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ABSTRACT

Minority class detection is the problem of detecting the occur-
rence of rare key events differing from the majority of a data
set. This paper considers the problem of unsupervised minor-
ity class detection for multidimensional data that are highly
nongaussian, mixed (continuous and/or discrete), noisy, and
nonlinearly related, such as occurs, for example, in fraud de-
tection in typical financial data. A statistical modeling ap-
proach is proposed which is a subclass of graphical model
techniques. It exploits the properties of exponential family
distributions and generalizes techniques from classical linear
statistics into a framework referred to as Generalized Linear
Statistics (GLS). The methodology exploits the split between
the data space and the parameter space for exponential family
distributions and solves a nonlinear problem by using classi-
cal linear statistical tools applied to data that has been mapped
into the parameter space. A fraud detection technique utiliz-
ing low-dimensional information learned by using an Itera-
tively Reweighted Least Squares (IRLS) based approach to
GLS is proposed in the parameter space for data of mixed
type. ROC curves for an initial simulation on synthetic data
are presented, which gives predictions for results on actual
financial data sets.

Index Terms— Minority class detection, generalized lin-
ear models, exponential family distributions, graphical mod-
els, dimensionality reduction.

1. INTRODUCTION

Minority class detection considers a binary class situation
where a “minority class” is discriminated from a “majority
class”. It aims at differentiating rare key events belonging to
the minority class from the remainder of the data belonging
to the majority class. Many important risk assessment sys-
tem applications depend on the ability to accurately detect
the occurrence of rare key events given a large data set of ob-
servations. This problem arises in drug discovery (“Do the
molecular descriptors associated with known drugs suggest

that a new, candidate drug will have low toxicity and high
effectiveness?”); and health care (“Do the descriptors asso-
ciated with a medical doctor professional behavior suggest
that he/she is an outlier in the category he/she was assigned
to?”). The work proposed here is specifically concerned with
the problem of minority class detection; for example, in credit
card fraud detection (“Given the data for a large set of credit
card users does the usage pattern of this particular card indi-
cate that it might have been stolen?”). In many domains, no or
little a priori knowledge exists regarding the true sources of
any causal relationships that may occur between variables of
interest. In these situations, meaningful information regard-
ing the key events must be extracted from the data itself.

The problem of unsupervised data-driven minority class
(rare event) detection is one of relating property descriptors
of a large unlabeled database of “objects” to measured prop-
erties of these objects, and then using these empirically de-
termined relationships to detect the properties of new objects.
Here, the ultimate goal is to correctly characterize the new
objects as either belonging to the minority class or not. This
work assumes that minority class and majority class objects
constitute two distinct, well-separated classes of objects in a
latent variable space (the “parameter space”) to be defined be-
low. In the case of a rare occurrence of objects to be detected,
as is typically the case in credit card fraud detection, there is
the belief that modeling the total unlabeled database allows
one to discern the statistical structure of the majority class
of objects. This work considers measured object properties
that are nongaussian, mixed (comprised of continuous and
discrete data), very noisy, and highly nonlinearly related for
which the resulting minority class detection problem is very
difficult. The difficulties are further compounded because the
descriptor space is of high dimension.

Many of the classical tools for unsupervised feature ex-
traction and analysis such as Principle Components Analy-
sis (PCA), Independent Component Analysis (ICA) and clas-
sical Factor Analysis (FA) are all tied together by sharing a
common general directed graph structure, and differ only in



certain assumptions about the type (discrete or continuous) of
latent variables and the form of node probability distributions
[1]. One of the key assumptions made by these approaches is
that the components of the observed node all share the same
form of conditional probability distribution. In contrast, the
proposed approach allows for the components to have differ-
ing parametric forms; using exponential family distributions
the components can model a large variety of mixed data types.
A key aspect of our method, referred to as Generalized Linear
Statistics (GLS), is that the parameter of the exponential fam-
ily distributions is constrained to a lower dimensional latent
variable subspace. This models the belief that the intrinsic di-
mensionality of the data is smaller than the observed dimen-
sionality of the data space.

The unsupervised minority class detection technique pro-
posed here is performed in the parameter space rather than in
the data space as done in more classical approaches. As an
example, a synthetic data set is investigated, where a single
latent variable subspace is learned by using the GLS based
statistical modeling on an unlabeled training set. Given a new
data point, that point is projected to its image in the parame-
ter space on the learned subspace and minority class detec-
tion is performed by comparing its distance from the train-
ing set mean-image to a threshold. The presented example
shows that there are domains for which the classical linear
techniques, such as PCA, used in the data space perform far
from optimal compared to the new proposed parameter space
techniques. ROC curves are generated to assess the perfor-
mance of the proposed minority class detection method.

2. GENERALIZED LINEAR STATISTICS (GLS)

The proposed statistical modeling approach is a subclass of
graphical model techniques. It is a generalization and amal-
gamation of techniques from classical linear statistics, Logis-
tic Regression, Principal Component Analysis (PCA), latent
variable analysis and Generalized Linear Models (GLMs) as
well as our previous work [2] into a unified framework we re-
fer to (analogously to GLMs theory) asGeneralized Linear
Statistics(GLS). This is actually anonlinear methodology
which exploits the split that occurs for exponential family dis-
tributions between thedata space(also known as theexpected
value space) and the(natural) parameter spaceas soon as
one leaves the domain of purely Gaussian random variables.
The point is that although the problem is now nonlinear, it
can be attacked by using classical linear (and other standard)
statistical tools applied to data which has beenmapped into
the parameter space, which still has a natural, flat Euclidean
space structure. For example, in the parameter space one can
perform regression (resulting in the technique of logistic re-
gression and other GLMs methods [3]), PCA (resulting in a
variety of “generalized PCA” methods [4]), or clustering [5].

This framework is used to develop algorithms capable of

minority class detection in domains involving highly hetero-
geneous data types and unlabeled data sets. Specifically, this
work considers data records which have both continuous (e.g.,
exponential and Gaussian) and discrete (e.g., count and bi-
nary) components. It focusses on the development ofun-
supervisedminority class detection algorithms which can be
trained using unlabeled training data sets. The unsupervised
case is very difficult and takes one out of the domain of the
standard supervised approaches, such as neural networks.

To motivate theoretical developments, a general graphical
model for hidden variables is considered, cf. Fig. 1. The row
vectorx = [x1, . . . ,xd] ∈ Rd consists of observed features in
ad-dimensional space. categorical or count data) and contin-
uous values. Following the probabilistic Generalized Latent
Variable (GLV) formalism described in [6], it is assumed that
training points can be drawn from populations having class-
conditional probability density functions,

p(x|θ) = p1(x1|θ1) · . . . · pd(xd|θd), (1)

where, when conditioned on the random parameter vector
θ = [θ1, . . . ,θd] ∈ Rd, the components ofx are independent.
It is further assumed thatθ can be written as

θ = aV + b (2)

with the hidden or latent variablea = [a1, . . . ,aq] ∈ Rq ran-
dom withq < d (and ideallyq ¿ d), V ∈ Rq×d andb ∈ Rd

deterministic. Conditioning on the random vectorθ is equiv-
alent to conditioning on the low-dimensional random vector
a. In a probabilistic sense, all of the information which is mu-
tually contained in the data vectorx must be contained in the
latent variablea. As noted in [6], equations (1) and (2) gener-
alize the classical factor analysis model to the case when the
marginal densitiespi(xi|θi) are nongaussian. Indeed, the sub-
scripti onpi(·|·) serves to indicate that the marginal densities
can all be different, allowing for the possibility ofx contain-
ing categorical, discrete, and continuous valued components.
It is further assumed that the marginal densities are each one-
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Fig. 1. Graphical model for GLS

parameter exponential family densities, allowing the use of
a rich and powerful theory of such densities to be utilized,
and it is commonly the case thatθi is taken to be the natural
parameter (or some simple bijective function of it) of the ex-
ponential family densitypi. Hence, each component density
pi(xi|θi) in (1) for xi ∈ Xi, i = 1, . . . ,d, is of the form

p(xi|θi) = exp
(
θixi −G(θi)

)
, (3)



whereG(·) is the cumulant generating function defined as

G(θi) = log
∫

Xi

exp
(
θixi

)
ν(dxi),

with ν(·) a σ-finite measure that generates the exponential
family. It can be shown, using Fubini’s theorem [10], that
G(θ) =

∑d
i=1 G(θi).

In both the GLV theory described in [6] and the random-
and Mixed-effects Generalized Linear Models (MGLMs) lit-
erature [3],V andb are deterministic whilea (and henceθ)
is treated as a random vector. The difference is that in GLV,
all of the quantitiesV, b, anda are unknown, and hence need
to be identified, whereas in MGLMs,V is a known matrix of
regressor variables and only the deterministic vectorb and
the unknown realizations of therandom effectvectora must
be estimated. In both GLV and MGLMs, it is assumed that
in theθ-parameter space the linear relationship (2) holds and
(at least conceptually) that the tools of linear and statistical
inverse theory are applicable or insightful. The MGLMs the-
ory is a generalization of the classical theory of linear regres-
sion, while the GLV theory is a generalization of the classical
theory of factor analysis and PCA. In both cases the gener-
alization is based on a move from the data/description space
containing the measurement vectorx to the parameter space
containingθ (via a generally nonlinear transformation known
as a link function [3]), and it is in the latter space that the
linear relationship (2) is assumed to hold. Because both the
Generalized Linear Models (GLMs) and the Generalized La-
tent Variable (GLV) methodologies exploit the linear structure
(2), they can be viewed as special cases of a Generalized Lin-
ear Statistics (GLS) approach to data analysis.

With the observational conditional distributions described,
attention turns to the marginal distribution of parent nodes
a1, . . . ,aq. For motivation, note that the (nonconditional)
densityp(x) requires a generally intractable integration over
the parameters,

p(x) =
∫

p(x|θ)π(θ)dθ =
∫ d∏

i=1

pi(xi|θi)π(θ)dθ, (4)

whereπ(θ) is the probability density function ofθ = aV+b.

Given the observation matrixX =
[
x[1]T , . . . ,x[n]T

]T
in

Rn×d composed ofn iid statistical samples, each assumed to
be stochastically equivalent to the random row vectorx,

p(X) =
n∏

k=1

p(x[k]) =
n∏

k=1

∫ d∏

i=1

pi(xi[k]|θi)π(θ)dθ (5)

with θ = aV + b. For specified exponential family densities
pi(·|·), i = 1, . . . ,d, maximum likelihood identification of the
model (4) corresponds to identifyingπ(θ), which, under the
conditionθ = aV + b, corresponds to identifying the matrix

V, the vectorb, and a density function,µ(a), ona via a max-
imization of the data likelihood functionp(X) with respect to
V, b, andµ(a). This is generally a quite difficult problem [3]
and is usually attacked using approximation methods which
correspond to replacing the integral in (4)/(5) by a sum [7]:

p(x) =
m∑

j=1

p(x|̄θj)πj =
m∑

j=1

d∏

i=1

pi(xi |̄θj,i)πj (6)

p(X) =
n∏

k=1

m∑

j=1

d∏

i=1

pi(xi[k]|̄θj,i)πj (7)

over a finite number of support points
¯
θj , (equivalently,

¯
aj),

j = 1, . . . ,m, with point-mass probabilities

πj , π(θ =
¯
θj) = π(a =

¯
aj).

As clearly described in [7], this approximation is justified ei-
ther as a Gaussian quadrature approximation to the integral
in (5) [3] or by appealing to the fact that theNonParametric
Maximum Likelihood(NPML) estimate of the mixture den-
sity π(θ) yields a solution which takes a finite number (m) of
points of support [5, 8].

With θ = aV + b, with V, b fixed anda random, the
likelihood function (6) is equal to

p(x) =
m∑

j=1

p(x|̄θj)πj =
m∑

j=1

p(x|
¯
ajV + b)πj , (8)

and the data likelihood function (7) is equal to

p(X) =
n∏

k=1

m∑

j=1

p(x[k]|
¯
ajV + b)πj . (9)

The combined problem of maximum likelihood estimation
(MLE) of the parametersV, b, the support points

¯
aj and the

point-mass probability estimatesπj , j = 1, . . . ,m, (as ap-
proximations to the unknown, and possibly continuous den-
sity µ(a)) is known as the NPML estimation problem [8]. It
can be attacked by using the Expectation-Maximization (EM)
algorithm [6] as done in [5], or, as done in [4], by simply con-
sidering the special case of uniform point-mass probabilities,
i.e., πj = 1/m for j = 1, . . . ,m, for which the number of
support points equals the number of data samples, i.e.,m = n.

The goal here is to fit a probability model of the form (9)
using exponential family densities to labeled (when available)
or unlabeled data to develop algorithms for deciding if a new
measurement belongs to the minority class or not. For ex-
ample, if an adequate fit of a parameterized probability dis-
tribution has only been found to the single, labeled major-
ity class, the question is whether the new data point fits well
with this distribution or whether it should be flagged as a po-
tential member of the minority class. Alternatively, if class-
conditional distributions can be fitted to minority and major-
ity class labeled data, a Bayes-optimal likelihood ratio test can



be computed [9]. Class-conditional density-based tests can be
equivalently posed as discriminant functions which are func-
tions of sufficient statistics of the densities (when they exist)
and which, in turn, define decision surfaces in feature space.
Of course, the most difficult situation arises when the training
samples are unlabeled. However, even in this case, sometimes
the single-class model can still be effective for minority class
detection. For example, if the ratio of minority class data
to majority class data is very small, then the unlabeled data
points are approximately distributed like the majority class
data, and the simpler single-class model might be effectively
assumed and utilized. This condition can be satisfied in prac-
tice; fraudulent credit card transactions are typically approxi-
mately one tenth of one percent of all transactions.

3. MINORITY CLASS DETECTION

The minority class detection technique proposed here is per-
formed in the parameter space rather than in the data space
as done in more classical approaches, and exploits the low
dimensional information provided by the latent variables

¯
aj , j = 1, . . . ,m. The proposed technique considers the spe-
cial case of uniform point-mass probabilities,πj = 1/m for
j = 1, . . . ,m, for which the number of support points equals
the number of data samples, i.e.,m = n. Hence, the point-
mass probabilities do not need to be estimated and the EM
algorithm is unnecessary. Then, to each vectorx corresponds
a vector

¯
a and they can share the same indexk = 1, . . . ,n.

For sake of simplicity, theb-term in (2) is absorbed in the
standard manner into the matrixV using the homogenous
coordinates. The simultaneous estimation of the parameters

V ∈ Rq×d andA =
[
¯
aT

1 , . . . ,
¯
aT

n

]T ∈ Rn×q is performed by
minimizing the negative log-likelihood function. Using (9),
the loss function is expressed as

L(V,A) = − log p(X) = −
n∑

k=1

log p(x[k]|
¯
akV)

=
n∑

k=1

{
G(

¯
akV)−

¯
akVx[k]T

}
=

n∑

k=1

L(
¯
ak,V),

(10)

using the exponential family definition in (3).

It can be shown that the loss function (10) is convex in ei-
ther of its arguments with the others fixed [4]. Hence, its
minimization is attacked by using an iterative approach. The
Newton-Raphson method is used for the iterative minimiza-
tion. The first step in the(l + 1)th iteration consists of the
updateA(l+1) = arg minA L(A,V(l)), with V(l) the update
obtained at the end of thelth iteration. The Newton-Raphson
technique solves this problem by using the update

¯
a(l+1)

k =
¯
a(l)

k − α(l+1)
a

(
∇2

aL
(
¯
a(l)

k ,V(l)
))−1

· ∇aL
(
¯
a(l)

k ,V(l)
) (11)

for k = 1, . . . ,n, where∇L(·) is the gradient of the function
L(·),∇2L(·) its Hessian matrix andα(l+1) the so-called step
size. It is easily shown that, fork = 1, . . . ,n,

∇aL
(
¯
a(l)

k ,V(l)
)

= V(l)
(
G′

(
¯
a(l)

k V(l)
)− x[k]T

)
,

where

G′
(
¯
akV

(l)
)

=
∂G

(
¯
θk

)

∂
¯
θk

∣∣∣∣∣
¯
θk=

¯
a

k
V(l)

,
∂
¯
θk

∂
¯
ak

= V(l).

Furthermore, fork = 1, . . . ,n,

∇2
aL

(
¯
a(l)

k ,V(l)
)

= V(l)G′′
(
¯
a(l)

k V(l)
)
V(l),T ,

whereG′′
(
¯
a(l)

k V(l)
)

is a (d × d)-diagonal matrix with the
diagonal terms equal∂2G(

¯
θk)/∂

¯
θ2

k,i, i = 1, . . . ,d. (Note
that the diagonal structure ofG′′(·) is exact andnot an
approximation.) Similarly, the second step in the itera-
tive minimization method consists of the updateV(l+1) =
arg minV L(A(l+1),V). This update takes the form

v(l+1)
r =v(l)

r − α(l+1)
v

(
∇2

vL
(
¯
a(l+1)

k ,V(l)
))−1

· ∇vL
(
¯
a(l+1)

k ,V(l)
) (12)

for r = 1, . . . , q, where

∇vL
(
¯
a(l+1)

k ,V(l)
)

=
n∑

k=1
¯
a(l+1)

k

{
G′

(
¯
a(l+1)

k V(l)
)− x[k]T

}
,

∇2
vL

(
¯
a(l+1)

k ,V(l)
)

=
n∑

k=1

(
¯
a(l+1)

k

)2
G′′

(
¯
a(l+1)

k V(l)
)
.

For exponential family distributions and canonical link func-
tions, it can be shown that the update equations correspond to
normal equations in a least squares environment [11]. There-
fore the minimization problem corresponds to an Iteratively
Reweighted Least Squares (IRLS) algorithm. developed for a
large set of exponential family distributions (Gaussian, expo-
nential for the continuous distributions, Bernoulli, binomial
and Poisson for the discrete distributions). IRLS-based itera-
tive updates exist for a large set of exponential family distrib-
utions, including Gaussian, exponential, Bernoulli, binomial
and Poisson.

3.1. Positivity constraints

For the exponential and inverse Gaussian distributions, an ad-
ditional positivity constraint on the natural parameter values
has to be taken into account in order to fully comply with
their definition. Three alternative ways to deal with the pos-
itivity constraint are: (1) the use of Lagrange multipliers and
Kuhn-Tucker theory; (2) the use of penalty functions; and (3)
the use of a non-canonical link function which enables one to



work in an unconstrained parameter space. The latter option
is investigated. Here, the non-canonical link function is cho-
sen to be the composition of the canonical link function with
the absolute value function, and the loss function becomes:

L̃(V,A) =
n∑

k=1

{
G(−|

¯
akV|) + |

¯
akV|x[k]T

}
.

The iterative minimization algorithm based on IRLS is then
used oñL(V,A) as done previously onL(V,A).

3.2. Mixed data

The case of hybrid or mixed data occurs for a problem in
which different types of distributions can be used for differ-
ent descriptors. For simplicity of presentation, two types of
exponential family distribution,p(1) andp(2), are discussed
here. The matrix of observations becomesX = (X(1)|X(2)),
the parameters matrixΘ = AV = (Θ(1)|Θ(2)), the lower
dimensional subspace basis matrixV = (V(1)|V(2)). How-
ever, the matrix of principal componentsA remains common
to bothΘ(1) andΘ(2). Then, the loss function (10) takes the
following form:

L(V,A) = L(1)(V(1),A) + L(2)(V(2),A)

=
n∑

k=1

{
G(1)

(
¯
akV

(1)
)− (

¯
akV

(1)
)
x(1)[k]T

}

+
n∑

k=1

{
G(2)

(
¯
akV

(2)
)− (

¯
akV

(2)
)
x(2)[k]T

}.

(13)

As done previously the loss (13) is minimized using the
Newton-Raphson approach. In order to avoid confusion, the
step superscripts(l) and(l+1) are not bold whereas the mix-
ture superscripts(1) and(2) are. For the first step, the update
equations fork = 1, . . . ,n are:

¯
a(l+1),T

k =
¯
a(l),T

k

− α(l+1)
a

{
V(1)(l)G(1)′′(

¯
a(l)

k V(1)(l)
)
V(1)(l),T

+ V(2)(l)G(2)′′(
¯
a(l)

k V(2)(l)
)
V(2)(l),T

}−1

·
{
V(1)(l)

(
G(1)′(

¯
a(l)

k V(1)(l)
)− x[k](1),T

)

+ V(2)(l)
(
G(2)′(

¯
a(l)

k V(2)(l)
)− x[k](2),T

)}
.

For the second step, the two sets of row vectors
{
v(1)

r

}q

r=1

and
{
v(2)

r

}q

r=1
are updated separately. For the sake of

simplicity, the following derivations are made for the set{
vr

}q

r=1
indistinctively of the mixed data superscript. The

update equations can then be used for
{
v(1)

r

}q

r=1
and{

v(2)
r

}q

r=1
by changingvr to v(1)

r , respectively tov(2)
r ,

G(·), G′(·), andG′′(·) to G(1)(·), G(1)′(·), andG(1)′′(·), re-
spectively toG(2)(·), G(2)′(·), andG(2)′′(·). Then, the up-
date equations are as follows forr = 1, . . . , q:

v(l+1),T
r = v(l),T

r

− α(l+1)
v

(
n∑

k=1

(
¯
a
(l+1)
k,r

)2
G′′

(
¯
a(l+1)

k V(l)
)
)−1

·
(

n∑

k=1
¯
a
(l+1)
k,r

{
G′

(
¯
a(l+1)

k V(l)
)− x[k]T

}
)

.

This approach can be naturally generalized to any numbers of
exponential family distributions, resulting in a single update
equation forA ands independent update equations forV.

3.3. Minority class detection algorithm

The minority class detection technique using the IRLS-based
learning algorithm in the parameter space works as follows:
first, given the training set{x[k]}n

k=1, we learn the direction
of projection in the parameter space, namelyV, by using
the IRLS-based iterative algorithm, and compute the training
set mean-image in the parameter space, namely1

n

∑n
k=1 ¯

ak.
Then, the new data point is moved from the data space to the
parameter space using the link function. We project the ob-
tained point onto the learned direction of projection and com-
pute its distance to the training set mean-image. Finally, we
compare the obtained distance to a given threshold to make a
decision. If the distance is greater than the threshold, then the
new point is declared to belong to the minority class, other-
wise it is declared to belong to the majority class.

4. SIMULATION RESULTS

The IRLS-based learning algorithm has been implemented
for a dictionary of exponential family distributions: Gaussian,
exponential distribution for continuous data, Bernoulli, bino-
mial and Poisson distribution for discrete/count data.

Fig. 2 below shows an example of synthetic three-
dimensional mixed data (d = 3), with each data sample com-
prised of a binomial component with values between0 and5,
an exponential distribution component, and a Gaussian com-
ponent. The data are generated by two different classes, a
minority and a majority one, and for each class the parame-
ters are assumed to be constrained to lie on a (different) one-
dimensional subspace of the parameter space (q = 1). To
assess the unsupervised minority detection performance, we
consider a situation where the minority class is a rare occur-
rence (1 percent of 10,000 training points), and we perform
the detection algorithm described above. The proposed tech-
nique is compared to classical PCA used in the data space
with a threshold test performed on new data projected along
the first principal axis, as well as to a supervised Bayes (min-
imum rate) detector for the sake of an optimal benchmark.



Fig. 3 shows a comparison between the supervised Bayes
detector, the minority class detector based on the utilization of
the proposed algorithm to perform detection in the parameter
space, and the minority class detector based on classical PCA.
This illuminating example shows that there are domains for
which classical PCA performs far from optimal.
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5. CONCLUSION

A graphical model approach for minority class detection in an
unsupervised learning context for data of mixed type was pro-
posed and referred to as Generalized Linear Statistics (GLS).

An Iteratively Reweighted Least Squares algorithm was pre-
sented for learning distribution parameters of observed nodes,
as well as a nonparametric density estimation method for hid-
den nodes. Detection was then performed using discriminant
thresholding in the parameter space, instead of the data space
as in traditional methods. In contrast to classical methods,
the proposed method allows for each data component to have
its own parametric form and enables unsupervised minority
class detection in the case of a rare occurrence of minority
class objects. Initial results on synthetic data are encourag-
ing, and they allow for the prediction of quality results on
financial data sets which is now underway.

Furthermore, the possibility of utilizing novel hybrid detec-
tion techniques that work partially in data space and partially
in parameter space is being investigated.
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