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Abstract

We present a general viewpoint using Bregman diver-
gences and exponential family properties that contains as
special cases the three following algorithms: 1) exponential
family Principal Component Analysis (exponential PCA), 2)
Semi-Parametric exponential family Principal Component
Analysis (SP-PCA) and 3) Bregman soft clustering. This
framework is equivalent to a mixed data-type hierarchi-
cal Bayes graphical model assumption with latent variables
constrained to a low-dimensional parameter subspace. We
show that within this framework exponential PCA and SP-
PCA are similar to the Bregman soft clustering technique
with the addition of a linear constraint in the parameter
space. We implement the resulting modifications to SP-PCA
and Bregman soft clustering for mixed (continuous and/or
discrete) data sets, and add a nonparametric estimation of
the point-mass probabilities to exponential PCA. Finally,
we compare the relative performances of the three algo-
rithms in a clustering setting for mixed data sets.

1. Introduction

We present a general point of view that relates the ex-
ponential family Principal Component Analysis (exponen-
tial PCA) technique of [7] to the Semi-Parametric Principal
Component Analysis (SP-PCA) technique of [20] and to the
Bregman soft clustering method presented in [4]. The pro-
posed standpoint is then illustrated with a clustering prob-
lem in mixed data sets.

The three techniques considered here all utilize Bregman
divergences and can all be explained within a single hierar-
chical Bayes graphical model framework shown in Figure
1. They are not separate unrelated algorithms but different
manifestations of parameter choices taken within a common

framework. The proposed model is mathematically equiv-
alent to equation (6) and we will demonstrate that various
parametric choices symbolically shown in Figure 2 deter-
mine the three algorithms. Because of this insight, we will
readily extend the algorithms to deal with the important
mixed data type case.

There are two ways in which Bregman divergences are
important. First, they generalize the squared Euclidean dis-
tance to a class of distances that all share similar proper-
ties. Second, there exists a bijection between Bregman di-
vergences and exponential family distributions [3, 4]. Re-
cently, researchers have shown that many important algo-
rithms can be generalized from Euclidean metrics to dis-
tances defined by a Bregman divergence [7, 20, 4, 6], i.e.,
from Gaussian distributed data components to data compo-
nents distributed according to an exponential family, such
as binary- or integer-valued.

Data mining techniques seek potentially useful informa-
tion contained in complex data sets. Complexity of these
data generally comes from a high number of components
and also from the fact that the components usually are of
mixed data types (categorical, count, continuous, etc.). In
order to address the latter, techniques should allow for the
components to have different parametric forms by using the
large range of exponential family distributions and their as-
sociated Bregman divergences. While a modification for
mixed data sets was presented in [12] for exponential PCA,
we implement here a modification for SP-PCA and Breg-
man soft clustering. The issue of a high number of compo-
nents of the original data is addressed by exponential PCA
and SP-PCA through dimensionality reduction by project-
ing the data to a low-dimensional parameter subspace.

Finally, we consider synthetic data examples of mixed
types. We demonstrate that exponential PCA, with the addi-
tion of a nonparametric estimation tool, rivals SP-PCA and
Bregman soft clustering in terms of clustering performance.



2. Theoretical background

To motivate theoretical developments, the hierarchical
Bayes graphical model for hidden or latent variables shown
in Figure 1 is considered.
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Figure 1. Graphical model for our framework.

The row vectorx = [x1, . . . ,xd] ∈ Rd consists of ob-
served features in ad-dimensional space. It is assumed that
training points can be drawn from populations having class-
conditional probability density functions

p(x|θ) = p1(x1|θ1) · . . . · pd(xd|θd), (1)

where, when conditioned on the random parameter vector
θ = [θ1, . . . ,θd] ∈ Rd, the components ofx are indepen-
dent. It is further assumed thatθ can be written as

θ = aV +b

with the hidden or latent variablea = [a1, . . . ,aq] ∈ Rq

random and unknown withq < d (and ideallyq ¿ d),
V ∈ Rq×d andb ∈ Rd deterministic and unknown. The
latent variablea in some way explains part (or all) of the
random behavior of the observed variables. The subscript
i on pi(·|·) serves to indicate that the marginal densities
can all be different, allowing for the possibility ofx con-
taining categorical, discrete, and continuous valued compo-
nents. Also, the marginal densities are each assumed to be
one-parameter exponential family densities, andθi is taken
to be the natural parameter (or some simple bijective func-
tion of it) of the exponential family densitypi. Hence, each
component densitypi(xi|θi) in (1) for xi ∈ Xi, i = 1, . . . ,d,
is of the form

p(xi|θi) = exp
(
θixi −G(θi)

)
, (2)

whereG(·) is the cumulant generating function defined as

G(θi) = log
∫

Xi

exp
(
θixi

)
ν(dxi), (3)

with ν(·) a σ-finite measure that generates the exponential
family. It can be shown, using Fubini’s theorem [11], that
G(θ) =

∑d
i=1 G(θi).

The maximum likelihood identification of the blind ran-
dom effect model

p(x) =
∫

p(x|θ)π(θ)dθ =
∫ d∏

i=1

pi(xi|θi)π(θ)dθ, (4)

whereπ(θ) is the probability density function ofθ, is quite
a difficult problem. It corresponds to identifyingπ(θ),
which, under the conditionθ = aV + b, corresponds to
identifying the matrixV, the vectorb, and a density func-
tion on the random effecta via a maximization of the like-
lihood functionp(X) with respect toV, b, and the random
effect density function, where

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ

=
n∏

k=1

∫ d∏

i=1

pi

(
xi[k]|θi

)
π(θ)dθ, (5)

andX is the (n× d) observation matrix

X =




x[1]
x[2]

...
x[n]


 =




x1[1] . . . xd[1]
x1[2] . . . xd[2]

...
.. .

...
x1[n] . . . xd[n]


 .

This difficulty can be avoided by NonParametric Max-
imum Likelihood (NPML) estimation of the random effect
distribution, concurrently with the structural model parame-
ters. The NPML estimate is known to be a discrete dis-
tribution on a finite number of support points or “atoms”
[9, 10, 13]. Finding the NPML estimate is widely regarded
as computationally intensive, the particular difficulty being
the location of the atoms [1].

As shown in [12], withθ = aV+b, with V, b fixed and
a random, the single-sample likelihood (4) is equal to

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V +b

)
πl

and the data likelihood (5) is equal to

p(X)=
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl=

n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V+b

)
πl,

(6)
with point-mass probability estimatesπl, unknown point-
mass support points

¯
a[l], and the linear predictor

¯
θ[l] =

¯
a[l]V + b in thelth mixture component,l = 1, . . . ,m.

The data likelihood is thus approximately the likelihood
of a finite mixture of exponential family densities with un-
known mixture proportions or point-mass probability es-
timatesπl and unknown point-mass support points

¯
a[l],



with the linear predictor
¯
θ[l] =

¯
a[l]V + b in the lth mix-

ture component [2]. The combined problem of Maximum
Likelihood Estimation (MLE) of the parametersV, b, the
point-mass support points (atoms)

¯
a[l] and the point-mass

probability estimatesπl, l = 1, . . . ,m, is known as the
Semiparametric Maximum Likelihood mixture density Es-
timation (SMLE) problem [14, 16]. It can be attacked
by using the Expectation-Maximization (EM) algorithm
[8, 10, 13, 19, 15, 2, 5, 16, 18], as done in particular in the
Semi-Parametric Principal Component Analysis (SP-PCA)
technique proposed in [20] and discussed below. Note that,
historically, [10] appears to be generally acknowledged as
the first paper that proposed the EM algorithm for NPML
estimation in the mixture density context; then, [13] im-
proved upon the theoretical foundations of the NPML es-
timation approach and later [15] further explored some of
the fundamental issues raised in [13].

However, the SMLE problem can also be attacked by
simply considering the special case of uniform point-mass
probabilities, i.e.,πl = 1/m for l = 1, . . . ,m, for which the
number of support points equals the number of data sam-
ples, i.e.,m = n. It was demonstrated in [12] that this spe-
cial uniform case corresponds to exponential PCA.

3. A unifying framework

Within the proposed hierarchical Bayes graphical model
framework, exponential PCA, SP-PCA and Bregman soft
clustering are not separate uncorrelated algorithms but dif-
ferent manifestations of parameter choices.

Figure 2 considers the number of atoms as a common
characteristic for comparison purposes. It symbolizes how
various parametric choices determine the three algorithms.
Whereas the exponential PCA approach requires a number
of atoms equal to the number of data points and hence can
be seen as an extreme case of the NPML technique, SP-PCA
deals with a smaller number of atoms. Finally, the Bregman
soft clustering approach considers an even smaller number
of atoms, viewed as cluster centers, since its primary goal
is clustering. Furthermore, both exponential PCA and SP-
PCA impose a low-dimensional (unknown) latent variable
subspace in their structure. However, Bregman soft cluster-
ing does not impose this lower dimensional constraint and
hence can be seen as a degenerate case.

It becomes clear while looking at Table 1, Table 2 and
Table 3 shown below that both SP-PCA and Bregman soft
clustering utilize the EM algorithm for estimation purposes
whereas exponential PCA does not. This is because expo-
nential PCA assumes uniform point-mass probabilities and
does not need to estimate them. Both exponential PCA and
SP-PCA impose the low-dimensional parameter subspace

constraint, hence the need for the Newton-Raphson itera-
tive algorithm to find it as discussed below.
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Figure 2. General point of view on SP-PCA,
exponential PCA and Bregman soft clustering
based on the number of NPML atoms.

4. Extensions to mixed data sets

Now that the relationship between exponential PCA, SP-
PCA and Bregman soft clustering has been demonstrated
within a unifying mixed data type framework, we can ex-
tend SP-PCA and Bregman soft clustering to deal with the
important mixed data case. Recalling the modifications
on exponential PCA presented in [12], we also introduce
a penalty function that improves exponential PCA conver-
gence efficiency. Towards these ends, following the nota-
tion in [5], we use themixing distributionQ=

{
¯
θ[l],πl

}m

l=1
which contains the parameters

¯
θ[l] and their associated

point-mass probabilitiesπl. The mixing distribution needs
to be estimated in all three algorithms.

4.1. Semi-parametric exponential PCA

The Semi-Parametric exponential family Principal Com-
ponent Analysis (SP-PCA) approach presented in [20]
attacks the Semiparametric Maximum Likelihood mix-
ture density Estimation (SMLE) problem by using the
Expectation-Maximization (EM) algorithm [8]. As done
previously in [12] for exponential PCA, we present an SP-
PCA modified approach for mixed data types. For simplic-
ity of presentation, we consider that thef first attributes are
distributed according to the exponential family distribution
p(1) and the(d− f) last attributes are distributed according
to the exponential family distributionp(2). The following
notation is used:

x[k] =
[
x1[k], . . . ,xf [k],xf+1[k], . . . ,xd[k]

]

=
[
x(1)[k]

∣∣x(2)[k]
]
,

for k = 1, . . . ,n, and similarly for the observation matrix,

X =
(
X(1) X(2)

)
.



The EM approach introduces amissing(unobserved) vari-
able zk = [zk1, . . . ,zkm], for k = 1, . . . ,n. This vari-
able is anm-dimensional binary vector whoselth compo-
nent equals1 if the observed variablex[k] was drawn from
thelth mixture component and0 otherwise; its value is esti-
mated during the E-step. Using this information, acomplete
log-likelihood function is defined as follows:

L(c)
(Q, {zk}n

k=1

)
= log

n∏

k=1

m∏

l=1

p
(
x[k]|̄θ[l]

)zklπzkl

l ,

with
¯
θ[l] =

¯
a[l]V +b. Its maximization during the M-step

yields parameters
¯
A, V andb estimates. Then,

p
(
x[k]|̄θ[l]

)
= p(1)

(
x(1)[k]|̄θ(1)[l]

) · p(2)
(
x(2)[k]|̄θ(2)[l]

)
(7)

using the assumption from (1), where, forl = 1, . . . ,m,

¯
θ[l]=

[
¯
θ1[l], . . . ,

¯
θf [l],

¯
θf+1[l], . . . ,

¯
θd[l]

]
=

[
¯
θ(1)[l]

∣∣
¯
θ(2)[l]

]
,

¯
Θ =




¯
θ[1]

¯
θ[2]

...

¯
θ[n]


 =

(
¯
Θ(1)

¯
Θ(2)

)
.

The following decompositions arise:

V =
(
V(1) V(2)

)
,

B =
(
B(1) B(2)

)
,

whereB(1) = [b(1), . . . ,b(1)]T andb(1) = [b1, . . . , bf ],
B(2) = [b(2), . . . ,b(2)]T and b(2) = [bf+1, . . . , bd].
Hence,

¯
Θ =

(
¯
AV(1) +B(1)

¯
AV(2) +B(2)

)
.

Note that there is no such split for
¯
A. The complete log-

likelihood function becomes:

L(c)
(Q, {zk}n

k=1

)
=

n∑

k=1

m∑

l=1

zkl log πl

+
n∑

k=1

m∑

l=1

zkl log p(1)
(
x(1)[k]|̄θ(1)[l]

)·p(2)
(
x(2)[k]|̄θ(2)[l]

)
.

(8)

The E-step yields fork = 1, . . . ,n andl = 1, . . . ,m:

ẑkl = E{zkl|x[k], π1, . . . , πm}

=
p(1)

(
x(1)[k]|̄θ(1)[l]

)·p(2)
(
x(2)[k]|̄θ(2)[l]

))
πl∑m

r=1 p(1)
(
x(1)[k]|̄θ(1)[r]

)·p(2)
(
x(2)[k]|̄θ(2)[r]

)
πr

.

For all l and allk, each data pointx[k] has an estimated
probability ẑkl of belonging to thelth mixture component.

The M-step first yields the estimates for the point-mass
probabilities:

π
(new)
l =

∑n
k=1 ẑkl

n
.

The second part of the M-step, i.e., the estimation of the
parametersV, b, and the point-mass support points

¯
A =[

¯
a[1]T , . . . ,

¯
a[m]T

]T ∈ Rm,q, is affected by the mixed data
type assumption. It consists of maximizing the complete
log-likelihood function (8) with respect to these parameters:

arg max
¯
A,V,b

E
{

L(c)
({

¯
θ[l],π(new)

l

}m

l=1
, {ẑk}n

k=1

)}
.

Following the notation in [20], we set, forl = 1, . . . ,m:

x̃[l] =
∑n

k=1 ẑklx[k]∑n
k=1 ẑkl

,

the lth mixture component center. It can be shown, using
exponential family properties, that the loss function is:

L(
¯
A,V,b)

=
m∑

l=1

{
G(1)

(
¯
a[l]V(1)+b(1)

)−(
¯
a[l]V(1)+b(1)

)
x̃[l]T

}

+
m∑

l=1

{
G(2)

(
¯
a[l]V(2)+b(2)

)−(
¯
a[l]V(2)+b(2)

)
x̃[l]T

}
,

(9)

whereG(1)(·), G(2)(·) respectively, is the cumulant gener-
ating function associated with the exponential family distri-
butionp(1)(·), p(2)(·) respectively, as seen in equation (3).

Following the derivations in [12], the Newton-Raphson
method is used for the iterative minimization of the loss
function (9) and the resulting update equations are as fol-
lows. First at iterationt, for l = 1, . . . ,m,

¯
a(t+1)[l]T =

¯
a(t)[l]T − α(t+1)

¯
a

·
{
V(1)(t)G(1)′′(

¯
a(t)[k]V(1)(t)+b(1)(t)

)
V(1)(t),T

+ V(2)(t)G(2)′′(
¯
a(t)[k]V(2)(t)+b(2)(t)

)
V(2)(t),T

}−1

·
{
V(1)(t)

(
G(1)′(

¯
a(t)[k]V(1)(t)+b(1)(t))− x̃[k]T

)

+ V(2)(t)
(
G(2)′(

¯
a(t)[k]V(2)(t)+b(2)(t))− x̃[k]T

)}
.

(10)

For the second step, the two sets of row vectors{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
are updated separately. The

update equations can then be used for
{
v(1)

j

}q

j=1
and

{
v(2)

j

}q

j=1
by changing vj to v(1)

j , respectively to

v(2)
j , b to b(1), respectively tob(2), G(·), G′(·), and



G′′(·) to G(1)(·), G(1)′(·), and G(1)′′(·), respectively to
G(2)(·), G(2)′(·), andG(2)′′(·). Forj = 1, . . . , q:

v(t+1),T
j = v(t),T

j

− α(t+1)
v

(
m∑

l=1
¯
a
(t+1)
j [l]2G′′

(
¯
a(t+1)[l]V(t)+b(t)

)
)−1

·
(

n∑

k=1
¯
a
(t+1)
j [l]

{
G′

(
¯
a(t+1)[l]V(t) + b(t)

)−x̃[k]T
}
)

.

(11)

And finally for the last step, the update equations can then
be used forb(1) andb(2) by changingb to b(1), respec-
tively to b(2), V to V(1), respectively toV(2), G(·), G′(·),
andG′′(·) to G(1)(·), G(1)′(·), andG(1)′′(·), respectively to
G(2)(·), G(2)′(·), andG(2)′′(·).

b(t+1),T = b(t),T

= b(t),T− α
(t+1)
b

(
m∑

l=1

G′′
(
¯
a(t+1)[l]V(t+1) + b

)
)−1

·
(

m∑

l=1

{
G′

(
¯
a(t+1)[l]V(t+1) + b

)− x̃[k]T
}
)

.

(12)

Table 1 summarizes the SP-PCA algorithm.

4.2. Exponential family PCA

The work proposed in [12] is based on the generalization
of Principal Component Analysis to the exponential family
technique presented in [7], often referred to as exponential
Principal Component Analysis.

As stated earlier, instead of the fastidious estimation of
the point-mass probabilities, exponential PCA considers the
special uniform case whereπl = 1/m for l = 1, . . . ,m, for
which the number of support points equals the number of
data samples (m = n). Hence, the point-mass probabilities
do not need to be estimated and the EM algorithm is unnec-
essary. Then, to each vectorx corresponds a vector

¯
a, i.e.,

a vector
¯
θ, and they can share the same indexk = 1, . . . ,n.

The update equations were presented in [12]. It is easily
noticed that they are the same as equations (10), (11) and
(12), the only difference being that the exponential PCA
update equations usex instead of̃x, i.e., data points instead
of mixture component centers. Each data pointx is its own
mixture component center.

As noted in [7], it is possible for the atoms obtained with
exponential PCA to diverge since the optimum may be at
infinity. To avoid such behavior, we introduce a penalty
function that defines and places a set of constraints into the

Algorithm : Semi-Parametric exp. family PCA [20]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two ex-

ponential family distributionp(1), p(2) defined by their
cumulant generating functionsG(1), G(2), a number of
atomsm, q ¿ d the dimension of the latent variable
lower dimensional subspace.

Output: the NPML estimator that maximizes the com-
plete log-likelihood functionL(c)

(Q, {zk}n
k=1

)
: Q̂ ={̂

¯
θ[l], π̂l

}m

l=1
with ̂

¯
θ[l] = ̂̄a[l]V̂ + b̂ for all l, {̂̄a[l]}m

l=1 ∈
Rq, V̂ ∈ Rq×d andb̂ ∈ Rd.

Method:
Initialize V, b and

{
¯
a[l],πl

}m

l=1
with πl ≥ 0 for all

l and
∑m

l=1 πl = 1;
¯
θ[l] =

¯
a[l]V + b ∈ Θ for all l;

p
(
x[k]|̄θ[l]

)
as defined in (7) for allk andl;

repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}

for l = 1 to m do
πl ←−

(
1/n

) ∑n
k=1 ẑkl

end for
{The Newton-Raphson iterative algorithm}
for l = 1 to m do

¯
a[l] ←− update equation (10)

end for
for j = 1 to q do
vj ←− update equation (11)

end for
b ←− update equation (12)

until convergence;
returnQ̂ =

{̂
¯
θ[l] = ̂̄a[l]V̂ + b̂, π̂l

}m

l=1
.

Table 1. Semi-Parametric PCA algorithm.

loss function via a penalty parameter in a way that penalizes
any divergence to infinity. The penalty function

ψ(
¯
θ) =

d∑

i=1

{
exp

(− βmin(
¯
θi − ¯

θmin,i)
)

+ exp
(
βmax(

¯
θi − ¯

θmax,i)
)}

,

is designed so thatψ(
¯
θ) is close to zero for

¯
θmin≤¯

θ≤
¯
θmax

and reaches infinity otherwise. The penalty function modi-
fications on the update equations (10), (11) and (12), i.e., an
additional additive term within each of the large parenthe-
ses, are omitted here for sake of brevity.

Table 2 summarizes exponential PCA algorithm.



Algorithm : Exponential PCA [7]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two ex-

ponential family distributionp(1), p(2) defined by their
cumulant generating functionsG(1), G(2), a number of
atomsn, q ¿ d the dimension of the latent variable lower
dimensional subspace.

Output: the NPML estimator that maximizes the log-
likelihood functionL

(Q)
: Q̂ =

{̂
¯
θ[k]}n

k=1 with ̂
¯
θ[k] =

̂̄a[k]V̂ + b̂ for all k, {̂̄a[k]}n
k=1 ∈ Rq, V̂ ∈ Rq×d and

b̂ ∈ Rd.

Method:
InitializeV, b and

{
¯
a[k]

}n

k=1
;
¯
θ[k] =

¯
a[k]V+b ∈ Θ

for all k; p
(
x[k]|̄θ[k]

)
as defined in (7) for allk;

repeat
{The Newton-Raphson iterative algorithm}
for k = 1 to n do

¯
a[l] ←− penalty-modified update equation (10)

with x instead of̃x
end for
for j = 1 to q do
vj ←− penalty-modified update equation (11)

with x instead of̃x
end for
b ←− penalty-modified update equation (12)

with x instead of̃x
until convergence;

returnQ̂ =
{̂
¯
θ[k] = ̂̄a[k]V̂ + b̂

}n

k=1
.

Table 2. Exponential PCA algorithm.

4.3. Bregman soft clustering

The Bregman soft clustering approach presented in [4]
utilizes an alternative interpretation of the EM algorithm for
learning models involving mixtures of exponential family
distributions. It is a simple soft clustering algorithm for all
Bregman divergences, i.e., for all exponential family distri-
butions. We choose here to present this technique without
referring to the Bregman divergence as done in [4] but by
using its corresponding exponential family probability dis-
tribution for the sake of comparison with SP-PCA and ex-
ponential PCA.

Given a data set of observations
{
x[k]

}n

k=1
, Bregman

soft clustering aims at modeling the statistical structure of
the data as a mixture ofm densities of the same exponen-
tial family. The clusters correspond to the components of
the mixture model and the soft membership of a data point
in each cluster is proportional to the probability of the data
point being generated by the corresponding density func-
tion. The Bregman soft clustering problem is based on a

Algorithm : Bregman Soft Clustering [4]

Input: a set of observations
{
x[k]

}n

k=1
⊆ Rd, two ex-

ponential family distributionp(1), p(2) defined by their
cumulant generating functionsG(1), G(2), a number of
atomsm.

Output: the NPML estimator that maximizes the com-
plete log-likelihood functionL(c)

(Q, {zk}n
k=1

)
: Q̂ ={̂

¯
θ[l], π̂l

}m

l=1
.

Method:
Initialize

{
¯
θ[l],πl

}m

l=1
with πl ≥ 0 for all l and∑m

l=1 πl = 1; p
(
x[k]|̄θ[l]

)
as defined in (7) for allk and

l;
¯
θ[l] ∈ Θ for all l;
repeat
{The Expectation Step}
for k = 1 to n do

for l = 1 to m do
ẑkl ←− p

(
x[k]|̄θ[l]

)
πl/

∑m
r=1 p

(
x[k]|̄θ[r]

)
πr

end for
end for
{The Maximization Step}
for l = 1 to m do

πl ←− (1/n)
∑n

k=1 ẑkl

¯
θ[l] ←− solve for

¯
θ[l]:

G′(
¯
θ[l]) =

∑n
k=1 ẑklx[k]/

∑n
k=1 ẑkl

end for
until convergence;

returnQ̂ =
{̂
¯
θ[l], π̂l

}m

l=1
.

Table 3. Bregman soft clustering algorithm.

maximum likelihood estimation of the cluster parameters{
¯
θ[l], πl

}m

l=1
satisfying the following mixture structure:

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl,

wherep(x|·) is an exponential family distribution. The data
likelihood function takes the following form:

p(X) =
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl. (13)

The data likelihood function in (13) is similar to the data
likelihood function in (6) without the linear constraint

¯
θ[l] =

¯
a[l]V+b for l = 1, . . . ,m. Hence, the Bregman soft

clustering problem is similar to the SP-PCA problem with-
out the lower dimensional subspace constraint and a simple
EM algorithm is used to estimate the cluster parameters. We
consider again the mixed data type case. The E-step and the
first part of the M-step yield the same results as for SP-PCA.
In the second part of the M-step, the component parameters



¯
θ[l], l = 1, . . . ,m, are estimated in the following way:

¯
θ[l](new) = arg max

¯
θ[l]

n∑

k=1

m∑
r=1

ẑkr log p
(
x[k]|̄θ[r]

)

= arg max
¯
θ[l]

{ n∑

k=1

m∑
r=1

ẑkr log p(1)
(
x(1)[k]|̄θ(1)[r]

)

+
n∑

k=1

m∑
r=1

ẑkr log p(2)
(
x(2)[k]|̄θ(2)[r]

)}
,

with log p
(
x[k]|̄θ[r]

)
=

¯
θ[r]x[k]T − G

(
¯
θ[r]

)
. Using the

convexity properties ofG(·), it is easily shown that:

G′(
¯
θ[l](new)) =

( n∑

k=1

ẑklx[k]
)/( n∑

k=1

ẑkl

)

can be solved for
¯
θ[l](new),(1) and

¯
θ[l](new),(2) by chang-

ingx tox(1), respectively tox(2), G′(·) to G(1)′(·), respec-
tively to G(2)′(·).

Table 3 summarizes the Bregman soft clustering algo-
rithm.

5. Experimental results on synthetic data

We compare the relative performances of exponential
PCA, SP-PCA and Bregman soft clustering in a mixed data
set clustering problem with two data types and demonstrate
how exponential PCA with the addition of a nonparametric
estimation of the point-mass probabilities exceeds SP-PCA
in performance.

We first consider a syntheticd = 3-dimensional data set
with a lower dimensional subspace of dimensionq = 1. The
first data feature is Poisson distributed, the second and third
features are Gaussian distributed. The data hasn = 500
points and is composed of two mixture components with
parametersθ[1] andθ[2] constrained to the lower dimen-
sional subspace.

We first use exponential PCA. However, exponential
PCA does not estimate point-mass probabilities. We use a
nonparametric density estimation technique based on a ker-
nel smoothing method to estimate the point-mass probabil-
ities using the support points values

¯
a[k], k = 1, . . . ,n,

obtained by exponential PCA. Figure 3 shows that the
nonparametric density estimation exhibits a definite two-
component shape. The dotted lines represent the correct
values

¯
a[1] and

¯
a[2]. We can then estimate the values of

¯
a[1] and

¯
a[2] as well as their mixing distributionsπ1 andπ2

using a simplekmeans algorithm, with theπ1 + π2 = 1
assumption.

Figure 4 presents the histogram of the estimated point-
mass probabilities obtained with SP-PCA,m = 2.

Table 4 shows detailed results for this synthetic data set-
ting (“modified” means the extension to mixed data sets of
the algorithm): the mixing distributions or point-mass prob-
abilities π1 andπ2, the latent variable or point of support
values

¯
a[1] and

¯
a[2], the parameter values

¯
θ[1] and

¯
θ[2] as

well as the sine of the angle between the estimated lower
dimensional subspace and the correct subspace. Bregman
soft clustering does not have the lower dimensional sub-
space constraint, and hence does not exhibit a sine or the
latent variables values in Table 4. The estimation quality
of the

¯
θ[1],

¯
θ[2] and π1, π2 values defines the clustering

performance. For this simple Poisson-Gaussian mixed data
setting, both exponential PCA and Bregman soft clustering
seem to perform better than SP-PCA: the SP-PCA obtained
parameter values for

¯
θ[2] are far from the original values,

contrary to exponential PCA and Bregman soft clustering.
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Figure 3. Nonparametric estimation of the
point-mass probabilities obtained with expo-
nential PCA (dotted: correct cluster centers).
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Figure 4. Histogram of the estimated point-
mass probabilities obtained with SP-PCA
(dotted: correct cluster values).

Results for a second experiment are shown in Table 5
for a Binomial-Gaussian mixed data set created in a similar
fashion as the Poisson-Gaussian mixed data set (the parame-
ter N is set to 10 for the Binomial component). Again, ex-
ponential PCA exceeds SP-PCA in clustering performance.



π1; π2 ¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 3 [1.9404, 1.6148, 1.6210]
model values 0.6 −2 [−1.2936,−1.0765,−1.0806]

modified 0.4107 3.0009 [1.6235, 1.8648, 1.7007] 0.1368
exponential PCA 0.5893 −1.3725 [−0.7425,−0.8529,−0.7778]

modified 0.3724 3.2170 [2.1732, 1.5715, 1.7768]
SP-PCA 0.6276 0.8355 [0.5644, 0.4081, 0.4614] 0.058663

modified Bregman 0.4069 [1.9317, 1.7162, 1.5585]
soft clustering 0.5931 [−1.1061,−1.0802,−1.0304]

Table 4. Clustering results for a Poisson-Gaussian mixed data set.

π1; π2 ¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 1 [0.8914, 0.1688, 0.4206]
model values 0.6 −2 [−1.7828,−0.3375,−0.8412]

modified 0.4475 0.8559 [0.7796, 0.1166, 0.3334] 0.049038
exponential PCA 0.5525 −1.9972 [−1.8193,−0.2721,−0.7779]

modified 0.3978 −0.9548 [−0.9046,−0.0989,−0.2890]
SP-PCA 0.6022 −3.1821 [−3.0148,−0.3296,−0.9633] 0.1455

modified Bregman 0.3973 [0.82252, 0.144, 0.41004]
soft clustering 0.6027 [−1.8072,−0.3089,−0.9816]

Table 5. Clustering results for a Binomial-Gaussian mixed data set.

6. Conclusion

We presented a mixed data-type hierarchical Bayes
graphical model framework that adds clarity and perspec-
tive to our understanding of exponential PCA, SP-PCA and
Bregman soft clustering. We demonstrated that these tech-
niques are not separate unrelated algorithms but different
manifestations of parameter choices taken within a com-
mon framework. Because of this insight, we were able to
extend the algorithms to readily derive novel extensions
that deal with the important mixed data type case. Our
framework has the critical advantage of allowing one to
go from high-dimensional mixed-type data components to
low-dimensional common-type latent variables that are then
used to perform clustering in a much simpler manner using
well-known continuous-parameter clustering techniques.
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