denotedakt
. For the first iteration, we setb0 = y (the signal to be represented).

The residual is updated using,

bt = bt−1 − (qT
t bt−1)qt , (3.2.13)

whereqt is found by iteratively constructing an̂a(t)
kt

as follows,

â
(0)
kt

= akt
, q0 = 0

â
(i)
kt

= â
(i−1)
kt

−
(
qT

i−1 â
(i−1)
kt

)
qi−1 , i = 1 . . . t

qt =
â

(t)
kt

‖â(t)
kt
‖

. (3.2.14)

The operation in (3.2.13) is a projection of the residualbt onto the range space of the orthogonal

complement ofall the selected vectors. The simpler MP algorithm replaces the step (3.2.13) with

a projection of the residual onto the orthogonal complement of the only the selected vectorakt
.

The MP algorithm is more computationally efficient but provides less accuratereconstruction.

More details and comparisons can be found in Cotter et al. (1999), Cotter (2001).

The algorithm can be stopped when eitherr vectors have been chosen or when the residual

is small enough,‖bt‖ ≤ ǫ, whereǫ is a constant threshold that defines the maximum acceptable

residual error. To find the coefficients of the selected vectors, a new matrix is created with the

selected columns,As = [ak1
. . .akr

]. The coefficient values corresponding to each vector are

found using the pseudoinverse ofAs,

xs = (AT
s As)

−1AT
s y . (3.2.15)

To form the estimatêx, the elements ofxs are placed into the selected columnski.

3.3 Dictionary Learning Algorithms

In the previous section we discussed algorithms that accurately and sparsely represent a

signal using a known, predefined dictionaryA. Intuitively, we would expect that ifA were
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adapted to the statistics of a particular problem that better and sparser representations could be

found. This is the motivation that led to the development of the FOCUSS-CNDL dictionary

learning algorithm. Dictionary learning is closely related to the problem of ICA which usually

deals with a completeA but can be extended to an overcompleteA (Lewicki and Sejnowski,

2000).

In this section we discuss the FOCUSS-CNDL (Murray and Kreutz-Delgado, 2001) and

overcomplete ICA algorithm of Lewicki and Sejnowski (2000). We brieflymention other over-

complete dictionary learning algorithms: Engan et al. (2001, 2005) developed the method of

optimal directions (MOD) and applied it in an image compression system; Girolami (2001) de-

veloped a variational approach similar to that of SBL-AVG; Palmer and Kreutz-Delgado (2003)

used the Bayesian maximuma posteriori(MAP) framework and a new notion of relative con-

vexity to ensure sparse solutions; and Aharon et al. (2005) developedan algorithm based on the

singular value decomposition (K-SVD).

3.3.1 FOCUSS-CNDL

The FOCUSS-CNDL algorithm solves the problem (3.2.1) when both the sourcesx and

the dictionaryA are assumed to be unknown random variables (Kreutz-Delgado et al., 2003).

The algorithm contains two major parts, a sparse vector selection step and a dictionary learning

step which are derived in a jointly Bayesian framework. The sparse vector selection is done by

FOCUSS (or FOCUSS+ if non-negativexi are needed), and the dictionary learningA-update

step uses gradient descent.

With a set of training dataY = (y1, . . . ,yN ) we find the maximuma posterioriestimates

Â andX̂ = (x̂1, . . . , x̂N ) such that

(Â, X̂) = arg min
A,X

N∑

k=1

[
‖yk −Axk‖2 + λdp(xk)

]
, (3.3.1)

wheredp(x) = ‖xk‖pp is the diversity measure (3.2.4) that measures (or approximates) the num-

ber of non-zero elements of a source vectorxk (see Section 3.2).

The optimization problem (3.3.1) attempts to minimize the squared error of the reconstruc-

tion of yk while minimizingdp and hence the number of non-zero elements inx̂k. The problem

formulation is similar to ICA in that both model the inputY as being linearly generated by un-

knownsA andX, but ICA attempts to learn a new matrixW which linearly produces estimates
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x̂k (by Wyk = x̂k) where the componentŝxi,k are as statistically independent as possible. ICA

in general does not result in as sparse solutions as FOCUSS-CNDL which specifically uses the

sparsity-inducingnon-linear iterative FOCUSS algorithm to find̂xk.

We now summarize the FOCUSS-CNDL algorithm which was fully derived by Kreutz-

Delgado et al. (2003). For each of theN data vectorsyk in Y , we can update the sparse source

vectorx̂k using one iteration of the FOCUSS or FOCUSS+ algorithm (3.2.6). After updating x̂k

for a certain number of the data vectors (the blocksizeNB) the dictionaryÂ is re-estimated,

Σyx̂ =
1

NB

NB∑

k=1

ykx̂
T
k , Σx̂x̂ =

1

NB

NB∑

k=1

x̂kx̂
T
k ,

δÂ = Â Σx̂x̂ − Σyx̂

Â← Â− η
(
δÂ− tr (ÂT δÂ)Â

)
, γ > 0 , (3.3.2)

whereη is the learning rate parameter. Each iteration of FOCUSS-CNDL consists of updating all

x̂k, k = 1...N with one FOCUSS iteration (3.2.6), interspersed by dictionary updates (3.3.2) for

everyNB vectorŝxk (which usesΣ calculated from the updated̂xk estimates). After each update

of Â, the columns are adjusted to have equal norm‖ai‖ = ‖aj‖, in such a way that̂A has unit

Frobenius norm,‖Â‖F = 1. Matlab code for the FOCUSS, FOCUSS-CNDL and non-negative

variants can be found athttp://dsp.ucsd.edu/∼jfmurray/software.htm.

3.3.2 Overcomplete Independent Component Analysis (ICA)

Another method for learning an overcomplete dictionary based on ICA was developed by

Lewicki and Olshausen (1999), Lewicki and Sejnowski (2000). In the overcomplete case, the

sources must be estimated as opposed to in standard ICA (which assumes a complete dictionary

A), where the sources are found by multiplying by a learned matrixW , yielding the estimates

x̂ = Wy. In Lewicki and Olshausen (1999) the sources are estimated using a modified conjugate

gradient optimization of a cost function closely related to (3.2.5) that uses the1-norm (derived

using a Laplacian prior onx). The dictionary is updated by gradient ascent on the likelihood

using a Gaussian approximation (Lewicki and Olshausen (1999), eq. 20).

Lewicki and Sejnowski treat the dictionary as a deterministic unknown and note that the

classical maximum likelihood estimate ofA is determined from maximizing the marginalized
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likelihood function,

p(X|A) =

∫
p(Y, X|A)dx =

∫
p(Y |X)p(X)dX. (3.3.3)

whereX = (x1, . . . ,xN ) andY = (y1, . . . ,yN ), andxk andyk, k = 1, . . . , N , are related via

equation (3.2.1). Unfortunately, for supergaussian sparsity-inducingpriors, such as thep-norm–

like density shown in equations (3.2.3) and (3.2.4), this integration is generallyintractable. To

circumvent this problem Lewicki and Sejnowski approximate this integral bytaking a Gaussian

approximation to the prior evaluated at the MAP estimate of the source vectorsX obtained from

a current estimate ofA. This is specifically done for the Laplacianp = 1 prior by solving the

ℓ1 (i.e., p = 1 basis pursuit) optimization problem using a conjugate gradientℓ1 optimization

algorithm, see Section 3 of Lewicki and Olshausen (1999).

After performing the marginalization integration, a dictionary update which “hillclimbs”

the resulting approximate likelihood function̂p(X̂|A) is given by,

δA ← Â
(〈

zkx̂
T
k

〉
N

+ I
)

(3.3.4)

Â ← Â− η δA ,

where,

zk , ∇x ln p(x̂k) , (3.3.5)

and〈·〉N denotes anN -sample average. The update rule (3.3.4) is valid forp = 1 as long as no

single componentxk,i, k = 1, · · · , N , i = 1, · · ·n, is identically zero. Usingλ as in (3.2.3) for

p = 1, the update rule (3.3.4) is equivalent to

δA ← Â (I − λΣπ
x̂x̂) (3.3.6)

Â ← (1− η)Â + ληÂΣπ
x̂x̂ , (3.3.7)

where,

Σπ
x̂x̂ =

〈
Π(x̂k) x̂kx̂

T
k

〉
N

=
N∑

k=1

Π(x̂k) x̂kx̂
T
k =

N∑

k=1

sign(x̂k)x̂
T
k , (3.3.8)

with,

Π(x) = diag(|xi|−1) and sign(x) = [sign(x1), · · · , sign(xn)]T . (3.3.9)

Matlab software for overcomplete ICA can be found athttp://www-2.cs.cmu.edu/

∼lewicki/.
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3.4 Measuring performance

To compare the performance of image coding algorithms we need to measure twoquanti-

ties: distortion and compression. As a measure of distortion we use a normalized root-mean-

square-error (RMSE) calculated over allN patches in the image,

RMSE=
1

σ

[
1

mN

N∑

k=1

‖yk −Ax̂k‖2
] 1

2

, (3.4.1)

whereσ is the empirical estimate of the variance of the elementsyi (for all theyk, assuming

i.i.d.), N is the number of image patches in the data set, andm is the size of each vectoryk.

Note that this is calculated over the image patches, leading to a slightly different calculation than

the mean-square error over the entire image.

To measure how much a given transform algorithm compresses an image, weneed a coding

algorithm that maps which coefficients were used and their amplitudes into an efficient binary

code. The design of such encoders is generally a complex undertaking,and is outside the scope

of our work here. However, information theory states that we can estimate alower bound on the

coding efficiency if we know the entropy of the input signal. Following the method of Lewicki

and Sejnowski (cf. Lewicki and Sejnowski (2000) eq. 13) we estimate the entropy of the coding

using histograms of the quantized coefficients. Each coefficient inx̂k is quantized to 8 bits (or

256 histogram bins). The number of coefficients in each bin isci. The limit on the number of

bits needed to encode each input vector is,

#bits≥ bitslim ≡ −
256∑

i=1

ci

N
log2 fi , (3.4.2)

wherefi is the estimated probability distribution at each bin. We usefi = ci/(Nn), while in

Lewicki and Sejnowski (2000) a Laplacian kernel is used to estimate the density. The entropy

estimate in bits/pixel is given by,

entropy=
bitslim

m
, (3.4.3)

wherem is the size of each image patch (the vectoryk). It is important to note that this esti-

mate of entropy takes into account the extra bits needed to encode an overcomplete (n > m)

dictionary, i.e. we are considering the bits used to encode eachimage pixel, not each coefficient.
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3.5 Experiments

Previous work has shown that learned complete bases can provide more efficient image

coding (fewer bits/pixel at the same error rate) when compared with unadapted bases such as

Gabor, Fourier, Haar and Daubechies wavelets (Lewicki and Olshausen, 1999). In our earlier

work (Kreutz-Delgado et al., 2003) we showed that overcomplete dictionariesA can give more

efficient codes than complete bases. Here, our goal is to compare methodsfor learning overcom-

pleteA (FOCUSS-CNDL and overcomplete ICA), and methods for coding images onceA has

been learned, including the case where the sources must be non-negative.

3.5.1 Comparison of dictionary learning methods

To provide a comparison between FOCUSS-CNDL and overcomplete ICA (Lewicki and

Sejnowski, 2000), both algorithms were used to train a64× 128 dictionaryA on a set of8 × 8

pixel patches drawn from images of man-made objects. For FOCUSS-CNDL, training of A

proceeded as described by Kreutz-Delgado et al. (2003), for 150 iterations overN = 20000

image patches with the following parameters: learning rateη = 0.01, diversity measurep = 1.0,

blocksizeNB = 200, and regularization parameterλmax = 2 × 10−4. Training overcomplete

ICA for image coding was performed as described by Lewicki and Olshausen (1999). Both

overcomplete ICA and FOCUSS-CNDL have many tunable parameters, and itis generally not

possible to find the optimal values in the large parameter space. However, both algorithms have

been tested extensively on image coding tasks. The parameters of overcomplete ICA used here

were those in the implementation found athttp://www-2.cs.cmu.edu/∼lewicki/,

which was shown by Lewicki and Olshausen (1999) to provide improved coding efficiency over

non-learned bases (such as DCT and wavelet) as well as other learnedbases (PCA and complete

ICA). We believe that the parameters used have been sufficiently optimized for the image coding

task to provide a reasonably fair comparison.

Once anA was learned with each method, FOCUSS was used to compare image coding

performance, with parametersp = 0.5, iterations= 50, and the regularization parameterλmax

was adjusted over the range[0.005, 0.5] to achieve different levels of compression (bits/pixel),

with higherλmax giving higher compression (lower bits/pixel). A separate test set was composed

of 15 images of objects from the COIL database of rotated views of household objects (Nene

et al., 1996).
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Figure 3.1: Image coding with 64x128 overcomplete dictionaries learned with FOCUSS-CNDL
and overcomplete ICA. Images were sparsely coded using the FOCUSS algorithm withp = 0.5
and the compression level (bit rate) was adjusted by varyingλmax ∈ [0.005, 0.5], with higher
values giving more compression (lower bit/pixel), left side of plot. Results are averaged over 15
images.

Figure 3.1 shows the image coding performance of dictionaries learned using FOCUSS-

CNDL and overcomplete ICA. Using the FOCUSS-CNDL dictionary providedbetter perfor-

mance, i.e. at a given level of RMSE error images were encoded on average with fewer bits/pixel

(bpp). FOCUSS was used to code the test images, which may give an advantage to the FOCUSS-

CNDL dictionary as it was able to adapt its dictionary to sources generated with FOCUSS (while

overcomplete ICA uses a conjugate gradient method to find sources).

3.5.2 Comparing image coding with MMP, SBL-AVG and FOCUSS

In this experiment we compare the coding performance of the MMP, SBL-AVG and FO-

CUSS vector selection algorithms using an overcomplete dictionary on a set ofman-made im-

ages. The dictionary learned with FOCUSS-CNDL from the previous experiment was used,

along with the same 15 test images. For FOCUSS, parameters were set as follows: p = 0.5,

and compression (bits/pixel) was adjusted withλmax ∈ [0.005, 0.5] as above. For SBL-AVG,

we set the number of iterations to 1000 and the constant noise parameterσ2 was varied over

[0.005, 2.0] to adjust compression (with higher values ofσ2 giving higher compression). For

MMP, the number of vectors selectedr was varied from 1 to 13, with fewer vectors selected
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giving higher compression.

Figure 3.2 shows examples of an image coded with the FOCUSS and SBL-AVG algorithms.

Images of size 64x64 pixels were coded at high and low compression levels. In both cases, SBL-

AVG was more accurate and provided higher compression, e.g. MSE of 0.0021 vs. 0.0026 at

entropy 0.54 vs 0.78 bits/pixel for the high compression case. In terms of sparsity, the SBL-AVG

case in the bottom right of Figure 3.2 requires only 154 nonzero coefficients (of 8192, or about

2%) to represent the image.

Figure 3.3 shows the tradeoff between accurate reconstruction (low RMSE) and compres-

sion (bits/pixel) as approximated by the entropy estimate (3.4.3). The lower right of the curves

represents the higher accuracy/lower compression regime, and in this range the SBL-AVG al-

gorithm performs best, with lower RMSE error at the same level of compression. At the most

sparse representation (upper left of the curves) where only 1 or 2 dictionary vectors are used to

represent each image patch, the MMP algorithm performed best. This is expected in the case of

1 vector per patch, where the MMP finds the optimal single vector to match the input. Coding

times per image on a 1.7 GHz AMD processor (Matlab implementation) are: FOCUSS15.64

sec, SBL-AVG 17.96 sec, MMP 0.21 sec.

3.5.3 Image coding with non-negative sources

Next, we investigate the performance tradeoff associated with using non-negative sources

x. Using the same set of images as in the previous section, we learn a newA ∈ R
64×128

using the non-negative FOCUSS+ algorithm (3.2.6) in the FOCUSS-CNDL dictionary learning

algorithm (3.3.2). The image gray-scale pixel values are scaled toyi ∈ [0, 1] and the sources

are also restricted toxi ≥ 0 but elements of the dictionary are not further restricted and may be

negative. Once the dictionary has been learned, the same set of 15 imagesas above were coded

using FOCUSS+.

Figure 3.4 shows an image coded using MP+, FOCUSS+ and MMP (which uses negative

coefficients). Restricting the coding to non-negative sources in MP+ shows relatively small

increases in MSE and number of coefficients used, and a decrease in image quality. FOCUSS+

is visually superior and provides higher quality reconstruction (MSE 0.0016 vs. 0.0027) at

comparable compression rates (0.77 vs. 0.76 bits/pixel). Figure 3.5 shows the compression/error

tradeoff when using non-negative sources to code the same set of testimages as above. As
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MSE:  0.0011

BPP:  0.78

232 non-zero
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BPP:  0.68

214 non-zero
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BPP:  0.54

154 non-zero (of 8192)
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Figure 3.2: Images coded using an overcomplete dictionary (64x128) learned with FOCUSS-
CNDL algorithm. Below each coded image are shown the mean-square error(MSE), the esti-
mated entropy in bits/pixel (BPP) and the number of non-zero coefficients used to encode the
entire image.

expected, there is a reduction in performance when compared with methods that use positive and

negative sources especially at lower compression levels.

3.6 Potential for VLSI Implementation

While we have focused on the differences between the sparse coding and dictionary learning

algorithms presented above, each may be suited to a particular class of application, which may

require the use of dedicated VLSI or DSP hardware to achieve the needed speed and power effi-

ciency. From a VLSI implementation standpoint, all the algorithms share some desirable traits:

they rely on easily parallelizable matrix operations, have simple logic flows (mainlyrepeated

iterations), and have low memory requirements. For the sparse coding algorithms, the most

time consuming operation is the matrix inversion required at each iterations (forMMP only one

matrix inversion is required after the selected columns ofA are chosen). Instead of comput-

ing the matrix inverse and subsequent matrix multiply in FOCUSS or SBL-AVG, thesystem of

equations can be solved directly with Gaussian elimination (Golub and Loan, 1983). Efficient

parallel algorithms and architectures for Gaussian elimination have been developed, such as the



125

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Comparing vector selection

Entropy (bits/pixel)

R
M

S
E

FOCUSS
SBL−AVG
MMP

Figure 3.3: Comparison of sparse image coding algorithms with a 64x128 overcomplete dictio-
nary. Compression rates are adjusted by varying parameters for each algorithm: λmax for FO-
CUSS,σ2 for SBL-AVG, and the number of vectors selectedr for MMP. Results are averaged
over 15 images.

division-free method of Peng and Sedukhin (1997). Progress continues to made in increasing

the speed of the other required matrix algebra tasks, such as matrix multiplication(Tsay and

Chang, 1995, Muhammad and Roy, 2002). Using the algorithms of Peng andSedukhin (1997)

and Tsay and Chang (1995), we can find the number of multiplies and time-order required for

each iteration of FOCUSS and SBL-AVG (Table 3.1). (See Peng and Sedukhin (1997), Tsay and

Chang (1995) for details on architecture and number of processing elements required.)

For both the FOCUSS-CNDL and overcomplete ICA dictionary learning algorithms, the

most time consuming step is the averaging of the sources in (3.3.2) and (3.3.8),which could

be made more efficient with 2-D systolic arrays of processing elements (Zhang, 1998). For

calculation ofΣbxbx, ann × n array of multiply-add processing elements can perform the vector

multiply and summation in one time step for each training samplek ∈ 1 . . . N , reducing the time

complexity fromO(Nn2) for a serial implementation toO(N). In FOCUSS-CNDL, a similar

array ofm× n elements is needed to findΣybx.
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  MMP   MP+  FOCUSS+  Original

MSE:  0.0024

BPP:  0.65

182 non-zero

MSE:  0.0027

BPP:  0.76

187 non-zero

MSE:  0.0016

BPP:  0.77

236 non-zero 

(of 8192)

Figure 3.4: Image coding using non-negative sources (weights) with a 64x128 overcomplete
dictionary learned with FOCUSS-CNDL+. Images were coded with MP+, FOCUSS+, and MMP
(which uses negative coefficients, shown for comparison).
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Figure 3.5: Image coding using non-negative sourcesx, with the FOCUSS curve from Figure
3.3 included for reference. Both experiments use a 64x128 overcompletedictionary.
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Table 3.1: Number of multiples required for certain steps of each iteration of the FOCUSS and
SBL-AVG algorithms, given that the systems of equations in the second stepsare solved with
the Gaussian elimination algorithm of Peng and Sedukhin (1997), and the matrixmultiplies
are performed using the algorithm of Tsay and Chang (1995). Time-order for these parallel
algorithms is given in the right column.

FOCUSS(eq. 3.2.6)

Step of iteration Multiplies Time (par.)

λI + AΠ−1AT nm + nm2 m + 1
(
λI + AΠ−1AT

)
−1

y 3

4
(m3 + 2m2) + O(2m2 + m) 4m

Π−1AT
(
λI + AΠ−1AT

)
−1

y nm2 m

Π−1 = diag(|x̂i|2−p) O(n) 1

Totals: 3

4
m3 + 3

2
m2 + 2nm2 + nm + O(2m2 + m + n) 6m + 2

SBL-AVG (eq. 3.2.10)

Step of iteration Multiplies Time (par.)

σ2I + AΓAT nm + nm2 m + 1

ΓAT
(
σ2I + AΓAT

)
−1 3

4
(m3 + 2nm2) + O(2m2 + nm) 4m + n− 1

ΓAT
(
σ2I + AΓAT

)
−1

y nm 1

(Σx)i,i = [Γ− ΓAT
(
σ2I + AΓAT

)
−1

AΓ]i,i nm 1

Totals: 3

4
m3 + 5

2
nm2 + 3nm 5m + n + 2

+O(2m2 + nm)
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3.7 Conclusion

We have discussed methods for finding sparse representations of imagesusing overcomplete

dictionaries, and methods for learning those dictionaries to be adapted to the problem domain.

Images can be represented accurately with a very sparse code, with on the order of 2% of the

coefficients being nonzero. When the sources are unrestricted,x ∈ R
n, the SBL-AVG algorithm

provides the best performance, encoding images with fewer bits/pixel at the same error when

compared FOCUSS and matching pursuit. When the sources are required tobe non-negative,

xi ≥ 0, the FOCUSS+ and associated dictionary learning algorithm presented here provide the

best performance. Based on the success of SBL-AVG, future work could include the devel-

opment of dictionary learning algorithms that incorporate SBL-AVG into the vector selection

step. While the increased performance of sparse overcomplete coding comes at the price of in-

creased computational complexity, efficient parallel implementations in VLSI could make these

algorithms more practical for many applications.
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Chapter 4

Detecting Rare Events in Time-Series

of Nonparametric Data

Abstract

We compare machine learning methods for detecting rare events in a time series of noisy

and nonparametrically-distributed data. The methods are applied to a difficultreal-world prob-

lem: predicting computer hard-drive failure using attributes monitored internally by individual

drives. We develop a new algorithm based on the multiple-instance learning framework and the

naive Bayesian classifier (mi-NB) which is specifically designed for the lowfalse-alarm case,

and is shown to have promising performance. While not specific to vision tasks of the previ-

ous chapters, the new mi-NB algorithm may find uses in semi-supervised image categorization

tasks. Other methods compared are support vector machines (SVMs), unsupervised clustering,

and non-parametric statistical tests (rank-sum and reverse arrangements). The failure-prediction

performance of the SVM, rank-sum and mi-NB algorithm is considerably better than the thresh-

old method currently implemented in drives, while maintaining low false alarm rates.Our results

suggest that nonparametric statistical tests should be considered for learning problems involving

detecting rare events in time series data. An Appendix details the calculation of rank-sum signif-

icance probabilities in the case of discrete, tied observations, and we givenew recommendations

about when the exact calculation should be used instead of the commonly-used normal approx-

imation. These normal approximations may be particularly inaccurate for rareevent problems

129
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like hard drive failures.

4.1 Introduction

We present a comparison of learning methods applied to a difficult real-world pattern recog-

nition problem: predicting impending failure in hard disk drives. Modern hard drives are reliable

devices, yet failures can be costly to users and many would benefit froma warning of potential

problems that would give them enough time to backup their data. The problem can be character-

ized as one of detecting rare events from a time series of noisy and nonparametrically-distributed

attributes.

Hard drive manufacturers have been developing self-monitoring technology in their prod-

ucts since 1994, in an effort to predict failures early enough to allow users to backup their data

(Hughes et al., 2002). This Self-Monitoring and Reporting Technology (SMART) system uses

attributes collected during normal operation (and during off-line tests) to set a failure prediction

flag. The SMART flag is a one-bit signal that can be read by operating systems and third-party

software to warn users of impending drive failure. Some of the attributes used to make the failure

prediction include counts of track-seek retries, read errors, write faults, reallocated sectors, head

fly height too low or high, and high temperature. Most internally-monitored attributes are error

count data, implying positive integer data values, and a pattern of increasing attribute values (or

their rates of change) over time is indicative of impending failure. Each manufacturer devel-

ops and uses its own set of attributes and algorithm for failure prediction. Every time a failure

warning is triggered the drive can be returned to the factory for warranty replacement, so man-

ufacturers are very concerned with reducing the false alarm rates of their algorithms. Currently,

all manufacturers use a threshold algorithm which triggers a SMART flag when any single at-

tribute exceeds a predefined value. These thresholds are set conservatively to avoid false alarms

at the expense of predictive accuracy, with an acceptable false alarm rate on the order of 0.1%

per year (that is, one drive in 1000). For the SMART algorithm currentlyimplemented in drives,

manufacturers estimate the failure detection rate to be 3-10%. Our previous work has shown

that by using nonparametric statistical tests, the accuracy of correctly detected failures can be

improved to as much as 40-60% while maintaining acceptably low false alarm rates(Hughes

et al., 2002, Hamerly and Elkan, 2001).

In addition to providing a systematic comparison of prediction algorithms, there are two
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main novel algorithmic contributions of the present work. First, we cast the hard drive fail-

ure prediction problem as a multiple-instance (MI) learning problem (Dietterich et al., 1997)

and develop a new algorithm termed multiple-instance naive Bayes (mi-NB). The mi-NB algo-

rithm adheres to the strict MI assumption (Xu, 2003) and is specifically designed with the low

false-alarm case in mind. Our second contribution is to highlight the effectiveness and compu-

tational efficiency of nonparametric statistical tests in failure prediction problems, even when

compared with powerful modern learning methods. We show that the rank-sum test provides

good performance in terms of achieving a high failure detection rate with low false alarms at a

low computational cost. While the rank-sum test is not a fully general learning method, it may

prove useful in other problems that involve finding outliers from a known class. Other meth-

ods compared are support vector machines (SVMs), unsupervised clustering using the Autoclass

software of Cheeseman and Stutz (1995) and the reverse-arrangements test (another nonpara-

metric statistical test) (Mann, 1945). The best performance overall was achieved with SVMs,

although computational times were much longer and there were many more parameters to set.

The methods described here can be used in other applications where it is necessary to detect

rare events in time series including medical diagnosis of rare diseases (Bridge and Sawilowsky,

1999, Rothman and Greenland, 2000), financial forecasting such as predicting business failures

and personal bankruptcies (Theodossiou, 1993), and predicting mechanical and electronic device

failure (Preusser and Hadley, 1991, Weiss and Hirsh, 1998).

4.1.1 Previous Work in Hard Drive Failure Prediction

In our previous work (Hughes et al., 2002) we studied the SMART failureprediction prob-

lem, comparing the manufacturer-selected decision thresholds to the rank-sum statistical test.

The data set used was from the Quantum Corporation, and contained datafrom two drive mod-

els. The data set used in the present paper is from a different manufacturer, and includes many

more attributes (61 vs. 14), which is indicative of the improvements in SMART monitoring

that have occurred since the original paper. An important observationsmade by Hughes et al.

(2002) was that many of the SMART attributes arenonparametrically distributed, that is, their

distributions cannot be easily characterized by standard parametric statistical model (such as

normal, Weibull, chi-squared, etc.). This observation led us to investigate nonparametric sta-

tistical tests for comparing the distribution of a test drive attribute to the known distribution of
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good drives. Hughes et al. (2002) compared single-variate and multivariate rank-sum tests with

simple thresholds. The single-variate test was combined for multiple attributes using a logical

OR operation, that is, if any of the single attribute tests indicated that the drivewas not from

the good population, then the drive was labeled failed. The OR-ed test performed slightly better

than the multivariate for most of the region of interest (low false alarms). In the present paper

we use only the single-variate rank-sum test (OR-ed decisions) and compare additional machine

learning methods, Autoclass and support vector machines. Another methodfor SMART failure

prediction, callednaive Bayes EM(expectation-maximization), using the original Quantum data

was developed by Hamerly and Elkan (2001). The naive Bayes EM is closely related to the

Autoclass unsupervised clustering method used in the present work. Using a small subset of the

features provided better performance than using all the attributes. Some preliminary results with

the current SMART data were presented in Murray et al. (2003).

4.1.2 Organization

This chapter is organized as follows: In Section 4.2, we describe the SMART data set

used here, how it differs from previous SMART data and the notation used for drives, patterns,

samples, etc. In Section 4.3, we discuss feature selection using statistical tests such as reverse

arrangements and z-scores. In Section 4.4, we describe the multiple instance framework, our new

algorithm multiple-instance naive-Bayes (mi-NB), the failure prediction algorithms, including

support vector machines, unsupervised clustering and the rank-sum test. Section 4.5 presents

the experimental results comparing the classifiers used for failure prediction and the methods of

preprocessing. A discussion of our results is given in Section 4.6 and conclusions are presented

in Section 4.7. An Appendix describes the calculation of rank-sum significance levels for the

discrete case in the presence of tied values, and new recommendations aregiven as to when the

exact test should be used instead of the standard approximate calculation.

4.2 Data Description

The data set consists of time series of SMART attributes from a single drive model, and

is a different data set than that used in Hughes et al. (2002), Hamerly and Elkan (2001).1 Data

1The SMART data set used in this paper is available athttp://cmrr.ucsd.edu/
smart
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from 369 drives were collected, and each drive was labeledgoodor failed, with 178 drives in

the good class and 191 drives in the failed class. Drives labeled as goodwere from a reliability

test, run in a controlled environment by the manufacturer. Drives labeled as failed were returned

to the manufacturer from users after a failure. It should be noted that since the good drive data

were collected in a controlled uniform environment and the failed data come from drives that

were operated by users, it is reasonable to expect that there will be differences between the

two populations due to the different manner of operation. Algorithms that attemptto learn the

difference between the good and failed populations may in fact be learningthis difference and

not the desired difference between good and nearly-failing drive samples. We highlight this

point to emphasize the importance of understanding the populations in the data and considering

alternative reasons for differences between classes.

A sampleis all the attributes for a single drive for a single time interval. Each SMART

sample was taken at two hour intervals in the operating drives, and the most recent 300 samples

are saved on the disk. The number of available valid samples for each drive i is denotedNi,

andNi may be less than 300 for those drives that did not survive 600 hours ofoperation. Each

sample contains the drive’s serial number, the total power-on-hours, and 60 other performance-

monitoring attributes. Not all attributes are monitored in every drive, and the unmonitored at-

tributes are set to a constant, non-informative value. Note that there is no fundamental reason

why only 300 samples were collected; this was a design choice made by the drive manufacturer.

Methods exist by which all samples over the course of the drive’s life canbe recorded for future

analysis. Figure 4.1 shows some selected attributes from a single good drive, and examples of

samples (each row) and patterns (the boxed area). When making a failureprediction apattern

xj ∈ R
n·a (wherea is the number of attributes) is composed of then consecutive samples and

used as input to a classifier. In our experimentsn was a design parameter which varied be-

tween 1 and 100. The pair(Xi,Yi) represents the data in each drive, where the set of patterns is

Xi = [x1, . . . ,xNi
] and the classification isYi ∈ { 0, 1}. For drives labeled good,Yi = 0 and

for failed drivesYi = 1.

Hughes et al. (2002) used a data set from a different manufacturer which contained many

more drives (3744 vs. 369) but with fewer failed drives (36 vs. 191). The earlier data set

contained fewer attributes (14 vs. 61), some of which are found in the newdata set but with

different names and possibly different methods of measurement. Also, allgood and failed drive

data were collected during a single reliability test (whereas in the current set, the failed drives
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         Hours Temp1                      ReadErr18          Servo10
1927 58 6 2944
1929 57 13 2688
1931 58 36 5184
1933 56 0 3776
1935 57 0 4032
1937 58 0 4480
1941 56 0 8384
1943 57 2 7808
1945 57 3 2176
1947 56 14 3328
1949 57 3 2176
1951 56 8 2752

. . . .

. . . .
2534 56 4 2176
2536 59 8 2752
2538 57 20 2624






Pattern


of n = 5


samples

N total


samples

Figure 4.1: Selected attributes from a single good drive. Each row of the table represents a sam-
ple (all attributes recorded for a single time interval). The box shows then selected consecutive
samples in each patternxj used to make a failure prediction at the time pointed at by the arrow.
The first sample available in the data set for this drive is from Hours = 1927, as only the most
recent 300 samples are stored in drives of this model.

were returns from the field).

A preliminary examination of the current set of SMART data was done by plotting the

histograms of attributes from good and failed drives. Figure 4.2 shows histograms of some

representative attributes. As was found with earlier SMART data, for manyof the attributes

the distributions are difficult to describe parametrically as they may be multimodal (such as the

Temp4 attribute) or very heavy tailed. Also noteworthy, many attributes have large numbers of

zero values, and these zero-count bins are truncated in the plots. These highly non-Gaussian

distributions initially lead us to investigate nonparametric statistical tests as a method of failure

prediction. For other pattern recognition methods, special attention should be paid to scaling and

other preprocessing.

4.3 Feature Selection

The process of feature selection includes not only deciding which attributes to use in the

classifier, but also the number of time samples,n, used to make each decision, and whether

to perform a preprocessing transformation on these input time series. Of course, these choices

depend strongly on which type of classifier is being used, and issues of feature selection will
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Figure 4.2: Histograms of representative attributes from good and failed drives, illustrating the
nonparametric nature of many of the attributes. Axis scales are different for each plot to em-
phasize features of their distributions. Zero-count bins are much largerthan plotted and the
count-axis is shortened accordingly.



136

also be discussed in the following sections.

As will be demonstrated below, some attributes are not strongly correlated withfuture drive

failure and including these attributes can have a negative impact on classifier performance. Be-

cause it is computationally expensive to try all combinations of attribute values,we use the fast

nonparametric reverse-arrangements test and attribute z-scores to identify potentially useful at-

tributes. If an attribute appeared promising with either method it was considered for use in the

failure detection algorithms (see Section 4.4).

4.3.1 Reverse Arrangements Test

The reverse arrangements testis a nonparametric test for trend which is applied to each

attribute in the data set (Mann, 1945, Bendat and Piersol, 2000). It is used here based on the idea

that a pattern of increasing drive errors is indicative of failure. Suppose we have a time sequence

of observations of a random variable,xi, i = 1...N . In our casexi could be, for example, the

seek error count of the most recent sample. The test statistic,A =
∑N−1

i=1 Ai, is the sum of all

reverse arrangements, where a reverse arrangement is defined as an occurrence ofxi > xj when

i < j. To findA we use the intermediate sumsAi and the indicator functionhij ,

Ai =
N∑

j=i+1

hij where hij = I(xi > xj) .

We now give an example of calculatingA for the case ofN = 10. With datax (which is assumed

to be a permutation of the ranks of the measurements),

x = [x1, . . . , x10] = [ 1, 4, 3, 7, 2, 8, 6, 10, 9, 5 ] ,

the values ofAi for i = 1 . . . 9 are found,

A1 =

10∑

j=2

h1j = 0 , A2 =

10∑

j=3

h2j = 2 , . . . A9 =

10∑

j=9

h9j = 1 ,

with the values[Ai] = [ 0, 2, 1, 3, 0, 2, 1, 2, 1 ]. The test statisticA is the sum of these values,

A = 12.

For large values ofN , the test statisticA is normally distributed under the null hypothesis

of no trend (all measurements are random with the same distribution) with mean andvariance

(Mann, 1945),

µA =
N(N − 1)

4
, σ2

A =
2N3 + 3N2 − 5N

72
.
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For small values ofN , the distribution can be calculated exactly by a recursion (Mann, 1945,

eq. 1). First, we find the countCN (A) of permutations of{1, 2, . . . , N} with A reverse arrange-

ments,

CN (A) =

A∑

i=A−N+1

CN−1(i) ,

whereCN (A) = 0 for A < 0 andC0(A) = 0. Since every permutation is equally likely with

probability 1
n! under the null hypothesis, the probability ofA is CN (A)

n! .

Tables of the exact significance levels ofA have been made. For significance levelα,

Appendix Table A.6 of Bendat and Piersol (2000) gives the acceptance regions,

AN ;1−α/2 < A ≤ AN ;α/2 ,

for the null hypothesis of no trend in the sequencexi (that is, thatxi are independent observations

of the same underlying random variable).

The test is formulated assuming that the measurements are drawn from a continuous dis-

tribution, so that the ranksx are distinct (no ties). SMART error count data values are discrete

and allow the possibility of ties. It is conventional in rank-based methods to add random noise

to break the ties, or to use themidrankmethod described in Section 4.4.6.

4.3.2 Z-scores

Thez-scorecompares the mean values of each attribute in either class (good or failed). It is

calculated over all samples,

z =
mf −mg√

σ2

f

nf
+

σ2
g

ng

,

wheremf andσ2
f are the mean and variance of the attribute in failed drives,mg andσ2

g are the

mean and variance in good drives,nf andng are the total number of samples of failed and good

drives. Large positive z-scores indicate the attribute is higher in the population of failed drive

samples, and that there is likely a significant difference in the means betweengood and failed

samples. However, it should be noted that the z-score was developed in the context of Gaussian

statistics, and may be less applicable to nonparametric data (such as the errorcount attributes

collected by hard drives).
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4.3.3 Feature Selection for SMART Data

To apply the reverse arrangements test to the SMART data for the purposeof feature extrac-

tion, the test is performed on a set of 100 samples taken at the end of the time series available.

To break ties, uniform random noise within the range[−0.1, 0.1] is added to each value (which

are initially non-negative integers). The percentage of drives for which the null hypothesis of

no trend is rejected is calculated for good and failed drives. Table 4.3.3 listsattributes and the

percent of drives that have significant trends for the good and failedpopulations. The null hy-

pothesis (no trend) was accepted for1968 ≤ A ≤ 2981, for a significance level higher than

99%. We are interested in attributes that have both a high percentage of failed drives with sig-

nificant trends and a low percentage of good drives with trends, in the belief that an attribute

that increases over time in failed drives while remaining constant in good drives is likely to be

informative in predicting impending failure.

From Table 4.3.3 we can see that attributes such as Servo2, ReadError18 and Servo10 could

be useful predictors. Note that these results are reported for a test ofone group of 100 samples

from each drive using a predefined significance level, and no learningwas used. This is in

contrast to the way a failure prediction algorithm must work, which must test each of many

(usuallyN ) consecutive series of samples, and if any fail, then the drive is predicted to fail (see

Section 4.4.1 for details).

Some attributes (for example CSS) arecumulative, meaning that they report the number

of occurrences since the beginning of the drive’s life. All cumulative attributes either will have

no trend (nothing happens) or have a positive trend. Spin-ups is the number of times the drive

motors start the platters spinning, which happens every time the drive is turned on, or when it

reawakens from a low-power state. It is expected that most drives will be turned on and off

repeatedly, so it is unsurprising that both good and failed drives show increasing trends in Table

1. Most attributes (for example ReadError18) report the number of occurrences during the two-

hour sample period.

Table 4.3.3 lists selected attributes sorted by descending z-score. Attributesnear the top are

initially more interesting because of more significant differences in the means,that is, the mean

value of an attribute (over all samples) for failed drives was higher than for good drives. Only

a few of the attributes had negative z-scores, and of these even fewerwere significant. Some

attributes with negative z-scores also appeared to be measured improperlyfor some drives.
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Attribute % Good % Failed
Temp1 11.8% 48.2%
Temp3 34.8% 42.9%
Temp4 8.4% 58.9%
GList1 0.6% 10.7%
PList 0.6% 3.6%
Servo1 0.0% 0.0%
Servo2 0.6% 30.4%
Servo3 0.6% 0.0%
CSS 97.2% 92.9%
ReadError1 0.0% 0.0%
ReadError1 0.6% 5.4%
ReadError3 0.0% 0.0%
WriteError 1.1% 0.0%
ReadError18 0.0% 41.1%
ReadError19 0.0% 0.0%
Servo7 0.6% 0.0%
ReadError20 0.0% 0.0%
GList3 0.0% 8.9%
Servo10 1.7% 39.3%

Table 4.1: Percent of drives with significant trends by the reverse arrangements test for selected
attributes, which indicates potentially useful attributes. Note that this test is performed only
on the lastn = 100 samples of each drive, while a true failure prediction algorithm must test
each pattern ofn samples taken throughout the drives’ history. Therefore, these results typically
represent an upper bound on the performance of a reverse-arrangements classifier. CSS are
cumulative and are reported over the life of the drive, so it is unsurprising that most good and
failed drives show increasing trends (which simply indicate that the drive has been turned on and
off).

From the results of the reverse arrangements and z-score tests, a set of 25 attributes2 was

selected by hand from those attributes which appear to be promising due to increasing attribute

trends in failed drives and large z-score values. The tests also help eliminate attributes that are

not measured correctly, such as those with zero or very high variance.3 This set of attributes was

2Attributes in the set of 25 are: GList1, PList, Servo1, Servo2, Servo3, Servo5, ReadEr-
ror1, ReadError2, ReadError3, FlyHeight5, FlyHeight6, FlyHeight7,FlyHeight8, FlyHeight9,
FlyHeight10, FlyHeight11, FlyHeight12, ReadError18, ReadError19, Servo7, Servo8, ReadEr-
ror20, GList2, GList3, Servo10.

3Attributes that were not used because all measurements were zero are: Temp2, Servo4,
ReadErr13-16. Also excluded are other attributes that appear to be measured improperly for
certain drives are FlyHeight13-16, Temp5, and Temp6.
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used in the SVM, mi-NB and clustering algorithms (see the next section). Individual attributes

in this set were tried one at a time with the rank-sum test. Attributes that providedgood failure

detection with low false alarms in the classifiers were then used together (see Section 4.5).

We note that the feature selection process is not a black-box automatic method, and re-

quired trial-and-error testing of attributes and combinations of attributes in theclassifiers. Many

of the attributes that appeared promising from the z-score and reverse-arrangements tests did

not actually work well for failure prediction, while other attributes (such asReadError19) were

known to be important from our previous work and from engineering andphysics knowledge of

the problem gained from discussions with the manufacturers. While an automatic feature selec-

tion method would be ideal, it would likely involve a combinatorial optimization problemwhich

would be computationally expensive.

The z-scores for each attribute were calculated using the entire data set, which may lead

to questions about training on the test set. (The reverse-arrangements test was calculated using

only about 1/3 of the data). In practical terms, z-scores obtained using random subsets are

similar and lead to the same conclusions about attribute selection. Conceptually,however, the

issue remains: is it correct to use data that has been used in the feature selection process in

the test sets used for estimating performance? Ideally, the reuse of data should be avoided, and

thedouble-resamplingmethod should be used to estimate performance (Cherkassky and Mulier,

1998). In double-resampling, the data is divided into atraining set and apredictionset, with the

prediction set used only once to measure error, and the training set further divided intolearning

andvalidation sets that are used for feature selection and parameter tuning (by way of cross-

validation). Double-resampling produces an unbiased estimate of error, but for finite data sets

the estimate can be highly dependent on the initial choice of training and prediction sets, leading

to high variance estimates. For the hard-drive failure problem, the number of drives is limited,

and the variance of the classification error (see Section 5) is already quitehigh. Further reducing

the data available by creating a separate prediction set would likely lead to high-variance error

estimates (the variance of which cannot be estimated). We note that for all theclassification

error results in Section 4.5, the test set was not seen during the training process. The issue just

discussed relates to the question of whether we have biased the results by having performed

statistical tests on the complete data set and used those results to inform our (mostly manual)

feature and attribute selection process. The best solution is to collect more data from drives to

validate the false alarm and detection rates, which a drive manufacturer would do in any case
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Attribute z-score
Servo5 45.4
Servo10 29.5
Writes 28.1
FlyHeight6 24.8
FlyHeight8 23.7
FlyHeight9 22.7
FlyHeight7 22.5
Reads 22.3
FlyHeight10 21.3
FlyHeight11 19.8
FlyHeight13 19.8
FlyHeight12 19.6
Servo2 16.2
ReadError18 15.1
FlyHeight1 12.4
ReadError1 11.2
ReadError3 10.2
ReadError1 9.5
PList 8.3

Table 4.2: Attributes with large positive z-score values.

to test the method and set the operating curve level before actual implementation of improved

SMART algorithms in drives.

4.4 Failure Detection Algorithms

We describe how the pattern recognition algorithms and statistical tests are applied to the

SMART data set for failure prediction. First, we discuss the preprocessing that is done before the

data is presented to some of the pattern recognition algorithms (SVM and Autoclass); the rank-

sum and reverse-arrangements test require no preprocessing. Next, we develop a new algorithm

called multiple-instance naive-Bayes (mi-NB) based on the multiple-instance framework and

especially suited to low-false alarm detection. We then describe how the SVM and unsupervised

clustering (Autoclass) algorithms are applied. Finally we discuss the nonparametric statistical

tests, rank-sum and reverse-arrangements.

Some notation and methods are common among all the pattern recognition algorithms.A

vectorx of n consecutive samples (out of theN total samples from each drive) of each selected
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attribute is used to make the classification, and every vector ofn consecutive samples in the

history of the drive is used (see Figure 4.1). The length ofx is (n× a) wherea is the number of

attributes. There areN vectorsx created, with zeros prepended to thosex in the early history of

the drive. Results are not significantly different if the early samples are omitted (that is,N − n

vectors are created) and this method allows us to make SMART predictions in thevery early

history of the drive. If anyx is classified as failed, then the drive is predicted to fail. Since

the classifier is applied repeatedly to allN vectors from the same drive, each test must be very

resistant to false alarms.

4.4.1 Preprocessing: Scaling and Binning

Because of the nonparametric nature of the SMART data, two types of preprocessing were

considered: binning and scaling. Performance comparison of the preprocessing is given in Sec-

tion 4.5.

The first type of preprocessing isbinning(or discretization), which takes one of two forms:

equal-frequencyor equal-width(Dougherty et al., 1995). In equal-frequency binning, an at-

tributes’ values are converted into discrete levels such that the number of counts at each level

is the same (the discrete levels are percentile groups). In equal-width binning, each attribute’s

range is divided into a fixed number of equal magnitude bins and values areconverted into bin

numbers. In both cases, the levels are set based on the training set. In both the equal-width and

equal-frequency cases, the rank-order with respect to bin is preserved (as opposed to converting

the attribute into multiple binary nominal attributes, one for each bin). Because there are a large

number of zeros for some attributes in the SMART data (see Figure 4.2), a special zero-count

bin is used with both equal-width and equal-frequency binning. The two types of binning were

compared using the Autoclass and SVM classifiers. For the SVM, the default attribute scaling

in the algorithm implementation (MySVM) was also compared to binning (see 4.4.4).

Binning (as a form of discretization) is a common type of preprocessing in machine learning

and can provide certain advantages in performance, generalization andcomputational efficiency

(Frank and Witten, 1999, Dougherty et al., 1995, Catlett, 1991). As shown by Dougherty et al.

(1995), discretization can provide performance improvements for certainclassifiers (such as

naive Bayes), and that while more complex discretization methods (such as those involving

entropy) did provide improvement over binning, the difference in performance between binning
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and the other methods was much smaller than that between discretization and no discretization.

Also, binning can reduce overfitting resulting in a simpler classifier which may generalize better

(Frank and Witten, 1999). Preserving the rank-order of the bins so that the classifier may take

into account the ordering information (which we do) has been shown to be an improvement over

binning into independent nominal bins (Frank and Witten, 1999). Finally, for many algorithms,

it is more computationally efficient to train using binned or discretized attributes rather than

numerical values. Equal-width binning into five bins (including the zero-count bin) was used

successfully by Hamerly and Elkan (2001) on the earlier SMART data set, and no significant

difference was found using up to 20 bins.

4.4.2 The Multiple-Instance Framework

The hard drive failure prediction problem can be cast as amultiple-instance learningprob-

lem, which is a two-class semi-supervised problem. In multiple-instance (MI) learning, we have

a set of objects which generate manyinstancesof data. All the data from one object is known

as abag. Each bag has a single label{ 0, 1}, which is assumed to be known (and given during

training), while each instance also has a true label{ 0, 1} which is hidden. The label of a bag is

related to the correct labeling of the instances as follows: if the label of each instance is 0, then

the bag label is 0; ifany of the instances is labeled 1, then the bag label is 1. This method of

classifying a bag as 1 if any of its instances is labeled 1 is known as theMI assumption. Because

the instance labels are unknown, the goal is to learn the labels, knowing thatat least one of the

instances in each 1 bag has label 1, and all the instance labels in each 0 bagshould be 0.

The hard drive problem can be fit naturally into the MI framework. Each patternx (com-

posed ofn samples) is an instance, and the set of all patterns for a drivei is the bagXi. The terms

bag labelanddrive labelare interchangeable, with failed drives labeledYi = 1 and good drives

labeledYi = 0. The hidden instance (pattern) labels areyj , j = 1 . . . Ni for theNi instances in

each bag (drive). Figure 4.3 show a schematic of the MI problem.

The multiple-instance framework was originally proposed by Dietterich et al. (1997) and

applied to a drug activity prediction problem; that of discovering which molecules (each of which

may exist in a number of different shapes, the group of all shapes for aspecific molecule com-

prising a bag) bind to certain receptors, specifically that of smell receptors for the scent of musk.

The instances consist of 166 attributes that represent the shape of onepossible configuration of
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a molecule from X-ray crystallography, and the class of each molecule (bag) is1 if the molecule

(any instance) smells like musk as determined by experts. The so-called “musk” data sets have

become the standard benchmark for multiple-instance learning.

The algorithm developed by Dietterich et al. (1997) is called axis-parallel-rectangles, and

other algorithms were subsequently developed based on many of the paradigms in machine

learning such as support vector machines (Andrews et al., 2003), neural networks, expectation-

maximization, nearest-neighbor (Wang and Zucker, 2000), as well as special purpose algorithms

like the diverse-density algorithm. An extended discussion of many of theseis given by Xu

(2003), who makes the important distinction between two classes of MI algorithms: those which

adhere to the MI assumption (as described above) and those which make other assumptions, most

commonly that the label for each positive bag is determined by some other methodthan simply

if one instance has a positive label. Algorithms that violate the MI assumption usually assume

that the data from all instances in a bag is available to make a decision about theclass. Such

algorithms are difficult to apply to the hard drive problem, as we are interested in construction

on-line classifiers that make a decision based on each instance (pattern) as it arrives. Algorithms

that violate the MI-assumption include Citation-k-Nearest-Neighbors (Wangand Zucker, 2000),

SVMs with polynomial minimax kernel, and the statistical and wrapper methods of Xu (2003),

and these will not be considered further for hard drive failure prediction.

4.4.3 Multiple Instance Naive Bayes (mi-NB)

We now develop a new multiple instance learning algorithm using naive Bayes (also known

as thesimple Bayesian classifier) and specifically designed to allow control of the false alarm

rate. We call this algorithm mi-NB (multiple instance-naive Bayes) because ofits relation to

the mi-SVM algorithm of Andrews et al. (2003). The mi-SVM algorithm does adhere to the MI

assumption and so could be used for the hard drive task, but since it requires repeated relearning

of an SVM, it is presently too computationally intensive. By using the fast naive Bayes algorithm

as the base classifier, we can create an efficient multiple-instance learningalgorithm.

The mi-NB algorithm begins by assigning a labelyj to each pattern: for good drives, all

patterns are assignedyj = 0; for failed drives, all patterns except for the last one in the time

series are assignedyj = 0, with the last one assigned to the failed class,yNi
= 1. Using these

class labels, a naive Bayes model is trained (see below). Using the NB model, each pattern



145

Figure 4.3: Multiple-instance learning. The numbers are bag (drive) numbers, and each circle or
square represents an instance (pattern). Instances from class +1 (failed drives) are squares, while
instances from class 0 are circles. The + or - in each instance represents the hidden underlying
class of each instance, 1 or 0 respectively. The decision surface represents the classification
boundary induced by a classifier. Grayed instances are those misclassified by the decision sur-
face. Bag 1: All - instances are classified correctly, and the bag is correctly classified as 0 (good
drive). Bag 2: One instance is classified as +, so the bag is correctly classified as 1 (failed drive).
Bag 3: One instance of the failed drive is classified as -, but another is classified as +, so the bag
is correctly classified (failed). Bag 4: An instance with true class - is labeled+, so the bag is
misclassified as 1 (false alarm). Bag 5: All instances of the + bag (failed drive) are classified as
-, so the bag is misclassified as 0 (missed detection).
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in the training set is assigned to a classŷj ∈ { 0, 1}. Because nearly all patterns are assigned

to the good classyj = 0, this initial condition insures that the algorithm will start with a low

false alarm rate. In each iteration of the mi-NB algorithm, for every failed drive Yi = 1 that

was misclassified (that is, all patterns were classified as good,ŷj = 0), the patternj∗ (with

current labelyj = 0) that is most likely to be from the failed class,j∗ = arg max
j∈{1...Ni|yj=0}

f1(xj),

is relabeled to the failed classyj∗ = 1, wheref1(x) is the log-posterior of class 1 (see Equation

4.4.1 below). The NB model is updated using the new class labels (which can be done very

efficiently). Iterations continue until the false alarm rate on the training set increases to over the

target level,FA > FAtarget. The mi-NB algorithm is detailed in Algorithm 1. The procedure

given in Algorithm 1 may be applied with different base classifiers other thannaive Bayes,

although the resulting algorithm may be computationally expensive unless thereis an efficient

way to update the model without retraining from scratch. Other stopping conditions could also

be used, such as detection rate greater than a certain value or number of iterations.

In Bayesian pattern recognition, themaximum a posterior(MAP) method is used to esti-

mate the clasŝy of a patternx,

ŷ = arg max
c∈{0,1}

p(y = c|x)

= arg max
c∈{0,1}

p(x|y = c)p(y = c) .

The “naive” assumption in naive Bayes is that the class-conditional distribution p(x|y = c) is

factorial (independent components),p(x|y = c) =
∏n· a

m=1 p(xm|y = c) wheren ·a is the size of

x (see Section 4.2). The class estimate becomes,

fc(x) =

n· a∑

m=1

log p̂(xm|y = c) + log p̂(y = c)

ŷ = arg max
c∈{0,1}

fc(x) , (4.4.1)

where we have used estimatesp̂ of the probabilities. Naive Bayes has been found to work well

in practice even in cases where the componentsxm are not independent, and a discussion of this

is given by Domingos and Pazzani (1997). Assuming discrete distributionsfor xm, counts of the

number elements#{·} can be found. Training a naive Bayes classifier is then a matter of finding
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Algorithm 1 mi-NB Train (for SMART failure prediction)
Input: x,Y, FAdesired(desired false alarm rate)

Initialize:

Good drives: For drives withYi = 0 initialize yj = 0 for j = 1 . . . Ni

Failed drives: For drives withYi = 1 initialize yj = 0 for j = 1 . . . Ni − 1, and

yNi
= 1

Learn NB model

ŷj = arg max
c∈{0,1}

fc(xj) Classify each pattern using the NB model

FindFA andDET rate

while FA < FAtarget do

for all Misclassified failed drives,̂yj = 0 ∀ j = 1 . . . Ni do

j∗ = arg max
j∈{1...Ni|yj=0}

f1(xj) Find pattern closest to decision surface with labelyj = 0

yj∗ ← 1 Reclassify the pattern as failed

Update NB model

end for

ŷj = arg max
c∈{0,1}

fc(xj) Reclassify each pattern using the NB model

FindFA andDET rate

end while

Return: NB model

the smoothed empirical estimates,

p̂(xm = k|y = c) =
#{xm = k, y = c}+ ℓ

#{y = c}+ 2ℓ

p̂(y = c) =
#{y = c}+ ℓ

#{patterns}+ 2ℓ
, (4.4.2)

whereℓ is a smoothing parameter, which we set toℓ = 1 corresponding to Laplace smooth-

ing (Orlitsky et al. (2003), who also discuss more recent methods for estimating probabilities,

including those based on the Good-Turing estimator). Ng and Jordan (2002) show that naive

Bayes has a higher asymptotic error rate (as the amount of training data increases) but that it

approaches this rate more quickly than other classifiers and so may be preferred in small-sample

problems. Since each time we have to switch a pattern in the mi-NB iteration, we only have to

change a few of the counts in (4.4.2), updating the model after relabeling certain patterns is very

fast.
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Next, we show that the mi-NB algorithm has non-decreasing detection and false alarm rates

over the iterations.

Lemma 1 At each iterationt, the mi-NB algorithm does not decrease the detection and false

alarm rates (as measured on the training set) over the previous iterationt− 1,

f
(t−1)
1 (xj) ≤ f

(t)
1 (xj)

f
(t−1)
0 (xj) ≥ f

(t)
0 (xj) ∀j = 1 . . . N . (4.4.3)

Proof At iterationt− 1 the probability estimates for a certaink are,

p̂t−1(xm = k|y = 1) =
b + ℓ

d + 2ℓ
,

whereb = #{xm = k, y = c}, d = #{y = c}, and of courseb ≤ d. Since class estimates are

always switched fromyj = 0 to 1, for somek

p̂t(xm = k|y = 1) =
b + ℓ + 1

d + 2ℓ + 1

(and for otherk it will remain constant). It is now shown that the conditional probability esti-

mates are non-decreasing,

p̂t−1(xm = k|y = 1) ≤ p̂t(xm = k|y = 1)

(b + ℓ)(d + 2ℓ + 1) ≤ (d + 2ℓ)(b + ℓ + 1)

b ≤ d + ℓ ,

with equality only in the case ofb = d, ℓ = 0. Similarly, the prior estimate is also non-

decreasing,̂pt−1(y = 1) ≤ p̂t(y = 1). From (4.4.1) this implies thatf (t−1)
1 (x) ≤ f

(t)
1 (x).

For classy = 0, it can similarly be shown that̂pt−1(xm = k|y = 0) ≥ p̂t(xm = k|y = 0)

andp̂t−1(y = 0) ≥ p̂t(y = 0), implying f
(t−1)
0 (xj) ≥ f

(t)
0 (xj) and completing the proof.

Note that Algorithm 1 never relabels a failed pattern as a good pattern, as thismight reduce

the detection rate (and invalidate the proof of Lemma 1 in Section 4.3). The initial conditions

of the algorithm ensure a low false alarm rate, and the algorithm proceeds (in a greedy fashion)

to pick patterns that are mostly likely representatives of the failed class without re-evaluating

previous choices. A more sophisticated algorithm could be designed that moves patterns back to

the good class as they become less likely failed candidates, but this requiresa computationally

expensive combinatorial search.
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4.4.4 Support Vector Machines (SVMs)

The support vector machine (SVM) is a popular modern pattern recognitionand regression

algorithm. First developed by Vapnik (1995), the principle of the SVM classifier is to project

the data into a higher dimensional space where the classes are separated by a linear hyperplane

which is defined by a small set of support vectors. For an introduction to SVMs for pattern

recognition, see Burges (1998). The hyperplane is found by a quadratic optimization problem,

which can be formulated for either the case where the patterns are linearly separable, or the

non-linearly separable case which requires the use of slack variablesξi for each pattern and a

parameterC that penalizes the slack. We use the non-linearly separable case and in addition

use different penaltiesL+, L− for incorrectly labeling each class. The hyperplane is found by

solving,

min
w,b,ξ

1

2
‖w‖2 + C




∑

∀i|yi=+1

L+ξi +
∑

∀i|yi=−1

L−ξi





subject to: yi(w
T φ(xi) + b) ≥ 1− ξi

ξi ≥ 0

wherew andb are the parameters of the hyperplaneŷ = wT φ(x)+ b andφ(·) is the mapping to

the high-dimensional space implicit in the kernelk(xj ,xk) = φ(xj)
T φ(xk) (Burges, 1998). In

the hard-drive failure problem,L+ penalizes false alarms, andL− penalizes missed detections.

SinceC is multiplied by bothL+ andL−, there are only two independent parameters and we set

L− = 1 and adjustC, L+ when doing a grid search for parameters.

To apply the SVM to the SMART data set, drives are randomly assigned into training and

test sets for a single trial. For validation, means and standard deviations of detection and false

alarm rates are found over 10 trials, each with different training and testsets. Each pattern

is assigned to the same label as the drive (all patterns in a failed driveY = 1 are assigned

to the failed class,yi = +1, and all patterns in good drivesY = 0 are set toyi = −1).

Multiple instance learning algorithms like mi-SVM (Andrews et al., 2003) could beused to

find a better way of assigning pattern classes, but these add substantial extra computation to the

already expensive SVM training.

We use the MySVM4 package developed by Ruping (2000). Parameters for the MySVM

4MySVM is available at: http://www-ai.cs.uni-dortmund.de/SOFTWARE/
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software are set as follows:epsilon = 10−2, max iterations = 10000, convergence epsilon =

10−3. When equal-width or equal-frequency binning is used (see Section 4.4.1), no scale is set;

otherwise, the default attribute scaling in MySVM is used. The parametersC andL+ (with

L− = 1) are varied to adjust the tradeoff between detection and false alarms. Kernels tested

include dot product, polynomials of degree 2 and 3, and radial kernels with width parameterγ.

4.4.5 Clustering (Autoclass)

Unsupervised clustering algorithms can be used for anomaly detection. Here, we use the

Autoclass package (Cheeseman and Stutz, 1995) to learn a probabilistic model of the training

data from only good drives. If any pattern is an anomaly (outlier) from thelearned statistical

model of good drives, then that drive is predicted to fail. Theexpectation maximization (EM)

algorithm is used to find the highest-likelihood mixture model that fits the data. A number of

forms of the probability density function (pdf) are available, including Gaussian, Poisson (for

integer count data) and nominal (unordered discrete, either independent or covariant). For the

hard drive problem, they are all set to independent nominal to avoid assuming a parametric form

for any attribute’s distribution. This choice results in an algorithm very closely related to the

naive Bayes EMalgorithm (Hamerly and Elkan, 2001), which was found to perform well on

earlier SMART data.

Before being presented to Autoclass the attribute values are discretized intoeither equal-

frequency bins or equal-width bins (Section 4.4.1), where the bin range isdetermined by the

maximum range of the attribute in the training set (of only good drives). An additional bin was

used for zero-valued attributes. The training procedure attempts to find themost likely mixture

model to account for the good drive data. The number of clusters can also be determined by

Autoclass, but here we have restricted it to a small fixed number from 2 to 10. Hamerly and

Elkan (2001) found that for the naive Bayes EM algorithm, 2 clusters with 5bins (as above)

worked best. During testing, the estimated probability of each pattern under the mixture model

is calculated. A failure prediction warning is triggered for a drive if the probability of any of its

samples is below a threshold (which is a parameter of the algorithm). To increase robustness, the

input pattern contained between 1 and 15 consecutive samplesn of each attribute (as described

above for the SVM). The Autoclass threshold parameter was varied to adjust tradeoff between

MYSVM
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detection and false alarm rates.

4.4.6 Rank-sum Test

The Wilcoxon-Mann-Whitney rank-sum test is used to determine if the two random data

sets arise from the same probability distribution (Lehmann and D’Abrera, 1998, pg. 5). One set

T comes from the drive under test and the otherR is areference setcomposed of samples from

good drives. The use of this test requires some assumptions to be made about the distributions

underlying the attribute values and the process of failure. Each attribute has agood distribution

G and anabout-to-fail distribution F. For most of the life of the drive, each attribute value is

chosen from theG, and then at some time before failure, the values begin to be chosen from

F . This model posits an abrupt change fromG to F , however, the test should still be expected

to work if the distribution changes gradually over time, and only give a warning when it has

changed significantly from the reference set.

The test statisticWS is calculated by ranking the elements ofR (of sizem) andT (of size

n) such that each element ofR andT has a rankS ∈ [1, n + m] with the smallest element

assignedS = 1. The rank-sumWS is the sum of the ranksS of the test set.

The rank-sum test is often presented assuming continuous data. The attributes in the

SMART data are discrete which creates the possibility of ties. Tied values areranked by as-

signing identical values to theirmidrank(Lehmann and D’Abrera, 1998, pg. 18), which is the

average rank that the values would have if they were not tied. For example, if there were three

elements tied at the smallest value, they would each be assigned the midrank1+2+3
3 = 2.

If the set sizes are large enough (usually, if the smaller setn > 10 or m + n > 20), the

rank-sum statisticWS is normally distributed under the null hypothesis (T andR are from the

same population) due to the central limit theorem, with mean and variance:

E(WS) =
1

2
n(m + n + 1)

V ar(WS) =
mn(m + n + 1)

12
− CT ,

whereCT is the ties correction, defined as

CT =

mn
e∑

i=1
(d3

i
− di)

12(m + n)(m + n− 1)
,
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wheree is the number of distinct values inR andT , anddi is the number of tied elements at

each value (see Appendix A for more details). The probability of a particular WS can be found

using the standard normal distribution, and a critical valueα can be set at which to reject the null

hypothesis. In cases of smaller sets where the central limit theorem does not apply (or where

there are many tied values), an exact method of calculating the probability of the test statistic is

used (see Appendix A, which also gives examples of calculating the test statistic).

For application to the SMART data, the reference setR for each attribute (sizem = 50 for

most experiments) is chosen at random from the samples of good drives.The test setT (size

n = 15 for most experiments) is chosen from consecutive samples of the drive under test. If the

test set for any attribute over the history of the drive is found to be significantly different from

the reference setR then the drive is predicted to fail. The significance levelα is adjusted in the

range[10−7, 10−1] to vary the tradeoff between false alarms and correct detections. We usethe

one-sided test ofT coming from a larger distribution thanR, against the hypothesis of identical

distributions.

Multivariate nonparametric rank-based tests that exploit correlations between attribute val-

ues have been developed (Hettmansperger, 1984, Dietz and Killeen, 1981, Brunner et al., 2002).

A different multivariate rank-sum test was successfully applied to early SMART data (Hughes

et al., 2002). It exploits the fact that error counts are always positive. Here, we use a simple

OR test to use two or more attributes: if the univariate rank-sum test for anyattribute indicates a

different distribution from the reference set, then that pattern is labeled failed. The use of the OR

test is motivated by the fact that very different significance level ranges (per-pattern) for each

attribute were needed to achieve low false alarm rates (per-drive).

4.4.7 Reverse Arrangements Tests

The reverse arrangements test described above for feature selectioncan also be used for

failure prediction. No training set is required, as the test is used to determineif there is a signifi-

cant trend in the time series of an attribute. For use with the SMART data, 100 samples are used

in each test, and every consecutive sequence of samples is used. For each drive, if any test of

any attribute shows a significant trend, then the drive is predicted to fail. Aswith the rank-sum

test, the significance levelα controls the tradeoff between detection and false alarm rates.
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4.5 Results

In this section we present results from a representative set of experiments conducted with

the SMART data. Due to the large number of possible combinations of attributes and classifier

parameters, we could not exhaustively search this space, but we hopeto have provided some

insight into the hard drive failure prediction problem and a general picture of which algorithms

and preprocessing methods are most promising. We also can clearly see that some methods

are significantly better than the current industry-used SMART thresholdsimplemented in hard

drives (which provide only an estimated 3-10% detection rate with 0.1% false alarms).

4.5.1 Failure Prediction Using 25 Attributes

Figure 4.4 shows the failure prediction results in the form of a Receiver Operating Char-

acteristic (ROC) curve using the SVM, mi-NB, and Autoclass classifiers with the 25 attributes

selected because of promising reverse arrangements test or z-score values (see Section 4.3.3).

One sample per pattern was used, and all patterns in the history of each testdrive were tested.

(Using more than one sample per pattern with 25 attributes proved too computationally expen-

sive for the SVM and Autoclass implementations, and did not significantly improve the mi-NB

results.) The detection and false alarm rates were measured per drive: ifany pattern in the drive’s

history was classified as failed, the drive was classified as failed. The curves were created by

performing a grid search over the parameters of the algorithms to adjust the trade-off between

false alarms and detection. For the SVM, the radial kernel was used with theparameters adjusted

as follows: kernel widthγ ∈ [0.01, 0.1, 1], capacityC ∈ [0.001, 0.01, 0.1, 1], the cost penalty

L+ ∈ [1, 10, 100]. Table 4.5.3 shows the parameters used in all SVM experiments. For Auto-

class, the threshold parameter was adjusted in[99.99, 99.90, 99.5, 99.0, 98.5] and the number of

clusters was adjusted in[2, 3, 5, 10].

Although all three classifiers appear to have learned some aspects of the problem, the SVM

is superior in the low false-alarm region, with 50.6% detection and no measured false alarms.

For all the classifiers, it was difficult to find parameters that yielded low enough false alarm rates

compared with the low 0.3-1.0% annual failure rate of hard drives. For mi-NB, even at the initial

condition (which includes only the last sample from each failed drive in the failed class) there is

a relatively high false alarm rate of 1.0% at 34.5% detection.

For the 25 attributes selected, the SVM with the radial kernel and default scaling provided
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the best results. Results using the linear kernel with the binning and scaling are shown in Figure

4.5. The best results with the linear kernel were achieved with the default scaling, although

it was not possible to adjust to false alarm rate to 0%. Equal-width binning results in better

performance than equal-frequency binning for SVM and Autoclass. The superiority of equal-

width binning is consistent with other experiments (not shown) and so only equal-width binning

will be considered in the remaining sections. Using more bins (10 vs. 5) for the discretization

did not improve performance, confirming the results of Hamerly and Elkan (2001).

The good performance of the SVM comes at a high computational price as shown in Fig-

ure 4.6. The bars represent the average time needed to train each algorithm for a given set of

parameters. The total training time includes the time needed for the grid search tofind the best

parameters. For SVMs with the radial kernel (Figure 4.4), training took 497 minutes for each

set of parameters, and 17893 minutes to search all 36 points on the parameter grid. The mi-NB

algorithm was much quicker, and only had one parameter to explore, taking 17 minutes per point

and 366 minutes for the grid search.

Also of interest is how far in advance we are able to predict an imminent failure. Figure

4.7 shows a histogram of the time before actual failure that the drives are correctly predicted

as failing, plotted for SVM at the point50.6% detection,0.0% false alarms. The majority of

detected failures are predicted within 100 hours (about 4 days) beforefailure, which is a long

enough period to be reasonable for most users to backup their data. A substantial number of

failures were detected over 100 hours before failure, which is one of the motivations for initially

labeling all patterns from failed drives as being examples of the failed class(remembering that

our data only includes the last 600 hours of SMART samples from each drive).

4.5.2 Single-attribute Experiments

In an effort to understand which attributes are most useful in predicting imminent hard-

drive failure, we tested the attributes individually using the non-parametric statistical methods

(rank-sum and reverse arrangements). The results of the reverse arrangements test on individual

attributes (Section 4.3 and Table 4.3.3) indicate that attributes such as ReadError18 and Servo2

could have high sensitivity. The ReadError18 attribute appears promisingwith 41.1% of failed

drives and 0 good drives showing significant increasing trends. Figure 4.8 shows the failure

prediction results using only the ReadError18 attribute with the rank-sum, reverse arrangements,
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Figure 4.4: Failure prediction performance of SVM, mi-NB and Autoclass using 25 attributes
(one sample per pattern) measured per drive. For mi-NB, the results shown are for equal-width
binning. Autoclass is tested using both equal-width (EW) and equal-frequency (EF) binning
(results with 5 bins shown). Error bars are±1 standard error in this and all subsequent figures.
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Figure 4.5: Comparison of preprocessing with the SVM using 25 attributes (one sample per
pattern). A linear kernel is used, and the default attribute scaling is compared with equal-width
and equal-frequency binning.
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Figure 4.6: Training times (in minutes) for each of the algorithms used in Figures4.4 and 4.11.
The training times shown are averaged over a set of parameters. The totaltraining time includes
a search over multiple parameters. For example, the SVM used in Figure 4.4 required a grid
search over 36 points which took a total of 17893 minutes for training with parameter selection.
For the rank-sum test, only one parameter needs to be adjusted, and the training time for each
parameter value was 2.2 minutes, and 21 minutes for the search through all parameters.
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Figure 4.7: Histogram of time (hours) before failure that correct failureprediction was made.
Counts are summed over ten trials of SVM algorithm (radial kernel with 25 attributes) from
point in Figure 4.4 at 50.6% detection, no false alarms.
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Figure 4.8: Failure prediction performance of classifiers using a single attribute, ReadError18,
with 5 input samples per pattern. For rank-sum and reverse arrangements, error bars are smaller
than line markers. For this attribute, the SVM performed best using the radialkernel and default
attribute scaling (no binning).

and SVM classifiers. Reducing the number of attributes from 25 to 1 increases the speed of

all classifiers, and this increase is enough so that more samples can be used per pattern, with 5

samples per pattern used in Figure 4.8. The rank-sum test provided the best performance, with

24.3% detection with false alarms too low to measure, and33.2% detection with0.5% false

alarms. The mi-NB and Autoclass algorithms using the ReadError18 (not shown in Figure 4.8

for clarity) perform better than the reverse-arrangements test and slightly worse than the SVM.

Single attribute tests using rank-sum were run on all 25 attributes selected in Section 4.3.3

with 15 samples per pattern. Of these 25, only 8 attributes (Figure 4.9) were able to detect

failures at sufficiently low false alarm rates: ReadError1, ReadError2, ReadError3, ReadError18,

ReadError19, Servo7, GList3 and Servo10. Confirming the observations of the feature selection

process, ReadError18 was the best attribute, with 27.6% detection at 0.06% false alarms.

For the rank-sum test, the number of samples to use in the reference set (samples from good

drives) is an adjustable parameter. Figure 4.10 shows the effects of using reference set sizes 25,

50 and 100 samples, with no significant improvement for 100 samples over 50. For all other

rank-sum test results 50 samples were used in the reference set.
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Figure 4.9: Failure prediction performance of rank-sum using the best single attributes. The
number of samples per pattern is 15, with 50 samples used in the reference set.
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Figure 4.10: Rank-sum test with reference set sizes 25, 50 and 100 using ReadError18 attribute
and 15 test samples. There is no improvement in performance using 100 samples in the reference
set instead of 50 (as in all other rank-sum experiments).

4.5.3 Combinations of Attributes

Using combinations of attributes in the rank-sum test can lead to improved results over

single-attribute classifiers (Figure 4.11). The best single attributes from Figure 4.9 were Read-

Error1, ReadError3, ReadError18 and ReadError19. Using these four attributes and 15 samples

per pattern, the rank-sum test detected28.1% of the failures, with no measured false alarms.

Higher detection rates (52.8%) can be had if more false alarms are allowed (0.7%). These four

attributes were also tested with the SVM classifier (using default scaling). Interestingly, the lin-

ear kernel provided better performance than the radial, illustrating the need to evaluate different

kernels for each data set.

All the ROC curves plotted in this section include error bars at±1 standard error. We also

note that the number of good drives is relatively small (178) and with up to 40% of these used

in the training set, measuring low false alarm rates is imprecise. When results are reported with

false alarm rates of< 1%, this means that some of the trials had no false alarm drives while other

trials had very few (1 or 2). Because some drives are inherently more likely to be predicted as

false alarms, whether these drives are included in the test or training sets can lead to a variance

from trial to trial, causing large error bars at some of the points.
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Figure 4
Point Detection False Alarm Kernel gamma C L+ L-
1 50.60 0.00 radial 0.100 0.010 100.0 1.0
2 64.18 4.21 radial 0.010 0.100 100.0 1.0
3 70.38 6.20 radial 0.010 1.000 100.0 1.0

Figure 5
Point Detection False Alarm Kernel C L+ L-
1 default scaling 54.73 0.78 linear 0.001 1000.0 1.0
2 60.97 3.09 linear 0.100 5.0 1.0
3 63.17 7.75 linear 0.010 5.0 1.0
1 EW bins 11.18 0.00 linear 0.001 100.0 1.0
2 41.40 0.46 linear 0.001 5.0 1.0
3 48.05 1.72 linear 0.001 1.0 1.0
4 51.83 8.68 linear 0.001 0.5 1.0
1 EF bins 17.54 2.34 linear 0.001 5.0 1.0
2 42.90 11.09 linear 0.100 5.0 1.0
3 (off graph) 70.22 35.40 linear 0.100 10.0 1.0

Figure 8
Point Detection False Alarm Kernel gamma C L+ L-
1 8.28 0.00 radial 0.010 0.010 100.0 1.0
2 17.01 0.96 radial 0.100 0.010 1.0 1.0
3 30.29 3.45 radial 1.000 0.010 1.0 1.0

Figure 11
Point Detection False Alarm Kernel gamma C L+ L-
1 linear 5.43 0.17 linear 0.001 1000.0 1.0
2 15.82 0.35 linear 0.010 1000.0 1.0
3 32.92 0.51 linear 0.010 1.0 1.0
4 52.23 0.96 linear 0.100 1.0 1.0
1 radial 1.68 0.09 radial 0.100 0.001 100.0 1.0
2 9.29 0.53 radial 0.001 0.010 100.0 1.0
3 17.79 0.69 radial 1.000 1.000 1000.0 1.0
4 27.13 1.73 radial 0.100 0.100 100.0 1.0

Table 4.3: Parameters for SVM experiments in Figures 4, 5, 8 and 11.
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Figure 4.11: Failure prediction performance of rank-sum and SVM classifiers using four at-
tributes: ReadError1, ReadError3, ReadError18 and ReadError19.

4.6 Discussion

We discuss the results of our findings and their implications for hard-drivefailure prediction

and machine learning in general.

While the SVM provided the best overall performance (50.6% detection with no measured

false-alarms, see Figure 4.4), a few caveats should be noted. Using the radial kernel, three

parameters must be searched to find the optimum performance (kernel widthγ, capacityC

and cost penaltyL+) which was very computationally expensive and provides no guarantee

as to optimality. After examining the SVM classifiers, it was found that a large number of the

training examples were chosen as support vectors. For example, in a typical experiment using

the radial kernel with 25 attributes, over 26% of the training examples were support vectors

(6708 of 25658). This indicates that the classifier is likely overfitting the data and using outliers

as support vectors, possibly causing errors on unseen data. Other researchers have noticed this

property of SVMs and have developed algorithms that create smaller sets ofsupport vectors, such

as the relevance vector machine (Tipping, 2001), kernel matching pursuit (Vincent and Bengio,

2002) and Bayesian neural networks (Liang, 2003). The SMART failure prediction algorithms

(as currently implemented in hard-drives) run on the internal CPU’s of thedrive and have rather

limited memory and processing to devote to SMART. To implement the SVM classifierslearned

here, they would have to evaluate the kernel with each support vector for every new sample,

which may be prohibitive.
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The rank-sum test provided the second-best detection rate (on a set of 4 attributes, Figure

4.11), 28.1% with no measured false-alarms, and while lower than the best SVM result, it is

still much higher than the currently implemented SMART threshold algorithms. At higher false

alarm rates, the rank-sum detection rate is 52.8% with 0.7% false alarms, whichmeans (due to

the small number of good drives) that only 1 drive at most triggered a false alarm in the test set.

A larger sample of good drives would be desirable for a more accurate measure of the false alarm

rate. The rank-sum test has a number of advantages over the SVM: faster training time (about

100 times), faster testing of new samples, fewer parameters, and lower memory requirements.

These advantages may make it more suitable for implementation in hard drive firmware. For

offline situations where more processing power is available (such as whenthe failure prediction

algorithm is run on the host CPU), the SVM may be practical. For some machine learning

problems, the rank-sum test may be superior to SVMs as shown in Figure 4.11. In this case the

four attributes were selected because of good performance in the rank-sum test, and so of course

it is not an entirely fair comparison but in some situations the only attributes available may

be those that favor rank-sum. From a drive reliability perspective, the rank-sum test indicates

that attributes that measure read errors (in this case, ReadError1, ReadError3, ReadError18 and

ReadError19) were the most useful in predicting imminent failure. Also of interest, although

with less selectivity, are attributes that measure seek errors.

Our new mi-NB algorithm demonstrated promising initial performance, which although

less successful than the SVM was considerably better than the unsupervised Autoclass algorithm

which was also based on naive Bayesian models (Figure 4.4). The multiple instance framework

addresses the problem of which patterns in the time series should be labeled as failed during

learning. In order to reduce false alarms, our algorithm begins with the assumption that only the

last pattern in each failed drive’s history should be labeled failed, and during subsequent itera-

tions, it switches the labels of those good samples mostly likely to be from the faileddistribution.

This semi-supervised approach can be contrasted with the unsupervisedAutoclass and the fully

supervised SVM, where all patterns from failed drives were labeled failed.

The reverse-arrangements test performed more poorly than expected,as we believed that

the assumption of increasing trend made by this test was well suited for hard drive attributes (like

read-error counts) that would presumably increase before a failure.The rank-sum test makes no

assumptions about trends in the sets, and in fact all time-order information is removed in the

ranking process. The success of the rank-sum method led us to speculate that this removal of
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time-order over the sample interval was important for failure prediction. There are physical

reasons in drive technology why impending failure need not be associated with an increasing

trend in error counts. The simplest example is sudden stress from a failing drive component

which causes a sudden increase in errors, followed by drive failure.

It was also found that a small number of samples (from 1 to 15) in the input patterns was

sufficient to predict failure accurately, this indicates that the drive’s performance can degrade

quickly, and only a small window of samples is needed to make an accurate prediction. Con-

versely, using too many samples may dilute the weight of an important event thatoccurs within

a short time frame.

One of the difficulties in conducting this research was the need to try many combinations of

attributes and classifier parameters in order to construct ROC curves. ROC curves are necessary

to compare algorithm performance because the cost of misclassifying one class (in this case,

false alarms) is much higher than for the other classes. In many other real world applications

such as the examples cited in Section 4.1, there will also be varying costs for misclassifying

different classes. Therefore, we believe it is important that the machine learning community

develop standardized methods and software for the systematic comparison of learning algorithms

that include cycling through ranges of parameters, combinations of attributes and number of

samples to use (for time series problems). An exhaustive search may be prohibitive even with a

few parameters, so we envision an intelligent method that attempts to find the broad outline of

the ROC curve by exploring the limits of the parameter space, and gradually refines the curve

estimate as computational time allows. Another important reason to create ROC curves is that

some algorithms (or parameterizations) may perform better in certain regions of the curve than

others, with the best algorithm dependent on the actual costs involved (which part of the curve

we wish to operate in).

4.7 Conclusions

We have shown that both nonparametric statistical tests and machine learning methods can

significantly improve over the performance of the hard drive failure-prediction algorithms which

are currently implemented. The SVM achieved the best performance of 50.6% detection/0%

false alarms, compared with the 3-10% detection/0.1-0.3% false alarms of the algorithms cur-

rently implemented in hard drives. However, the SVM is computationally expensive for this
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problem and has many free parameters, requiring a time-consuming and non-optimal grid search.

We developed a new algorithm (mi-NB) in the multiple-instance framework that uses naive

Bayesian learning as its base classifier. The new algorithm can be seen assemi-supervised in

that it adapts the class label for each pattern based on whether it is likely to come from a failed

drive. The mi-NB algorithm performed considerably better than an unsupervised clustering algo-

rithm (Autoclass) that also makes the naive Bayes assumption. Further increases in performance

might be achieved with base classifiers other than naive Bayes, for example, the mi-SVM algo-

rithm (Andrews et al., 2003) could be suitably adapted but probably remains computationally

prohibitive.

We also showed that the nonparametric rank-sum test can be useful forpattern recogni-

tion and that it can have higher performance than SVMs for certain combinations of attributes.

The best performance was achieved using a small set of attributes: the rank-sum test with four

attributes predicted 28.1% of failures with no false alarms (and 52.8% detection/0.7% false

alarms). Attributes useful for failure prediction were selected by using z-scores and the reverse

arrangements test for increasing trend.

Improving the performance of hard drive failure prediction will have manypractical bene-

fits. Increased accuracy of detection will benefit users by giving theman opportunity to backup

their data. Very low false alarms (in the range of 0.1%) will reduce the numberof returned

good drives, thus lowering costs to manufacturers of implementing improved SMART algo-

rithms. While we believe the algorithms presented here are of high enough quality (relative to

the current commercially-used algorithms) to be implemented in drives, it is still important to

test them on larger number of drives (on the order of thousands) to measure accuracy to the

desired precision of0.1%. We also note that each classifier has many free parameters and it is

computationally prohibitive to exhaustively search the entire parameter space. We choose many

parameters by non-exhaustive grid searches; finding more principled methods of exploring the

parameter space is an important topic of future research.

We hope that the insights we have gained in employing the rank-sum test, multiple-instance

framework and other learning methods to hard drive failure prediction will be of use in other

problems where rare events must be forecast from noisy, nonparametric time series, such as in

the prediction of rare diseases, electronic and mechanical device failures, and bankruptcies and

business failures (see references in Section 4.1).
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4.A Exact and Approximate Calculation of the Wilcoxon-Mann-

Whitney Significance Probabilities

The Wilcoxon-Mann-Whitney test is a widely used statistical procedure forcomparing two

sets of single-variate data (Wilcoxon, 1945, Mann and Whitney, 1947). The test makes no as-

sumptions about the parametric form of the distributions each set is drawn from and so belongs to

the class of nonparametric or distribution-free tests. It tests the null hypothesis that the two dis-

tributions are equal against the alternative that one is stochastically largerthan the other (Bickel

and Doksum, 1977, pg. 345). For example, two populations identical except for a shift in mean

is sufficient but not necessary for one to be stochastically larger than the other.

Following Klotz (1966), suppose we have two setsX = [x1, x2, . . . , xn] , Y = [y1, y2,

. . . , ym], n ≤ m, drawn from distributionsF andG. The sets are concatenated and sorted, and

eachxi andyi is assigned a rank according to its place in the sorted list. The Wilcoxon statistic

WX is calculated by summing the ranks of eachxi, hence the term rank-sum test. Table 4.A

gives a simple example of how to calculateWX andWY . If the two distributions are discrete,

some elements may be tied at the same value. In most practical situations the distributions are

either inherently discrete or effectively so due to the finite precision of a measuring instrument.

The tied observations are given the rank of the average of the ranks that they would have taken,

called themidrank. Table 4.A gives an example of calculating the Wilcoxon statistic in the
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X 74 59 63 64 n = 4
Y 65 55 58 67 53 71 m = 6

[X, Y ] sorted 53 55 58 59 63 64 65 67 71 74
Ranks 1 2 3 4 5 6 7 8 9 10

X ranks 10 4 5 6 WX = 25
Y ranks 7 2 3 8 1 9 WY = 30

Table 4.4: Calculating the Wilcoxon statisticWX andWY without ties

discrete case with ties. There are five elements with the value ‘0’ which are allassigned the

average of their ranks:(1 + 2 + 3 + 4 + 5)/5 = 3.

To test the null hypothesisH0 that the distributionsF andG are equal against the alternative

Ha thatF (x) ≤ G(x)∀x, F 6= G we must find the probabilityp0 = P (WX > wx) that under

H0 the true value of the statistic is greater than the observed value, now calledwx (Lehmann

and D’Abrera, 1998, pg. 11). If we were interested in the alternative that F ≤ G or F ≥ G,

a two-sided test would be needed. The generalization to the two-sided caseis straightforward

and will not be considered here, see Lehmann and D’Abrera (1998, pg. 23). Before computers

were widely available, values ofp0 (the significance probability) were found in tables if the set

sizes were small (usuallym andn < 10) or calculated from a normal approximation if the set

sizes were large. Because of the number of possible combinations of tied elements, the tables

and normal approximation were created for the simplest case, namely continuous distributions

(no tied elements).

Lehman (1961) and Klotz (1966) report on the discrepancies between the exact value of

p0 and its normal approximation, which can be over 50%, clearly large enoughto lead to an

incorrect decision. Unfortunately, many introductory texts do not discuss these errors nor give

algorithms for computing the exact probabilities. Here we outline how to calculatethe exact

value ofp0 but keep in mind there are other more efficient (but more complicated) algorithms

(Mehta et al., 1988a,b, Pagano and Tritchler, 1983). Each element inX andY can take one ofc

values,z1 < z2 < · · · < zc. The probability thatxi will take on a valuezk is pk:

P (xi = zk) = pk i = 1..n, k = 1..c .
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X 0 0 0 1 3 n = 5
Y 0 0 1 2 2 3 4 m = 7

X ranks 3 3 3 6.5 10.5 WX = 26
Y ranks 3 3 6.5 8.5 8.5 10.5 12 WY = 52

z1 z2 z3 z4 z5

Discrete values: 0 1 2 3 4

t1 t2 t3 t4 t5
Ties configuration: 5 2 2 2 1

Table 4.5: Calculating the Wilcoxon statisticWX andWY with ties

Similarly for yi,

P (yj = zk) = rk j = 1..m, k = 1..c .

UnderH0, pk = rk ∀k. The count of elements inX that take on a valuezk is given byuk and

the count of elements inY that are equal tozk is given byvk so that

uk = #{X = zk} vk = #{Y = zk}
c∑

k=1

uk = n
c∑

k=1

vk = m .

The vectorsU = [u1, u2, . . . , uc] andV = [v1, v2, . . . , vc] give the ties configuration of X and Y.

The vectorT = [t1, t2, . . . , tc] = U +V gives the ties configuration of the concatenated set. See

Table 4.A for an example of how to calculateT . Under the null hypothesisH0, the probability

of observing ties configurationU is given by (Klotz, 1966),

P (U |T ) =

0B� t1

u1

1CA0B� t2

u2

1CA...

0B� tc

uc

1CA0B� n + m

n

1CA .

To findp0, we must find all theU such thatWU > Wx, whereWU is the rank sum of a set with

ties configurationU ,

p0 =
∑

Ui∈ Ug

P (Ui|T ) Exact significance probability

Ug = {U |WU > WX} . (4.A.1)
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m (Large)

10 15 20 25 30 35 40 45 50

5 12.298 5.332 6.615 8.480 2.212 0.947 1.188 0.527 0.630

n (Small) 10 4.057 3.482 2.693 0.595 0.224 0.14 0.064 0.091 0.042

15 1.648 0.306 0.069 0.081 0.026 0.019 0.010 0.009

20 0.082 0.048 0.016 0.014 0.006 0.005 0.006

Table 4.6: Mean-square error between exact and normal approximate tothe distribution ofW .
All zk are equally likely. Averages are over 20 trials at each set size

Equation (4.A.1) gives us the exact probability of observing a set with a rank sumW greater than

WX . Because of the number ofU to be enumerated, each requiring many factorial calculations,

the algorithm is computationally expensive but still possible for sets as large as m = 50 and

n = 20. We can compare the exactp0 to the widely-used normal approximation and find the

conditions when the approximation is valid and when the exact algorithm is needed.

The normal approximation to the distribution of the Wilcoxon statisticW can also be used

to find p0. BecauseW is the sum of identical, independent random variables, the central limit

theorem states that its distribution will be normal asymptotically. The mean and variance ofW

are given by Lehmann and D’Abrera (1998),

E(W ) =
1

2
n(m + n + 1)

Var(W ) =
mn(m + n + 1)

12
−

mn
c∑

i=1
(t3i − ti)

12(m + n)(m + n− 1)
. (4.A.2)

Using the results of (4.A.2) we can findp0 by using a table of normal curve area or com-

mon statistical software. Note that Var(W ) takes into account the configuration of tiesT =

[t1, t2, . . . , tc] defined above. The second term on the right in the expression for Var(W ) is

known as the ties correction factor.

The exact and approximate distributions ofW were compared for set sizes ranging from

10 ≤ m ≤ 50 and5 ≤ n ≤ 20 with tied observations. For each choice ofm andn the average

error between the exact and normal distributions is computed for0 ≤ p0 ≤ 0.20 which is the

range that most critical values will fall into. The mean-square error (mse)is computed over

20 trials for each set size. Table 4.A gives the results of this comparison for the case where

each discrete valuezk is equally likely,pk = rk = constant∀k. As expected, the accuracy
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m (Large)

10 15 20 25 30 35 40 45 50

5 31.883 25.386 28.300 26.548 14.516 16.654 19.593 9.277 11.380

n (Small) 10 3.959 4.695 3.594 1.884 1.058 1.657 0.427 0.735 0.369

15 1.984 0.733 0.311 0.336 0.230 0.245 0.317 0.205

20 0.303 0.146 0.123 0.059 0.045 0.071 0.034

Table 4.7: Mean-square error between exact and normal approximate tothe distribution ofW .
One discrete value,z1 is much more likely than the otherzk. Averages are over 20 trials at each
set size

improves as the set size increases, but it should be noted that these are only averages; that

accuracy ofp0 for any particular experiment may be worse than suggested by Table 4.A. To

illustrate this, Table 4.A compares the distributions in the case when the first value z1 is much

more likely (p1 = 60%) than the otherzk which are equally likely. Whenn < 10, the normal

approximation is too inaccurate to be useful even whenm = 50. This is the situation when using

the Wilcoxon test with the hard drive failure-prediction data, and motivated our investigation into

the exact calculation ofp0. Again, Tables 4.A and 4.A should be used only to observe the relative

accuracies of the normal approximation under various set sizes and distributions; the accuracy

in any particular problem will depend on the configuration of tiesT , the actual value ofp0, and

the set size. The inaccuracies of normal approximations in small sample data size situations is

a known aspect of the central limit theorem. It is particularly weak for statistics dependent on

extreme values (Kendall, 1969).

Recommendations Based on the results of the comparisons between the exact calculation of

p0 and the normal approximation (Tables 4.A and 4.A), we offer recommendations on how to

perform the Wilcoxon-Mann-Whitney test in the presence of tied observations:

1. If n ≤ 10 andm ≤ 50, the exact calculation should always be used.

2. The normal approximation loses accuracy if one of the values is much morelikely than

the others. If this is the case, values ofn ≤ 15 will require the exact calculation.

3. The exact calculation is no longer prohibitively slow forn ≤ 20 andm ≤ 50, and should

be considered if the significance probabilityp0 is close to the desired critical value.

These recommendations are stronger than those given in Emerson and Moses (1985). A
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number of software packages can perform the exact test, including StatXact (http://www.cytel.com),

the SAS System (http://www.sas.com) and SPSS Exact Tests (http://www.spss.com). We hope

that an increased awareness of exact procedures will lead to higher quality statistical results.
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