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Abstract
We develop an improved algorithm for solving blind

sparse linear inverse problems where both the dictionary
(possibly overcomplete) and the sources are unknown. The
algorithm is derived in the Bayesian framework by the
maximum a posteriori method, with the choice of prior dis-
tribution restricted to the class of concave/Schur-concave
functions, which has been shown previously to be a suf-
ficient condition for sparse solutions. This formulation
leads to a constrained and regularized minimization prob-
lem which can be solved in part using the FOCUSS (Fo-
cal Underdetermined System Solver) algorithm for vector
selection. We introduce three key improvements in the al-
gorithm: an efficient way of adjusting the regularization
parameter, column normalization that restricts the learned
dictionary, and reinitialization to escape from local op-
tima.

Experiments were performed using synthetic data with
matrix sizes up to 64x128, and the algorithm is shown to
solve the blind identification problem, recovering both the
dictionary and the sparse sources. The improved algo-
rithm is shown to be much more accurate than the original
FOCUSS-Dictionary Learning algorithm when using large
matrices.

We also test our algorithm on natural images, and show
that a learned overcomplete representation can encode the
data more efficiently than a complete basis at the same
level of accuracy.

1 Introduction
In many applications a small number of sources drawn

from a very large set of possible sources are mixed together
to generate observed data. Examples include magnetoen-
cephalography (MEG), where spatially localized signals in
the brain mix with each other before reaching the sensors,
leading to the related problems of localizing the sources
and removing undesired artifacts [1, 2]. In visual pro-

cessing, a few objects can be thought of as generating
a large number of image pixels at the camera or retina.
These problems can be modeled as an inverse problem with
sparse solutions,

� � ��� � � (1)

where � is the observed data, � � ���� is the generating
matrix or dictionary (the columns of � are the dictionary
vectors, and � may be overcomplete, i.e. � � �), � is the
sparse solution (most of the elements of � are identically
zero), and � is additive noise. In this paper we present an
improved version of the algorithm derived in [3] for solv-
ing (1) when both � and � are assumed to be unknown
random variables. The problem of determining � (respec-
tively �) when � (respectively �) is unknown is known as
the blind identification problem. The algorithm is designed
to learn an environmentally adapted dictionary � which is
capable of representing signals as sparsely as possible with
a minimum reconstruction error.

Sparse solutions to (1) can also be useful in the fea-
ture extraction stage (or concept generation stage) of pat-
tern recognition problems, where a set of informative fea-
tures is culled from the available data, which can im-
prove the generalization performance of pattern recogni-
tion methods like support vector machines and neural net-
works [4, 5]. Other applications include data compression,
high-resolution spectral estimation, direction-of-arrival es-
timation, speech coding, and function approximation; see
the references in [6] for details.

Our algorithm is tested on the difficult nonlinear inverse
problem of simultaneously correctly identifying the true
values of the unknowns � and � (the blind identification
problem). Using synthetic data, it is shown that the al-
gorithm can recover a high percentage of the columns of
� and (after adjusting for possible column permutations)
original sources �. The advantage of using overcomplete
dictionaries for encoding images is also shown. At the
same level of reconstruction error the overcomplete repre-
sentation is more efficient, i.e. lower entropy (bits/pixel).



Other approaches to solving the overcomplete problem
(1) have been presented, including those based on indepen-
dent component analysis (ICA) [7, 8], independent factor
analysis [9], and the original FOCUSS-based learning al-
gorithm [10].

2 Learning algorithm
The FOCUSS-based dictionary learning algorithm and

convergence proofs are fully described in [3], and here
we only present a basic outline sufficient to describe our
recent improvements. Given a set of training data 	 �
���
 ��
 �� �, we would like to solve (1) for the jointly ran-
dom � and � � ���
 ��
 �� � using maximum a posteriori
estimation,

� ��MAP
 ��MAP� � ��� ��	
�����

� ��
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where � is constrained to the compact (closed and
bounded) set �. Assuming the prior distribution of the
sources � is a generalized Gaussian of the form,
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where the parameter � determines the shape of distribu-
tion, and 
� is a normalizing constant to ensure ����� is a
density function. Here, the function ����� is related to the
�-norm-like measure,
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Sparsity is defined as the number of elements of � that are
zero. When � � �, ����� is a count of the number of
non-zero elements of �, or diversity, where diversity � ��
sparsity. Other parametric forms of the prior ����� that
lead to sparse solutions are discussed in [11].

The additive noise � has a distribution ����� of the
same form as (3), and here we assume the noise vector
is Gaussian (i.i.d. with zero mean) so that � � � and
����� � �����. Using the prior distributions (3) and as-
suming that the observations 	 are independent, (2) can be
written (see eq. (23)-(25) in [3]),

� ��MAP
 ��MAP� � ��� ���
�����
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(5)
where the �	�� denotes averaging over the � vectors in the
training set. Using the form of ����� and ����� in (4) this
becomes,
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�����
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�
�
�

(6)
This is a constrained optimization problem that attempts
to simultaneously minimize the reconstruction error �� �

����� and maximize the sparsity of the solutions by mini-
mizing �����. The regularization parameter � controls the
trade-off between the allowed error and desired sparsity,
and its choice is critical for finding accurate solutions, but
unfortunately there is no theoretical way of choosing an
optimal value.

The algorithm contains two major parts, a sparse vec-
tor selection step and a dictionary learning step. The Focal
Underdetermined System Solver (FOCUSS) was designed
to solve for sparse solutions of linear inverse problems
when � is known [12, 6], and performs the vector selec-
tion step of the algorithm. The FOCUSS algorithm is not
a linear transform of the data, even in the case where � is
complete, because it maximizes the sparsity of the learned
sources �, with the tradeoff that perfect reconstruction is
generally not achieved even in the noise-free case. The dic-
tionary learning (� update) step is performed by gradient
descent. The iterations are given by
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where �
 is the regularization parameter and ��� �� con-
trols the learning rate. The second line of (7) is the FO-
CUSS algorithm for updating the �
 solutions.

We now discuss the three key improvements in the algo-
rithm: an efficient way of adjusting the regularization pa-
rameter �
, column normalization that restricts the learned��, and reinitialization to escape from local optima. The
regularization parameter �
 may be set independently for
each vector in the training set, and a number of methods
have been suggested, including quality-of-fit (which re-
quires a certain level of reconstruction accuracy), sparsity
(requiring a certain number of non-zero elements), and the
L-curve which attempts to find an optimal tradeoff [10].
The L-curve method works well, but it requires solving a
one-dimensional optimization for each �
 which becomes
computationally expensive for large problems. Alterna-
tively, we use a heuristic method that allows the tradeoff
between error and sparsity to be tuned for each application,
while letting each training vector �
 have its own regular-



ization parameter �
 to improve the quality of the solution,
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For data vectors that are represented accurately, �
 will be
large, driving the algorithm to find more sparse solutions.
If the signal-to-noise ratio (SNR) can be estimated, we can
set �max � �SNR���.

When � � � (the case of Gaussian measurement noise),
the algorithm converges to a local minimum of (6) (see the
appendix of [3]) if �� is restricted to a bounded subset of
�
��� . This is accomplished by restricting �� to the set,

� � �� � ���� � 
� 
 �
��� (9)

where ���� �



trace����� is the Frobenius matrix
norm. To ensure this, �� is normalized to � ���� � 
 by
normalizing each of the columns ��,

�� 
 ���
� ����� � (10)

This keeps the norm of all columns equal, which is impor-
tant when using diversity measures with � � �, because
these measures penalize terms with large magnitudes (they
are only approximating the � � � measure of sparsity). If
a column had a small relative magnitude, the weights of its
coefficients would be large and it would be penalized more
than a column with a larger norm. This leads to certain
columns being underused, which is especially troublesome
in the overcomplete case. The convergence proof in [3] re-
quires only that � ���� � 
, so it is important to show that
restricting the evolution of �� to the subset of column nor-
malized matrices allows us to reach to true solution � (see
Appendix). In the Bayesian framework, the column nor-
malization can be viewed as a more restrictive prior than
using only the Frobenius norm constraint (as was done in
the original algorithm).

The optimization problem (6) is concave when � � 
,
so there will be multiple local minima. The FOCUSS algo-
rithm is only guaranteed to converge to one of these local
minima, but in some cases it is possible to determine when
that has happened by noticing if the sparsity is too low. Pe-
riodically (after a large number of iterations) the sparsity
of the solutions ��
 is checked, and if found too low, ��

is reinitialized randomly. The algorithm is also sensitive
to initial conditions and prior information may be incor-
porated into the initialization to help convergence to the
global solution.

The learning algorithm in (7) is a combined iteration,
meaning that the FOCUSS step is only allowed to run for
one iteration (not until full convergence) before the � up-
date step. This means that during early iterations, the ��


are in general not sparse. To facilitate learning �, the co-
variances ���
 and ��
�
 are calculated with sparsified ��

that have all but the �� largest elements set to zero. The
value of �� is usually set to the largest desired number of
non-zero elements, but this choice does not appear to be
critical.

3 Synthetic data experiments
To test the algorithm’s ability to recover the true � and

�
 solutions, experiments were conducted using synthet-
ically generated data. Elements of � were drawn from
a normal distribution with � � �
 �� � 
 (� ��
 
�),
and the matrix was normalized as in (10) to ������ � 
.
Sparse source vectors were created with diversity �, and
the value of each non-zero element �

�� was also drawn
from � ��
 
� and limited so that �

�� � ��
. The input
data �
 were generated using (1) with no noise added. Ma-
trix sizes were 20x30 and 64x128, and � was set to fixed
values (4 and 7) and randomly (5..10 and 10..15).

The columns of the initial dictionary ������ were set to
the first � data vectors �
. The ��
 are initialized to the
pseudoinverse solution, ��
 � ��� � �� ��� ����
. The pa-
rameters were set as follows: � � 
��
 � � 
��
 �max �
� � 
��� (low noise, assumed SNR � �� dB). The algo-
rithm was run for 500 iterations through the entire data set,
and during each iteration �� was updated after updating 100
data vectors ��
. The training vectors were presented in a
random order each iteration.

As a measure of performance, we find the number of
columns of � that were matched during learning. Because
� can only be learned to within column permutations and
sign and scale changes, the columns are normalized so that
������� � ���� �� � 
 and �� is rearranged columnwise so
that ��� is given the index of the closest match in � (in the
minimum 2-norm sense) . A match is counted if


� ���� ���� � ���
� (11)

Similarly, the number of matching ��
 are counted (after
rearranging the elements in accordance with the indices of
the rearranged ��)


� ���� ���� � ����� (12)

If the data is generated by an � that is not column nor-
malized, other measures of performance need to be used to
compare �
 and ��
.

The performance is summarized in Table 1, where
the original FOCUSS-based dictionary learning algorithm
(FOCUSS-DL) [3] is compared with the improved column-
normalized algorithm presented here (FOCUSS-CNDL).
For the 20x30 matrix 1000 training vectors were used,
and for the 64x128 matrix 10,000 were used. Results
are averaged over four or more trials. For the 64x128
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Figure 1: Performance of the learning algorithm with ma-
trix� size 64x128. The spikes in the graphs indicate where
some solutions ��
 were reinitialized because they were not
sparse enough.

matrix and � � 
���
�, the algorithm is able to re-
cover 99.5% (127.4/128) of the columns of � and 94.6%
(9463/10,000) of the solutions �
 to within the tolerance
given above. This shows a clear improvement over the
original FOCUSS-DL algorithm which only learns 80.3%
of the � columns and 40.1% of the solutions �
. Learning
curves for one of the trials of this experiment (Figure 1)
show that most of the columns of � are learned quickly
within the first 100 iterations, and that the diversity of the
solutions drops to the desired level. Figure 1b shows that
it takes somewhat longer to correctly learn the �
 , and that
reinitialization of the low sparsity solutions (at iterations
175 and 350) helps to learn additional solutions. When ��
is normalized to �� ����� � 
 without column normalization,
only 83.6% (107/128) of the columns of � are recovered
correctly.
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Figure 2: Comparing the coding efficiency of complete and
overcomplete representations on 8x8 patches drawn from
natural images. The points on the curve are the results from
different values of �, at the bottom right, � � 
��, and at
the top left, � � ���. For smaller �, the overcomplete case
is more efficient at the same level of reconstruction error
(RMSE).

4 Image data experiments
Previous work has shown that learned basis functions

can be used to code data more efficiently than traditional
Fourier or wavelet bases [7]. The algorithm for finding
overcomplete bases in [7] is also designed to solve the
problem (1), but differs from our method in a number of
ways, including using only the Laplacian prior (� � 
), and
using conjugate gradient optimization for finding sparse
solutions (whereas we use the FOCUSS algorithm). It
is widely believed that overcomplete representations are
more efficient than complete bases, but in [7] the over-
complete code was less efficient (measured in bits/pixel
entropy), and it was suggested that different priors could
be used to improve the efficiency. Here, we show that our
algorithm is able learn more efficient overcomplete codes
for priors with � � 
.

The training data consisted of 10,000 8x8 image patches
drawn at random from black and white images of natu-
ral scenes. The parameter � was varied from �����
��,
and the algorithm was trained for 150 iterations. The
complete matrix (64x64) was compared with the 2x over-
complete matrix (64x128). Other parameters were set:
� � ���

 �max � � � 
���. The coding efficiency was
measured using the entropy (bits/pixel) method described
in [7]. Figure 2 plots the entropy vs. reconstruction er-
ror (root-mean-square-error, RMSE), and shows that when
� � ��� the entropy is less for the overcomplete represen-
tation at the same RMSE.

Studies of the human visual cortex have shown a higher



Table 1: Synthetic data results
Learned � columns Learned �

Algorithm Size of � Diversity, � Avg. Std. dev. % Avg. Std. dev. %
FOCUSS-DL 20x30 7 ���� ��� 84.2% ����� 
�
�� 67.6%
FOCUSS-CNDL 20x30 7 ���� 
�� 96.2% ����� ���� 84.7%
FOCUSS-CNDL 64x128 7 
���� ��
 97.9% ��
��� ����� 94.1%
FOCUSS-CNDL 64x128 5-10 
���� 
�� 98.6% ������ ����� 95.1%
FOCUSS-DL 64x128 10-15 
���� ��� 80.3% ������ ����� 40.1%
FOCUSS-CNDL 64x128 10-15 
���� 
�� 99.5% ������ ����� 94.6%

degree of overrepresentation of the fovea compared to the
other mammals, which suggests an interesting connection
between overcomplete representations and visual acuity
and recognition abilities [13].

5 Conclusions
We have shown that an improved version of the FO-

CUSS dictionary learning algorithm is able to more accu-
rately recover sparse solutions to blind linear inverse prob-
lems. We have also shown that our algorithm with the
proper choice of the prior can learn an overcomplete repre-
sentation which can encode natural images more efficiently
than complete bases learned from data (which in turn are
more efficient than standard non-adaptive bases, such as
Fourier or wavelet bases).

6 Appendix: Column normalization of ��

The convergence proof of the algorithm requires that the
estimates �� lie on the surface �� ����� � 
, and we fur-
ther restrict �� to the subset of column normalized matrices
where ������ � ���� �� � 
�

�
�. We show that this still al-

lows us to move from ����� to the solution � by showing
that the subset of column normalized matrices is simply
connected, i.e. there is a continuous path between any two
column normalized matrices �
��,
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There is a continuous path from � to the matrix

���
 ��
 ���
 ��� along the hypersphere of dimension �,
������ � 
�

�
�, which keeps the Frobenius norm unity.

Using the same argument, there is a continuous path from

���
 ��
 ���
 ��� to 
���
 �

�
�
 ���
 ���, and so on to 
���
 ���
 �

�
�� �

��. A convergence proof using column normalization can
be constructed and will be presented elsewhere.
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