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Spatial Operator Factorization and 
Inversion of the Manipulator Mass Matrix 

Guillermo Rodriguez, Member, IEEE, and Kenneth Kreutz-Delgado 

Abstract-’bo new recursive factorizations are developed of 
the mass matrix for fixed-base and mobile-base manipulators. 
First, the mass matrix M is shown to have the factorization 
M = H$M$* H’. This is referred to here as the Newton-Euler 
factorization because it is closely related to the recursive New- 
ton-Euler equations of motion. This factorization may be the 
simplest way to show the equivalence of recursive Newton-Euler 
and Lagrangian manipulator dynamics. Second, the mass matrix 
is shown to have a related innovations factorization M = 
(2+ H Q G ) D ( Z +  H 9 G ) * .  This leads to an immediate inversion 
M-’ = (2 - H 4 G ) *  D-l (Z - H 4 G ) ,  where H and 
are given by known link geometric parameters, and G ,  4 and 
D are obtained by a discrete-step Riccati equation driven by 
the link masses. The factors (Z + H 9 G )  and (Z - H q G )  are 
lower triangular matrices that are inverses of each other, and 
D is a diagonal matrix. Efficient order N inverse and forward 
dynamics algorithms are embedded in the two factorizations. 
Moreover, the factorizations provide a high-level architectural 
understanding of the mass matrix and its inverse, which is not 
available readily from the detailed algorithms. The two factor- 
izations are model-based in the sense that the manipulator model 
itself determines the sequence of computations. This makes the 
two factorizations quite distinct from more traditional Cholesky- 
like numerical factorizations of positive definite matrices. Because 
the manipulator model is used, every computational step has a 
corresponding physical interpretation. This adds a substantial 
amount of robustness, and numerical errors can be detected 
by physical intuition. Development of the factorizations is made 
simple by the use of spatial operators, such as $, 9 and 4, which 
govern the propagation of forces, velocities, and accelerations 
from link to link along the span of the manipulator. 

NOMENCLATURE 
Unit vector along joint axis k. 
Angle of link k with respect to link k + 1 about 
joint axis k. 
Fixed point on joint axis k, which can be 
viewed as the origin of a frame fixed in link 
k. 
Vector from O ( k )  to O(k  - 1). 
Constraint force on link k at point O ( k )  of joint 
k. 
Constraint moment on link k at joint k. 
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Net force on link k at link k mass center. 
Mass center of link k. 
Vector from O ( k )  to C M ( k ) .  
Velocity of link k at point O(k)  of joint k. 
Angular velocity of link k. 
Velocity of link k at link k mass center. 
Mass of link k. 
Inertia tensor of link k at point C M ( k ) .  
Inertia tensor of link k at point O ( k ) .  
Actuated torque at joint k. 

I. INTRODUCTION 
FUNDAMENTAL analogy between multibody robot dy- A namics and linear filtering and smoothing has been 

established in [l] and [ 2 ] .  This analogy allows analysis of 
manipulator dynamics using the very well understood and 
highly popular recursive equations of Kalman filtering [3]. 
The present paper takes this analogy further by extending 
to mechanical systems a powerful series of results [4]-[lo], 
which emerged after Kalman’s fundamental paper [3], and 
which have carried filtering and smoothing theory to a very 
mature state of development. These results include: 1) state 
variable techniques [4], involving filtering and smoothing, 
to solve Fredholm equations analogous to the equations of 
robot dynamics; 2)  Riccati equations, Fredholm resolvents, and 
Wiener-Hopf equations [ 5 ] ,  [6] to solve estimation problems 
recursively; 3) the innovations approach [7], [8] to least 
squares estimation, which factors covariances recursively [9]. 
A summary of this body of work is provided in [lo]. 

In particular, this paper establishes mass matrix factoriza- 
tions similar to the covariance factorizations summarized in 
[lo]. The innovations approach [6]-[8] plays a central role 
in the factorization of covariances and in the development of 
corresponding filtering and smoothing algorithms. Similarly, 
the approach for mechanical systems advanced here leads 
to an “innovations” factorization of the mass matrix and to 
corresponding recursive forward dynamics algorithms. 

A. Factorizations Provide High-Level Architectural 
Understanding of the Mass Matrix and Its Inverse 

The factorizations provide a high-level architectural under- 
standing of the mass matrix not readily apparent from detailed 
algorithms. This understanding is useful in developing arm- 
independent hierarchical computer programs for simulation 
and control design. It is also useful for concisely summarizing 
the manipulator models required for advanced forms of ma- 
nipulator motion planning and control. The two factorizations 
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are model based in the sense that the manipulator model 
itself is used to conduct the computations required. Every 
computational step has a simple physical interpretation. This 
leads to great physical understanding and insight that can be 
used to detect and correct numerical errors that might arise. 

The spatial operator approach to manipulator modeling 
[11]-[14] is used to establish the mass matrix factorizations. 
The operators govern the propagation of forces, velocities, 
and accelerations through space from one rigid body to the 
next. A physical interpretation of the operators is easy to 
obtain. This allows the complex equations of robot dynamics 
to be understood intuitively. The spatial operators obey simple 
algebraic properties that allow them to be manipulated in a 
spatial operator algebra [12]. 

B. Factorizations Embed Efficient Inverse 
and Forward Dynamics Algorithms 

Embedded in the two mass matrix factorizations are inverse 
and forward dynamics algorithms recognized for their nu- 
merical efficiency. The recursive Newton-Euler factorization 
M = H+M+*H* shows that the mass matrix M represents a 
base-to-tip recursion followed by a tip-to-base recursion. This 
result may be the simplest proof yet derived of the equivalence 
[ 151 of Lagrangian and Newton-Euler manipulator dynamics. 
It also embeds the efficient inverse dynamics algorithms of 
[16]-[MI. An alternative factorization M = (Z+H$G)D(Z+ 
H$G)*, referred to here as the innovations factorization, leads 
to an immediate recursive inversion of the mass matrix. It 
also leads to equivalent 0 ( N )  recursive forward dynamics 
algorithms [l], [19], [20] in which the number of arithmetical 
operations grows only linearly with the number of degrees of 
freedom. 

C. Current Applications of the Factorization Results 
The mass matrix factorization results outlined here have 

been used to develop hierarchical computer programs for 
manipulator dynamics [21]. Programs are relatively easy to 

write because of the high level of abstraction made possible 
by spatial operators. The programs can take any allowable 
operator expression and implement a computationally efficient 
recursive algorithm. It is even possible to automate the devel- 
opment of such algorithms with relatively simple computer 
programs. The factorization results are also being used to 
manage the complexity in several problems of current interest 
in robotics research: recursive implementation of operational 
space control [22], [23]; flexible multibody systems [24], [25]; 
indirect-drive geared robotic manipulators [26]; recursive lin- 
earization [27]; manipulator control design [28]; and statistical 
mechanics models for motion planning [29]. 

11. STATE SPACE MODEL FOR MULTILINK DYNAMICS 
Consider a rigid N-link serial manipulator as illustrated in 

Figs. 1 and 2, with the symbols defined in the nomenclature 
list. The links and joints are numbered in an increasing order 
that goes from the tip of the system toward the base. Joint N is 
the last in the sequence, and it connects link N to a base. The 
base is referred to as link N + 1. The external environment is 
viewed as “link 0,” and the arm can contact the environment 
at any arbitrary point denoted by the index k = 0. Joint k in 
the sequence connects links k and k + 1. For now, the base is 
assumed to be immobile, a restriction that is relaxed in Section 
VIII. Note that link and joint numbers increase toward the base 
of the system. This differs from the more common numbering 
approach in which the numbers increase toward the tip. This 
numbering scheme makes it easy to describe the mass matrix 
factorization techniques discussed in this paper. 

The ordering scheme allows thinking of sequentially moving 
from joint 1 to joint N as going “inward” and moving from 
joint N to joint 1 as going “outward.” An algorithm that 
processes link data by iterating in the inward direction from 
IC = 1 to k = N is then called tip-to-base. In contrast, an 
algorithm that iterates outward from k = N to k = 1 is 
called base-to-tip. A complete tip-to-base iteration is called 
an inward sweep. A complete base-to-tip iteration is called 
an outward sweep. Although B(k) is defined to be rotational, 



RODRIGUEZ AND KREUTZ-DELGADO: SPATIAL OPERATOR FACTORIZATION 61 

hk-l adjoint matrix $* ( i , j )  relates the spatial velocity at point i 
to the spatial velocity at point j. It is known [ l ]  that $(z, j)  
obeys the state-space transition matrix properties 

$(i, i )  = z 
P ( i , j )  = $hi) 

LINK k - 

$44 k ) $ ( k j )  = $(i ,d  (4) 
+ ( i , k )  = $ ( i , i - l ) , . . . , $ ( k + l , k ) .  (5)  

111. RECURSIW NEWTON-EULER EQUATIONS 
In terms of the spatial quantities in Section 11, the recursive 

Newton-Euler equations [ 161 for manipulator dynamics are 
[l], [ll],  assuming for now an immobile base, Fig. 2. Relationship of defined quantities to link k .  

the extension to sliding joints is simple [ l l ] .  Note that axis 
h(k)  is associated with angle O(k) and both are associated 

P11- 
A. Spatial Velocity, Acceleration, Force, and Inertia 

V ( N + l ) = O  
a ( N  + 1) = 0 (6) 

with link k. This scheme can be considered to be a modified 
Denavit-Hartenberg formulation with reversed link numbering for k = N . *  loop 

V(k) = $ * ( I C  + 1, IC)V(IC + 1) + H*(k)B(k) 
a ( k )  = $*(k + 1, k ) a ( k  + 1) + H * ( k ) B ( k )  + a ( k )  

(7) 
(8) 

Robot dynamics equations are expressed very concisely in 
terms of quantities referred to [ l ]  as spatial velocity V(lc), 
spatial acceleration a(k) ,  spatial force f (k), and spatial inertia 
M ( k ) :  

The spatial forces f ( k )  belong to a state space very similar 
to those encountered in filtering and smoothing [l]. The 
spatial accelerations are the corresponding costates. The spatial 
quantities defined by (1) and (2) are closely related to those 
of [19], but they are not identical. The difference is quite 
significant because it implies that only the rules of ordinary 
matrix algebra are used here without use of the nonstandard 
algebra of [ 191. Furthermore, the formulation presented here 
also allows use of the very well established operations [l], 
[3] of state space estimation and control. One of the central 
ingredients in the state space approach is the state transition 
matrix as defined below. 

B. State Transition Matrix 

Define ! ( i , j )  to be the vector from point Oi to point Oj. 
These two points are illustrated in Fig. 1. Define also 

(3) 

The state-space transition matrix $(i, j) relates the spatial 
force at point j to the spatial force at point i. Similarly, the 

end loop 

V(0) = $*(I, O)V(1) 
a(0) = $*(l ,  O)a(1) + a(0)  (9) 
f (0) = fext (10) 

for k = l . . - N  loop 

f ( I C )  = $(kl  IC - 1) f ( I C  - 1) + M ( k ) a ( k )  + b ( k )  (11) 
T ( k )  = H ( k ) f ( k )  (12) 

end loop 
Observe in (7) that $*(k + 1, k) is the link k + 1 transition 

matrix that relates rates at joint k + 1 to rates at joint k [l]. 
The joint-axis projection operator H * ( k )  in (7), (8), and (12) 
is defined as 

H * ( k )  = ( ")). 
Note that V(0) and a(0) are the manipulator tip spatial 

velocity and acceleration, and f(0) is the tip spatial force 
acting on the external environment. Note also that a(k )  = 
a[V(k + l ) ,V(k ) ]  and b ( k )  = b[V(k)]. Hence, at the kth 
iteration, the bias acceleration . (IC),  and the bias spatial 
force b ( k )  can be computed from available quantities by the 
explicit formulas given in [ l l ] .  If a joint k is a sliding joint 
rather than rotational, the recursive spatial dynamics equations 
can be easily modified [ l l ]  by redefining H * ( k )  and a(k)  
appropriately. 

Because the above equations are expressed in terms of 
coordinate-free vectors, the notation "*" is used to denote 
transpose. The adjoint z* for a three-vector z is defined by 
the dot product z*y = z . y. Equations (6)-(12) are referred 
to as recursive. More properly, they could be described as 
iterative. However, this usage is consistent with that in the 
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robotics literature [16], where the term recursive has been 
made synonymous with iterative.. 

Assume henceforth that [B(k) ,  O(k)] are known. Given this 
knowledge, the inverse dynamics problem., is to compute the 
moments T(k) from the known inputs B(k) .  The forward 
dynamics problem is to obtain 8(k) from known inputs T ( k )  
and the recursive spatial dynamics equations (6x12) .  

Iv .  SPATIAL VECTORS AND SPATIAL OPERATORS 
Manipulator equations can be expressed very concisely in 

terms of the following spatial vectors and spatial operators 
[I21 * 

A. Spatial Vectors 

As an example of a spatial vector, consider 

v = col [V(l) ,  * ’ e ,  V(N)] (14) 

which collects the sequence of spatial velocities V(k) defined 
at the joints of the system into a 6N x 1 composite vector V .  
The vector V is a quantity associated with the entire system 
of bodies, in the sense that all of the bodies are represented 
in this vector. Each of its elements V(k) corresponds to one 
of the bodies k. Similarly 

e = col [e(i) ,  . . . , e ( ~ ) ]  

a = col [a(l) ,  . . . , a(N)]  
a = col [ a ( l ) ,  . . . , a ( N ) ]  

f = col [ f ( l ) ,  . . . , f(W1 
b = col [ b ( l ) ,  . . . , b(N)]  

T = col [T(l) ,  . . . , T(N)]  

(15) 

r 
(16) 

in which 0 is the vector of joint angles, T is the vector of joint 
moments, a is the vector of bias accelerations, a is the vector 
of spatial accelerations, f is the vector of spatial forces, and 
b is the vector of bias forces. 

The main motivation for introducing the composite notation 
above is to eliminate the argument k associated with the 
various links. The symbol V denotes a vector relevant to the 
entire manipulator system, and the need to refer subsequently 
to the individual elements V(k) is reduced significantly. 

B. Spatial Operators to Propagate Force, 
Velocity, and Acceleration 

The spatial operator $ is defined as 

/ z  0 ... o \  

This is perhaps the most fundamental spatial operator de- 
fined in this paper because many of the operators defined 
subsequently are dependent on it. It is defined in terms of 
the transition matrix $(i, j )  that governs the propagation of 
force from joint j to joint i. It is a composite operator in the 
sense that all of the possible pairs of joints are represented. 
The operator $ can be thought of as a transformation that in 

a global sense governs the propagation of force within the 
overall composite multilink system. Similarly, its adjoint $* 
governs the propagation of velocity and acceleration within 
the same system. 

The spatial operators H and B* are defined as 

H = diag[H(l), . . . , H(N)]  
B* = [ $ * ( l , O ) , O , .  . . ,O] .  (18) 

Equation (18) defines a block-diagonal partitioned matrix H 
whose block-diagonal elements are H (  k). This matrix collects 
the projections H ( k )  associated with the set k = 1,. . . , N of 
joint axes. 

C. The Jacobian Operator 

velocity V(0) is 
A widely known relationship between joint rates 8 and tip 

V(0) = J8 (19) 

in which J is the Jacobian operator. However, it is not widely 
known that the Jacobian operator J has the factorization 

J = B*$*H* (20) 

in terms of the spatial operators B*, $*, and H*. This 
factorization can be established easily using the kinematic 
relationships in Section 111. In fact, (6X8),  (17), and (18) 
together imply 

N 

V ( k )  = $*(i, k ) H * ( i ) 8 ( i )  

V(0) = B*$*H*8. (21) 

a=k 

v = $*H*8 

The operator factorization J = B*$*H* of the Jacobian 
J has an immediate physical interpretation in terms of the 
action of J on the joint rates 8: 1) H* acts on 0 in a 
noniterative way resulting in the relative spatial velocities 
between the links along the joint axes; 2) the action of $* on 
H*8, in a base-to-tip iterative manner given by (7), propagates 
the relative link velocities to form the link spatial velocities 
V = col[V(l), 1 .  + , V(N)]; and 3) the operator B* projects 
out V( l )  from V in a noniterative way and propagates it to 
the tip forming V(0). 

The important theme that emerges here is that operator 
factorizations have obvious physical interpretations and equiv- 
alent recursive algorithms. 

V. RECURSIVE NEWTON-EULER 
MASS MATRIX FACTORIZATION 

The mass matrix factorization 

(22) M = H$M$*H* 

emerges easily by expressing in terms of spatial operators 
the composite manipulator equations of motion. Here, M 
= diag[M(l), . . . , M(N)]  is a block-diagonal matrix that 
collects along its diagonal the spatial inertias M ( k )  of all of 
the links. 
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A. Equations of Motion Based on Spatial Operators C. Recursive Mass Matrix Evaluation 

The equations of motion for the composite multilink system 
are 

T = M e  + C  + J* f ( 0 )  (23) 

where C = H$(M$*a+b) and J* = H4B.  This result can be 
established easily by means of the following.sequence of steps. 

From (6), (8), (17), and (18), a = 4*H*8+4*a .  The accel- 
erations a are seen to be the result of the joint accelerations 
H*b and the bias accelerations a propagated from the base to 
the tip of the manipulator under the influence of the operator 
q5* of interlink Jacobians. From (6), (7), (9), (17), and (18), 
a(0) = B*4*H*8 + B*$*a + a(0) .  Since a(0) = J 8  + JB, 
then J b  = B*$*a + a(0).  

From (10H12) 

f = $[Ma + b + B f  ( O ) ]  

T = H f .  (24) 

The recursive Newton-Euler factorization M = H$M$*H* 
implies, and is implied by, the recursive Newton-Euler 
algorithm for inverse dynamics. Hence, the factorization 
contains within it one of the most useful algorithms [16] for 
inverse dynamics. Another efficient algorithm embedded in the 
factorization is that referred to in [18] as the composite rigid 
body method for recursive computation of the mass matrix 
itself. This algorithm can be developed using the following 
spatial operator identity. 

Identity 1: The matrix $M+* can be expressed as 

where the matrix is obtained from 4 by s_ubtracting the 
6N x 6N identity. is equal to the operator 4 used in [ l l ] .  
The 6N x 6N block-diagonal matrix r = diag[r(l), . . . , r(N)] 
has blocks r ( k )  given by 

The spatial force vector f is seen to result from the tip-to-base 
propagation of the D’Alembert forces M a ,  the bias forces b, 
and the tip forces f ( 0 ) .  This inward propagation is implied 

k 

r ( k )  = $ ( k ,  Z)M(Z)+*(k, 2) .  (29) 
2=1 

by the action of the lower block triangular operator 4 on the 
quantity [ M a  + b + B f ( O ) ] .  T is seen to be the noniterative 
projection of f onto the joint axis. 

Proof: Observe that the (k, j ) th  block element of $M4* 
is 

min(k J )  
Equation (24) can also be written as 

T = H$[Ma + b + B f ( O ) ]  
Q = $*“e + #*U 

$(k> Wf(+$*(i 4. 
a = 1  (25) 

which states that T is obtained by an outward operation on e 
and a, followed by an inward operation on a, b, and f(0). This 
is precisely the recursive Newton-Euler algorithm of [ 161. 

Combination of the two equations in (25) leads to the sought 
after operator formulation of the manipulator dynamics in (23). 
That (23) is equivalent to (25) reflects the equivalence [15] 

For this reason, (22) is referred to here as the recursive 
Newton-Euler factorization of M .  

Hence, the typical element kernel r ( k ,  j )  of 4M$* is r (k ,  j )  = 
$ ( k , j ) r ( j )  for j 5 k ,  in which r ( k )  satisfies (29). 

The algorithmic equivalent of (28) is the following inward 
recursion for the diagonal elements m(k, k )  and off-diagonal 
elements m(i, k )  of the composite multibody mass matrix M :  

between Lagrangian and recursive Newton-Euler dynamics. r(O) = 0 (30) 

for k = l . . . N  loop 

B. Bias-Free Equations of Motion 

Equation (23) can be written as 
= T I  

r ( k )  = 4 ( k ,  k - l ) ~ ( k  - l ) $ * ( k ,  k - 1) + M ( k )  (31) 
m ( k ,  k )  = H ( k ) r ( k ) H * ( k )  

z ( k )  = r ( k ) H * ( k )  (32) 
(26) 

in which T‘ = T - ?, with the “bias torques” ? given by for a = k + 1 * . . N loop 

? = H $ [ M ~ * u  + b + B f (O) ]  = C + J* f (0). (27) 

Computing ? recursively via the algorithm implicit in (22  
allows working with the simpler system (26). Obtaining T 
from (27) is equivalent to using the .recursive Newton-Euler 
algorithm implicit in (25) but with 8 = 0. This approach to 
simplifying from (23) to (26) is the standard one and is used 
in [16] and [19]. A choice exists, then, to solve the forward 
dynamics problem by either solving (23) directly for 8 or by 
solving the simpler system (26) for which the bias torques have 
been removed. The second choice is considered in Section VI, 
where the focus is on operator factorization and inversion of 
the mass operator. The algorithmic alternative represented by 
(23) is developed and presented in Section VII. 

z ( i )  = $(a, 2 - l ) z ( i  - 1) 

m(i ,k )  = H ( i ) z ( i )  (33) 

end i loop end k loop 
This recursive technique is equivalent [l] to the composite 

rigid-body method analyzed in [ 181 for its computational 
efficiency. To establish this equivalence, it is necessary [l] to 
parametrize the matrix r ( k )  associated with joint k in terms of 
a minimal set of ten parameters for the composite rigid-body 
outboard of joint k :  one for the mass, three for the mass center 
location, and six for the rotational inertia. This is yet another 
indication of the ease with which computationally efficient 
algorithms emerge from the spatial operator equations. 
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VI. INNOVATIONS FACTORIZATION 
The mass matrix M = Hq5Mq5*H* cannot be inverted by 

inverting the individual factors Hq5 and q5* H* in the recursive 
Newton-Euler factorization. The factors are not invertible 
since they are not even square. An alternative factorization 
M = (Z + H@G)D(Z + H@G)* is now obtained in which 
the individual factors are square and invertible. This alternative 
i s  referred to here as the innovations factorization because 
of its relationship to the innovations approach [7] of linear 
least squares filtering and estimation. The discovery of this 
alternative factorization is one of the central contributions of 
this paper. 

The key ingredients in the innovations factorization are: 1) 
a discrete-step Riccati equation for the sequence of articu- 
lated inertias [l] and 2) the corresponding spatially recursive 
Kalman filtering equations of [l]. 

A. Discrete-Step Riccati Equation 

defined by the following inward iteration: 
The quantities P(k),  D(k), and G(k) for IC = 1,. . . , N ,  are 

P(0) = 0; G(0) = 0 (34) 

for k = 1..  . N loop 

P(k)  = $(k, k - 1)P(k - l)?)*(k, IC - 1) + M ( k )  (35) 

G( k) = P (  k) H* (k)D-' (k) (36) 

D( k) = H (  k) P (  I C )  H* (k) 

end loop 
where $(k, k - 1) is defined in (30) below. 

This is a discrete Riccati equation driven by the link masses 
M ( k ) ,  which produce a sequence of spatial inertias P(k).  It 
can be shown that P (k )  = P*(k)  > 0 for all I C .  Hence, the 
scalar D(k) is always nonzero, and D-I(k)  = l.O/D(k) is 
guaranteed to exist. The matrix P (k )  is the articulated body 
inertia originally discussed in [19]. D(k)  is the projection of 
the articulated body inertia, P(k) ,  along joint axis k. Define 
also the noniterative operators 

P = diag[P(l), . . . , P ( N ) ]  
D = diag[D(l), . . . , D(N)]  
G = diag[G(l), . . . , G(N)]. (37) 

The sequence of Kalman gains G(k) and the corresponding 
Kalman gain spatial operator G = PH*D-' are the central el- 
ements in the spatially recursive Kalman filter-like algorithms 
filter described below. 

B. Kalman Filter Spatial Operator 
The matrix $ ( i , j )  in (35) is defined for i > j by 

?)(h I C )  = Z (38) 

$ ( i , j )  = $(i, i - l)$(i - 1, i - 2) 
$(k, k - 1) = $(k, k - 1)[Z - G(k - l ) H ( k  - l)] (39) 

* . . $ ( j + l , j ) ;  i>j. (40) 

The matrix $(i, j )  is a Jacobian-like operator associated 
with articulated bodies that is analogous to the force propa- 
gation Jacobian operator, +(i, j )  for composite bodies (i.e., 
bodies whQse joints are "frozen"). A complete discussion 
of the physical interpretation and properties of these spatial 
quantities can be found in [l]. 

The spatial Kalman filter transition operator is defined in 
(41), which appears at the bottom of this page. The operator 
9 is a lower block-triangular matrix. This operator will be 
referred to as a Kalman filter transition operator because its 
elements ?)(i, j )  govern the transitions of forces from one link 
to the next in a spatially recursive Kalman filter-like algorithm. 
The operator ?) when post-multiplied by (Z - G H )  results in 
the operator 4 of [ll]. 

Identity 2: The matrices $Ad$* and P above are related by 

q 5 ~ q 5 *  = P + @P + P@* + @PH*D-~HP@*. (42) 

Proof: Observe [Z - G ( I C )  H ( k ) ] P (  k) [Z - G( k ) H (  k)] * = 
[Z - G(k)H(k)]P(k).  Equation (35) then implies P ( k  + 
1) = $(k+ 1, k) [P(k) - P(k)H*  (IC)D-' (k)H( k) P (  k)]q5* (k+ 
1, k) + M ( k  + 1). Hence, ~ ( k )  = P(k)  + q ( k )  with q ( k )  = 
Cfz; q5(k,i)P(i)H*(i)D-'(i)H(i)P(z)q5*(k, i). Also, T = 
P + q, in which q = diag[q(l), . . . ,q(N)] with q(1) = 0. 
However, @PH*D-'HP@* = q + @q + q@*, which can be 
shown by an argument exactly like the proof of Identity 1. 

Identity 3: An alternative factorization of M = Hq5Mq5* H* 
is the innovations factorization 

M = (Z + H@G)D(Z + H@G)* (43) 

where Z + H @ G  is lower block triangular and D is diagonal 
and invertible. 

Proof: Multiply (42) by H and H* and recall that D = 
HPH* and G = PH*D-'. 

The objective now is to invert the lower triangular factor 
(Z + H@G). To do this it is first convenient to establish the 
following key identity. 

Identity 4: The lower triangular operators 9 and @ are 
related by 

(Z - QGH)@ = 9. (44) 
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Proof: Observe the identity 
IC-1 

+(k, m) - $(k, rn) = [.llr(k, i + 1)4(i + 1, m) 
i=m 

- $(k, i)+(i, m>l 
IC-1 

= $(k,  2 + 1)qqi + 1, i )  
i=m 

. G(i)H(i)gl(i,  m) 

since $ ( k ,  m) = $(k, rn + l)+(m + 1, m)[Z - G ( m ) H ( m ) ] .  
However, the (k,m)th block element of 9 G H a  is 

+(k ,  i + l)+(i + 1, i )G(i)H(i)+(i ,  m). 
IC-1 

i=m 

Thus, @ - 9 = 9 G H @ .  
Identity 5: The lower triangular operators Z + HQG and 

Z - H 9 G  are mutually reciprocal 

(Z + H@G)-l  = Z - H 9 G .  (45) 

Proof: Observe that (Z - H 9 G ) ( Z  + H@G) = Z - 

Identities 3 and 5 imply the following factorization of the 

Identity 6: The operator M-' can be factored as 

H 9 G  + (Z - H9G)Ha.G = 1. 

inverse of the mass matrix. 

M-' = (Z - H q G ) * D - l ( Z  - HQG).  (46) 

Since the matrix D in the innovations factorization is 
diagonal, inversion of D is obtained easily by inverting the 
N scalar diagonal elements D ( k ) .  Therefore, inversion of the 
N x N mass matrix M is replaced by the simpler problem 
of inverting a diagonal matrix D. Furthermore, the factors 
(1 - H 9 G )  and (I - H 9 G ) *  in (46) can be mechanized 
by the spatially recursive filtering and smoothing equations of 
[l]. This leads to relatively easy recursive solutions to forward 
dynamics problems. 

VII. FORWARD DYNAMICS ALGORITHMS 
BASED ON THE INNOVATIONS FACTORIZATION 

Four closely related forward dynamics algorithms are now 
obtained. The first algorithm is based on Identity 6 and on the 
bias-free robot dynamics equations (26). 

A. Four-Sweep Bias-Free Algorithm 

Algorithm 1: 

T' = T - H ~ [ M + * u  + b + Bf(O)] (47) 
(48) e = (z- H Q G ) * D - ~ ( z -  HQG)T'. 

Equation (48) is given by a tip-to-base sweep to produce the 
vector U = D - ~ E  with E = ( I - H 9 G ) T ' ,  followed by abase- 
to-tip sweep to produce the joint accelerations 8. The vector E 

is the innovations process, whereas v is the vector of weighted 
residuals. The algorithm, essentially that developed in [l] and 
[ 191, has been derived here by operator factorizations. Note 
that the bias-free moments T' in (47) can be computed by 
means of an outward sweep followed by an inward sweep 

corresponding to the Newton-Euler algorithm for e. Algorithm 
1 is therefore a "four-sweep'' algorithm, which in state-space 
(algorithmic) form becomes 

1) Tip-to-base filtering of bias-free joint moments: 

for k = l . . . N  loop 

z (0 )  = 0 
T' (0)  = 0 
G(0)  = 0 

z ( k )  = +(k,  k - l )z(k - 1 )  
+ $(k ,  k - l ) G ( k  - l )T ' (k  - 1) 

~ ( k )  = T ' ( k )  - H ( k ) z ( k )  
v(k) = D - ' ( k ) ~ ( k )  

end loop 
2) Base-to-tip smoothing of weighted residuals: 

for k = N .  . . l  loop 

X(N + 1) = 0 

X(k) = $*(k  + 1, k )X(k  + 1) + H * ( k ) v ( k )  
e ( k )  = ~ ( k )  - G*(k)+*(k + l , k )X (k  + 1) 

(49) 

end loop 
The quantities in the above recursions can be interpreted 

physically. For instance: z ( k )  is the physical force felt by link 
5 at joint Ic due to the outboard joint moments, T ( k )  being 
nonzero; X(k) is the acceleration that link k has at joint Ic 
when the bias terms are zero (i.e., when there is no gravity 
loading and when velocities are zero so that there are no 
corioIis/centrifugal forces acting on the link). That is, when 
the bias terms are zero, X(k) = a(k ) .  Additional physical 
interpretation of the filtering and smoothing recursions can be 
found in [l] and [19]. Note that the above forward dynamics 
algorithm has an operations count that is O ( N ) .  For notational 
simplicity, the need to construct V, a,  b,  P, D, and G has not 
been made explicit. It is understood that these quantities are 
computed during appropriate sweeps of the algorithm [ 111. 

A slight modification of Algorithm 1 leads to an alternative 
algorithm that, in addition to providing joint accelerations, also 
produces the link spatial accelerations a and the tip spatial 
acceleration a(0). 

B. Four-Sweep Algorithm to Compute 
Link and Tip Accelerations 

Algorithm 2: 

T' = T - H4[Mq5*a + b + Bf(O)] (55) 

(57) 

a = (Z - GH)*Q*H*u + H*u + 4 * ~  (56) 
a(0) = B*a + a(0).  
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Proof: From (6), (8), (17), and (18), a = $*H*8 + $*a. 
Since 8 = (Z-H9G)*v, then a = @+H*(Z-HXPG)*v+$*u. 
However, the identities $ = Q, + Z and (Z - 9 G H ) @  = 9 
imply (56). 

This means that a slight modification of the forward dy- 
namics algorithm (49)-(54) allows the computation of the 
manipulator spatial acceleration a and tip acceleration, a(O), 
in addition to 8. This occurs by changing (52), (53), and (54) to 

X(N + 1) = 0; [ ( N  + 1) = 0 (58) 

for k = N . . . l  loop 

X ( k )  = $*(k + l , k ) X ( k  + 1) + H * ( k ) v ( k )  

D. Three-Sweep Algorithm Not Requiring Prior 
Computation of D ’Alembert Forces 

Note that (60) reflects a need to have a preliminary step to 
compute the D’Alembert forces Mu. The last algorithm given 
in this section removes this requirement, although the need for 
a preliminary base-to-tip sweep for the purpose of computing 
V remains. 

v =B*$*H*~ (66) 
v =D-l (Z - H 9 G ) T  - D-l H$ 

(67) 
8 =(Z - H ~ G ) * v  - G*Q*(Z - GH)*a - G*u. (68) 

[(Z - G H ) P a  + b + Bf(O)] + D-lHPa 

8(k) = v(k) - G*(k)$*(k + 1, k)X(k + 1) 

((k) = $*(k + 1, k)C(k + 1) + a ( k )  This algorithm is established in [ l l ]  where it is also shown 
that (67) and (68) can be implemented as @(k) = X(k) + C(k)  

end loop 

a(0) = $*( l ,O)a( l )  + a(0). (59) 

4 0 )  = f(0) 

P(0) = 0 
G(0) = 0 

Algorithms 1 and 2 are both “four-sweep algorithms,” two 
sweeps being required to compute the biases, followed by two 
sweeps to complete the computation of joint rates or spatial 

T(0)  = 0 

for k = 1 - * N loop 

accelerations. The next two are three-sweep algorithms. ~ ( k )  = $ ( I C ,  k - 1)[~(k - 1) + P(k  - l)a(k - I)] 

C. Three-Sweep Algorithm Based on 
Biased Equations of Motion 

+ $(k, k - 1)G(k - 1)T(k - 1) + b ( k )  (70) 
~ ( k )  =T(k) - H ( k ) z ( k ) ;  v(k) = D-l(L)e(k) (71) 

Algorithm 3: end loop for k = N . . . l  loop 

C = M$*a + b + B f ( 0 )  

8 = (1 - HQG)*D-lc. 

(60) 

(62) 

E = T - H 9 [ G T  + (Z - GH)C] - HC (61) 

Proof: From (48) E = (Z- H@G)(T-H$C).  However, 
the identities $ = @ + Z and (Z - 9 G H ) @  = 9 imply (61). 

The filtering stage in this algorithm is obtained by modifying 
(49)-(65) to 

4 0 )  = f(0) 

G(0)  = 0 (63) 

T(0) = 0 

for k = 1 . e . N  loop 

z(k) =$(k, k - l)[z(k - 1) + C(k - l ) ]  

€ ( I C )  =T(k) - H ( k ) z ( k )  - H ( k )  - C(k) 
V ( k )  =D-’(k)E(k) (65) 

+ $(k, k - l )G(k - 1)T(k - 1) (64) 

end loop 
Algorithm 3 requires outward-inward-outward sweeps to 

obtain 8 as indicated respectively by (60), (61), and (62). In 
Algorithm 3, V and a can be computed during the base-to-tip 
sweep (60), and b, P, D, and G during the tip-to-base sweep 
(61). In the same way that Algorithm 2 was derived from 
Algorithm 1, Algorithm 3 could be modified to compute link 
and tip spatial accelerations. 

X ( k )  =$*(k + l ,k)X(k + 1) + H * ( k ) v ( k )  
+ [Z - G(k)H(k)]*a(k) (72) 

(73) 

d(k) =v(k) - G*(k)$*(k + 1, k)X(k + 1) - G*(k)~(k )  

end loop 
The three-sweep algorithm (66)-(68) can also be found in 

[l], where it is derived by what is referred to as the “sweep” 
method to solve boundary-value problems. It is possible to 
apply the tools of this paper to obtain a two-sweep forward 
dynamics algorithm, avoiding the sweep contained in (60), 
although at the expense of greater algorithmic complexity. An- 
other two-sweep algorithm can also be obtained by computing 
(66) and (68) in the same base-to-tip sweep. This, however, 
requires that a slightly delayed value of the spatial velocity 
V be tolerated. 

VIII. EXTENSION TO A MOBILE BASE 
A fictitious joint N + 1 is introduced which can be at any 

prescribed location in the base link. Typically, this joint is at 
the base link mass center, but it could be at any other point. 
Associated with the joint is the joint-axes projection operator 

H*(N + 1) = Z E R6x6.  (74) 

Note that this choice of H(N + 1) implies that the base is 
fully mobile in all six degrees of freedom. There is no loss of 
generality in this. By appropriate selection of H(N + l ) ,  base 
motion in fewer degrees of freedom can be analyzed [ l l ] .  
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A. Augmented Spatial Acceleration Vector 

spatial acceleration a ( N  + 1) given by 
The base moves with the spatial velocity V ( N  + 1) and the 

V ( N  + 1) = col[w, v] 
V ( N  + 1) = col[&, i'] (75) 

in which w and v are, respectively, the angular and linear 
velocities with respect to an inertial reference, and & and w 
are the corresponding accelerations. It is convenient to collect 
all of the accelerations associated with the independent (joint 
plus base) degrees of freedom in the system into the following 
augmented acceleration vector: 

W = col[e(l), . . . , B(N) ,  V(N + l)]. (76) 

This vector contains the set of N joint-angle accelerations 
followed by the last element V ( N  + 1) representing the base 
acceleration. The problem of.forward dynamics is to compute 
the augmented acceleration W in (76), given the set of forces 
that are applied to the system. This means that the base 
acceleration V ( N  + 1) in (75) is an unknown quantity that 
must be determined together with all of the joint accelerations 
0. 

B. Augmented Applied Force Vector 

It is assumed that a prescribed force T ( N  + 1) is applied at 
the fictitious joint N + 1. Due to (12), this force is related to 
the spatial force f ( N  + 1) at the same joint by 

T ( N  + 1) = W(N + l ) f ( N  + 1) = f ( N  + 1) E R6. (77) 

This force is put together with the remaining joint moments 
T (  l ) ,  . . , T ( N )  in order to form the augmented applied force 
vector 

T = col[T(l), * * . , T ( N ) ,  T ( N  + l)]. (78) 

The forward dynamics problem can now be stated as that 
of computing the augmented acceleration vector W ,  given the 
augmented applied force vector T. 

C. Composite Manipulator Dynamics 
The extension is now complete and W and T are related by 

T = M W  + C + J * f ( O )  
W = M - l [ T  - C - J* f (O)] .  (79) 

The operator forms and interpretations of M ,  C, and J* 
still hold. In particular, these operators can be mechanized 
recursively by the operator factorization and inversion given 
in previous sections of this paper. The only change is in the 
dimensions of the operators. 

IX. HIERARCHICAL FACTORIZATION SOFIWARE 
The mass matrix factorization results outlined here have a 

built-in hierarchical architecture that leads to very simple re- 
configurable computer programs [21]. The programs translate 
user-defined blocks of high-level operators into more detailed 
algorithms and programs. Fig. 3 illustrates schematically the 

Level 1 

Iavel 2 

ARTICULATED 
INERTIA 

RECURSION 
RlCCATl 

Level 3 
TRANSITION 
OPERATOR : 

I 

INWARD 
Level 4 

INTRA B 0 D Y Level 5 

Fig. 3. Spatial operators map to efficient recursive algorithms. 

operation of a forward dynamics program based on the inno- 
vations factorization. 

At the highest level (Level 1,. in Fig. 3) of abstraction, 
the user inputs the factorization 0 = (Z - HQG)*D-l(Z - 
H9G)T.  This input requires that the program decompose 
the operators H ,  q, and G that appear at this level. This 
decomposition occurs at Level 2 in the hierarchy. At the next 
level, labeled Level 3 in the figure, it is recognized that 9 
is what is referred to as the Kalman filter transition operator. 
This in turn implies that 9 can be mechanized using an inward 
Kalman filtering recursion, shown at Level 4, from the tip 
of the manipulator to the base. This recursion is built up as 
a sequence of transitions in each of the links characterized 
by the operator $(k, k - 1) appearing at Level 5. There are 
two transitions per link at Level 6: 1) propagation of forces 
within a link represented by the operator $(k, k - 1) and 2) 
computing the effects of crossing a joint involving the operator 
Z - G(k)H(k) .  This second transition calls the necessary 
coordinate transformation to go from one link to the next. 
This coordinate transformation occurs at Level 7, the lowest 
level in the hierarchy. 

This programming approach achieves a very high level of 
abstraction. The number of symbols visible to the analyst at 
any level in the hierarchy is very small. This means that 
the corresponding computer programs are also very simple. 
The programs are modular and map to a modular software 
architecture. The programs are arm independent in the sense 
that going from one arm to another arm is easy to do. 

Although the programs are simple, computational efficiency 
is not lost. Embedded in the programs are efficient algorithms 
equivalent to those of [l], [16], [17], [19], [20]. Other compu- 
tations, such as inverse kinematics and trajectory design, have 
also been implemented [21]. An investigation of the number 
of arithmetical operations for these algorithms is presented in 
[30] for rigid multilink manipulators and in [25] for flexible 
multibody systems. Additional efficiency can be gained by 
taking advantage of the choice of coordinate frames and of 
the specific structure of the manipulator. 
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x. RELATIONSHIP TO OTHER WORK 
The primary contribution of this paper is to show that 

there are two alternative recursive factorizations of the ma- 
nipulator mass matrix. These factorizations are referred to as 
the recursive Newton-Euler factorization and the innovations 
factorization. These two factorizations embedd in a high-level 
analytical framework, that of spatial operators, very efficient 
algorithms for inverse and forward kinematics. Furthermore, 
the spatial operator approach reveals very simple abstract 
structural properties of the manipulator mass matrix that 
cannot be seen easily from the detailed algorithms. The 
highly abstract spatial operator notation reduces the num- 
ber of symbols needed to solve a given dynamics problem. 
This leads to a higher level abstract methodology [ l l ]  for 
complexity management in modeling, analysis, software de- 
velopment, robot programming, simulation, and control of 
complex robotic systems. This augments significantly the 
analytical tools available [31] to analyze general multibody 
system dynamics. 

A. Significance of the Recursive Newton-Euler Factorization 

The recursive Newton-Euler factorization M = H$M$* H* 
embedds the following efficient inverse dynamics algorithms: 
1) recursive Newton-Euler and 2) the composite rigid-body 
method for recursive evaluation of the manipulator mass 
matrix. 

The Newton-Euler recursion for inverse dynamics is, of 
course, a very well established [16] algorithm in robotics. This 
paper sheds additional light on this algorithm by showing that 
it is equivalent to the Newton-Euler mass matrix factorization 
in the sense that both the algorithm and the factorization can be 
derived easily from each other. This leads to what is believed 
to be the simplest derivation found to date of the equivalence 
of Lagrangian and recursive Newton-Euler dynamics. This 
equivalence is embedded in the single spatial operator equation 
M = H$M$*H*. Establishing this result by more detailed 
methods [ 151 requires significantly more work. 

Closely related to the recursive Newton-Euler algorithms 
of [16] is the composite-body method for inverse dynamics 
analyzed in [18] for its numerical efficiency. This method 
consists of an inward iteration that begins at the tip of the 
manipulator and ends at its base. For every joint, it computes 
the mass, mass center location, and rotational inertia of the 
composite body outboard of that joint. This method can 
be recovered easily from the single spatial operator identity 
$M$* = T + Cpr + T@* which has been stated as Identity 
1 of Section V. This is another example of a very efficient 
algorithm being embedded in the high-level spatial operator 
equations. 

The recursive Newton-Euler factorization of this paper is 
closely related to a mass matrix factorization in [32]. When 
the notation of this paper is used, the factorization in [32] 
becomes M = PP*, where P is lower triangular. The re- 
cursive Newton-Euler factorization presented here shows that 
P of [32] has an operator factorization P = H $ M 1 / 2 .  This 
factorization shows explicitly the force propagation embedded 
in the operator P. This complements the results of [32], 

where P is evaluated numerically and the related forward 
dynamics problem is solved numerically using Householder 
transformations. 

B. Significance of the Innovations Factorization 

The innovations factorization M = (1 + HCpK)D(Z + 
H + K ) *  and its corresponding inverse embedd the recursive 
algorithms for forward dynamics of [l] and [19]. They also 
embedd recursive algorithms for computation of the mass 
matrix inverse as discussed in [ l ]  and [13]. These algorithms 
are order N in the sense that the number of arithmetic 
computations grows only linearly with the number of degrees 
of freedom. They also can be cast [l] within the highly 
developed filtering and smoothing algorithm architecture of 
state estimation theory. Algorithms are easy to implement in 
computer programs because the filtering and smoothing archi- 
tecture can be used as a global guide or road map in program 
development. The numerical stability of the algorithms can 
also be evaluated easily because computational characteristics 
of filters and smoothers are very well understood [33]. 

One of the main contributions of the present paper is to 
show that the filtering and smoothing algorithms for forward 
dynamics are embedded in the innovations factorization. The 
algorithms can be derived using the single operator equation 
M - l  = (2- H Q G ) * D - l ( Z -  H Q G )  expressing the innova- 
tions factorization of the mass matrix inverse. Development of 
the forward dynamics algorithms using more detailed methods 
[l], [19], [20] requires significantly more work. 

C. Relationship to Numerical Factorization Methods 
There is a critical difference between the factorization 

results of this paper and common [34] numerical factorization 
techniques, such as LDU decomposition or Cholesky factor- 
ization, of positive definite matrices. The key difference is 
that the spatial operator approach used here leads to model- 
based factorizations, in which the manipulator model itself 
is used to conduct the factorizations and related inversions. 
Both the recursive Newton-Euler factorization and the inno- 
vations factorization are model based. This means that every 
computational step has a corresponding physical interpretation. 
Intermediate quantities, such as articulated inertias, Jacobian 
operations, projections along joint axes, etc., that appear at 
certain steps of the factorization and inversion process can 
easily be checked for consistency with physical understanding 
and intuition. Another way to state this is to say that the 
spatial operator factorizations are completely symbolic, in the 
sense that there is a symbolic expression for every step in 
the computations. Further evidence of this is that selection of 
coordinate frames is not needed to state the factorizations. 

Numerical factorization techniques [34] can of course be 
applied to factor and invert the manipulator mass matrix, 
since this matrix is a special case of a general positive 
definite symmetric matrix. This approach would begin by 
first assembling the mass matrix numerically by obtaining 
explicit numerical values for each of its elements. Any of a 
number of methods, the recursive Newton-Euler factorization 
of this paper for example, could be used to do this. Then 
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standard numerical techniques [34] could be used to compute 
the mass matrix inverse. This approach is strictly numerical. 
The physical model of the manipulator is not used at all in 
conducting the mass matrix inversion, although it may be used 
to some extent in the initial evaluation of mass matrix itself. 
Because the inversion process is not model based, not every 
step has a corresponding physical interpretation. This means 
that intermediate steps are not easy to interpret physically, and 
there is possible loss of physical insight and understanding. 

Standard methods for numerical inversion for positive defi- 
nite matrices, of course, are quite useful in solving manipulator 
dynamics problems. These techniques have a solid analyt- 
ical foundation [34] in numerical analysis and are widely 
used in many applications. The factorization results of this 
paper do not aim to replace the numerical techniques as 
general-purpose tools for matrix inversion. Rather, the aim 
is to point out and take advantage of certain properties 
of the manipulator mass matrix that make it distinct from 
more general positive definite matrices. The major distinctive 
characteristic is that the manipulator mass matrix emerges 
from manipulator mechanics, whereas a more general positive 
definite matrix typically does not. The manipulator mass 
matrix is generated by a manipulator model. This allows use 
of the model itself to determine the computations required 
for mass matrix inversion. In this sense, the innovations 
factorization then represents a new way, one not found in 
standard numerical linear algebra references [34], to obtain 
a model-based and numerical Cholesky-like factorization of 
the mass matrix and its corresponding inverse. 

XI. CONCLUDING REMARKS 
This paper advances two linear operator factorizations of 

the manipulator mass matrix. Embedded in the factorizations 
are many of the techniques that are regarded as very efficient 
computational solutions to inverse and forward dynamics 
problems. The operator factorizations provide a high-level 
architectural understanding of the mass matrix and its inverse, 
which is not visible in the detailed algorithms. They also lead 
to a new approach to the development of computer programs 
to organize complexity in robot dynamics. 
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