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Abstract

Selection of a subset of vectors from a larger dictionary of vectors arises in a wide variety of application areas. This
problem is known to be NP-hard and many algorithms have been proposed for the suboptimal solution of this problem.
The focus of this paper is the development of a backward sequential elimination algorithm wherein, starting from the full
dictionary, elements are deleted until a subset of a desired size is obtained. In contrast to previous formulations, we start
with an overcomplete dictionary of vectors which is often the problem faced in a signal representation context. Once
enough vectors have been deleted to give a complete system, the algorithm is modi"ed to allow further deletion of vectors.
In addition, the derived algorithm gives access to the coe$cients associated with each vector in representing the signal.
This allows us to experiment with di!erent criteria, including entropy-based and p-norm criteria, for selection of the
vector to be deleted in each iteration. There is also the #exibility to combine criteria or to switch between criteria at
a given stage of the algorithm. Following a series of simulations on a test-case system, we are able to conclude that the
p-norm close to 1 performs best while the system considered is overcomplete. A minimum representation error criterion
gives the best results once the system considered becomes undercomplete. The performance of the algorithm is also
compared to that of forward selection algorithms on the test-case dictionary. � 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The problem of selecting a subset of basis ele-
ments from a large set of vectors has a long history
and can be traced to the search for optimal regres-

sions in the statistical literature [24,28,31,16]. This
problem has also been the subject of much research
interest in the recent signal processing literature.
For example, much work has been done in con-
structing signal representation dictionaries which
are collections of basic signals suitable for the
decomposition of signals of interest. These diction-
aries can then be used for compression of audio
[22,18] and video signals [3,33,36]. These dictiona-
ries are overcomplete in that they form a non-
minimal spanning set, and so very many di!erent
representations of the same input signal are pos-
sible in terms of the dictionary elements. For the
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purposes of compression, we wish to use a small
(`sparsea) subset of vectors from the dictionary to
represent the signal, and hence require algorithms
which "nd such a representation.
Subset selection problems also arise in many

di!erent application areas [38], making a detailed
analysis of basis selection algorithms an important
study. For instance, these algorithms have been
applied to biomagnetic inverse problems [19], ban-
dlimited extrapolation and spectral estimation
[29,4], direction of arrival estimation [20,21], func-
tional approximation [32,9], failure diagnosis [14],
and stock market analysis [37]. More recently, it
has been argued that overcomplete representations
and basis selection have a role in the coding of
sensory information in biological systems [15,34].
The subset selection problem has been shown to

be NP-hard [32] but many approaches have been
proposed which give a suboptimal solution to this
problem. Most commonly, a search for a sparse
representation (so-called because most of the dic-
tionary vectors are not utilized in representing the
signal) is based on a forward search through the
dictionary [32,8}10,30,2,35,12,41,1]. Elements from
the overcomplete dictionary are selected one after
the other until we have successfully represented the
vector to within some threshold, typically set by the
magnitude of the error between the signal and its
representation. As the name implies, these algo-
rithms proceed by sequentially adding elements to
a set of vectors which will be used to represent the
signal. Simple procedures were implemented ini-
tially [30,2] while more complex algorithms were
developed in [32,35,12,41,1,8}10], yielding im-
proved results. Other approaches have also been
suggested such as those based on minimizing diver-
sity measures including functionals whose minimiz-
ation promotes sparsity like the l

�
norm [6,7] or

the more general l
�����

norm [21,39,25}27]. Yet
another approach was introduced in [11,23] where
the search is based on a backward elimination but
for a complete or undercomplete (i.e., non-overcom-
plete) dictionary. In this case, elements are sequen-
tially deleted from a dictionary to obtain a sparse
solution. A simpler algorithm was formulated in
[40] which improved computationally on the work
in [11,23], but is still limited to the undercomplete
case.

In this paper, we consider such backward
elimination algorithms. However, in contrast to
[11,23,40], where an overdetermined set of equa-
tions was considered, we start from an underdeter-
mined system, which is usually the problem faced in
signal representation. Once we arrive at a complete
system, the problem then becomes equivalent to
that addressed in [11,23,40].
The intuition behind our approach is detailed

and recursions are developed so that intermediate
solutions are available as well as the representation
error. In our algorithm, the system considered re-
mains underdetermined as a column chosen for
elimination is replaced by a column of zeros. The
algorithm development is divided into two parts. In
the "rst part, we have a system of full row rank and
the recursions developed here are novel. In the
second part, the system is rank de"cient and, while
working from a di!erent formulation of the prob-
lem, the "nal recursions developed in this phase are
essentially identical to those of [40]. This will be
expanded upon in Section 4.
In contrast to previous papers [11,23,40], we

consider criteria other than the minimum repres-
entation error in choosing which elements are de-
leted from the dictionary. This is necessary while
the system has full row rank as the representation
error is zero but we also experiment with using
these criteria in the rank de"cient case. We demon-
strate through simulation on a test-case system that
the performance of the backward elimination algo-
rithm is as good as that obtained using a forward
selection algorithm. However, for highly under-
determined systems, the algorithm is computation-
ally expensive compared to forward selection
methods and, in practice, it is more likely that it
would be used to prune a sparse solution obtained
more cheaply using alternative algorithms.
The outline of the paper is as follows. In

Section 2, we outline the problem of "nding a
subset to e$ciently represent the input signal. We
start with an underdetermined system of full row
rank in Section 3 and develop an algorithm to
delete elements from the dictionary. Once the sys-
tem becomes rank de"cient, we need to modify our
algorithm so that greater sparsity can be achieved
in the solution. This is developed in Section 4.
The computational complexity of the backward
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elimination algorithm is considered in Section 5.
We then investigate how these algorithms perform
on a test-case system in Section 6. In particular,
since we have purposely designed the algorithms to
give us access to intermediate solutions and errors,
we explore how these may be used as selection
criteria in determining which basis vectors to delete
from the dictionary. From these results, we are able
to recommend an implementation which achieves
a sparse signal representation. We give the con-
clusions of our work in Section 7.

2. Problem statement and notation

The problem can be formulated as the linear
inverse problem

Ax"b, (1)

where the columns of the full row rank matrix
A3C��� represent the basis vectors from the dic-
tionary, b3C� is the target vector to be sparsely
represented by a subset of columns of A and x3C�

is the solution vector. Since the dictionary typically
has many more vectors than are required to repres-
ent b, it is overcomplete, i.e., n�m, and the system
in (1) is underdetermined. A solution to this prob-
lem is said to be sparse when a signi"cant number
of components of x are zero.
A commonly used procedure to obtain a unique

solution to the underdetermined system in (1) is to
"nd the minimum 2-norm solution to this problem,
i.e.,

x�"argmin
�

���x�� � Ax"b�, (2)

where �� ) �� denotes the standard 2-norm. The solu-
tion, x�, is evaluated as x�"A�b, where
A�"A�(AA�)�� is the pseudoinverse of A. This
solution lies in the space R(A�) but is generally not
sparse.
The starting point for the development of our

algorithm is the minimum norm solution, as given
in (2). Therefore, initially, x� must be calculated
which implies that the matrix A� must be formed.
Then the elements in x� are sequentially zeroed out
to give a sparse solution with the remaining non-
zero elements modi"ed if necessary. For example,

in the "rst iteration, if the ith element is to be zeroed
out, the minimum norm solution is sought for the
modi"ed system

A
�
x"b, A

�
OA(I!e

�
e�
�
), (3)

where e
�
is the canonical unit vector with `1a in the

ith position. Essentially, in forming A
�
, we have

discarded the ith column of A by replacing it with
a column of zeros. The minimum norm solution to
(3) is denoted by x

�
and is obtained by an appropri-

ate modi"cation of x�. By recursively implementing
this procedure a sparse solution is obtained for (1).
At the lth stage, we have A

�
which is A with l col-

umns deleted. If rank(A
�
)"m)n, then we still

have a full row rank underdetermined system and
x
�
can be found which satis"es

A
�
x
�
"b. (4)

This process can be iterated as long as rank(A
�
)

continues to be m. However, once rank(A
�
)(m the

system is rank de"cient and the equality in (4) may
no longer hold, i.e., in general ��A

�
x!b��*0 ∀x,

and the procedure must be modi"ed accordingly.
We consider these two cases in Sections 3 and
4 respectively.
We now introduce some notation which will be

useful in describing the algorithm. The set of de-
leted columns at the lth iteration is stored in the set
D

�
"�k

�
, k

�
,2, k

�
�, where k

�
is used to denote the

column deleted in the jth iteration of the algorithm.
For convenience, the selected unit vector in this
iteration will be denoted as e(

�
Oe

��
. The projection

onto span(e�
��
) is given by P

�
"(I!e(

�
e( �
�
) with

P
�
"I. The product of a sequence of projections is

given as P
���

"��
�	�

P
�
"P

�
P
�
2P

�
. Applying

these projections to the matrix A, we introduce
A

�
"AP

���
where A

�
"A. The solution of

argmin
�
���x�� �A

�
x"b� is given by x

�
and x

�
is

initialized to x
�
"x�.

3. Backward elimination*full row rank case

3.1. Algorithm overview

We "rst consider the case where we must solve
a full row rank (i.e., rank(A)"m) underdetermined
system and introduce three lemmas which will be
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useful in deriving an algorithm for the deletion of
columns from the matrix A.

Lemma 1. Let A3C��� have rank m and suppose
that, in the xrst iteration, the ith column has been
chosen for deletion. Then, the rank of A

�
"

AP
�
"A(I!e

�
e�
�
) is m iw (I!A�A)e

�
O0�

e�
�
A�Ae

�
O1.

Proof. This is based on the observation that
rank(A

�
)"m �det(A

�
A�

�
)O0, and the identity

det(M!NN�)"det(M) det(I!N�M��N) [13],

det(A
�
A�

�
)"det(AP

�
A�)

"det(AA�!Ae
�
e�
�
A�)

"det(AA�) det(1!e�
�
A�(AA�)��Ae

�
)

"det(AA�)(1!e�
�
A�Ae

�
)

yielding the condition (1!e�
�
A�Ae

�
)O0 i!

det(A
�
A�

�
)O0. We then rewrite this as

1!e�
�
A�Ae

�
O0 � e�

�
(I!A�A)e

�
O0

and letting

y"(I!A�A)e
�
,

e�
�
y"y

�
O0NyO0N(I!A�A)e

�
O0. �

Lemma 1 tells us that the projection of e
�
onto

N(A) must be non-zero and so e
�
�R(A�). This

agrees with our intuition since if it were true that
e
�
3R(A�) (e.g., imagine that e�

�
happens to be a row

of A) then throwing away the ith column would
mean a loss of row rank and the equality of (1)
would, in general, be disrupted. In the next lemma,
e(
�
is de"ned as described at the end of Section 2.

Lemma 2. If e(
�	�

Oe(
�
,2,e(

�
�R(A�

�
) where A

�
"

AP
���
, then e(

�	�
is not in the row space of A

�
, l"

0,2, i. In particular, e(
�	�

�R(A�).

Proof. The contrapositive statement is
e(
�	�

3R(A�)Ne(
�	�

3R(A�
�
), l"1,2, i, which is

proved as follows:

if e(
�	�

"A��3R(A�) then e(
�	�

"

�
�
�	�

(I!e(
�
e( �
�
)e(

�	�
"

�
�
�	�

(I!e(
�
e( �
�
)A��

"A�
�
�Ne(

�	�
3R(A�

�
). �

Lemma 2 provides a link between the solutions
of (1) and (4). If the chosen column does not disrupt
the possibility of equality in (4) (i.e., does not result
in rank(A

�
)(m"rank(A)) then the minimum

norm solution to (4) is a solution to (1). As we form
the reduced matrices A

�
, we want to zero out col-

umns while preserving rank as long as possible and
iteratively produce minimum norm solutions which
still satisfy (1). By iterating on Lemma 1, we can
write Lemma 3 which shows how to proceed so
that these two goals are satis"ed at each step.

Lemma 3. ∀e(
�
"e

��
3�e

��
,2, e

��
� such that

(I!A�A)e(
�
O0, j"1,2, l, and recalling that

A
�
"AP

���
"AP

�
2P

�
with rank(A)"m, we have

rank(A
�
)"m.

We will now proceed to use the above lemmas in
deriving an algorithm which produces a sparse
solution. By assumption the rank of the dictionary,
A, is m and so it is clear that we can remove at most
�"(n!m) columns from the matrix A while still
being able to produce a minimum norm solution
which satis"es (1) with equality. Since the algorithm
will iteratively remove these columns to form the
reduced system, the "rst iteration of the algorithm
is now detailed.

Algorithm.
� Choose the "rst column to be eliminated from

the matrix A, i.e., choose e(
�
"e

��
such that

(I!A�
�
A

�
)e(

�
O0, where A

�
"A.

� Form A
�
"A

�
P

�
"A

�
(I!e(

�
e( �
�
), which re-

places the chosen column by a column of zeros.
Note that rank(A

�
)"m because of the choice

of e(
�
.

� Find

x
�
"argmin

�

��x�� s.t. A
�
x"b.

The solution is found as

x
�
"A�

�
b, A�

�
"A�

�
(A

�
A�

�
)��. (5)

Note that because the solution is minimum
norm, the k

�
th component of x

�
will be zero, corre-

sponding to the zeroed-out column in A
�
. Thus
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(I!e(
�
e( �
�
)x

�
"x

�
and b"A

�
x
�
"A(I!e(

�
e( �
�
)

x
�
"Ax

�
showing that indeed x

�
is a solution

to (1), but with greater sparsity than the minimum
norm solution to (1). For the general case, this will
be shown rigorously.

3.2. Ezcient algorithm implementation

In the initialization of the algorithm, the pseudo-
inverse, A�, and minimum norm solution, x�, as
given in (2), must be computed. Therefore, to e$-
ciently implement the algorithm of Section 3.1, the
pseudo-inverse needs to be updated with a low
computational cost. This can be accomplished
through the use of the following lemma, the proof
of which is given in Appendix A.1.

Lemma 4. With the choice of e(
�

such that
(I!A�A)e(

�
O0 so that rank(A

�
)"m, A�

�
can be

written as A�
�
"(I!K

�
e( �
�
)A� where A�"

A�(AA�)��, K
�
"(I!A�A)e(

�
/(1!e( �

�
A�Ae(

�
) and

AK
�
"0.

Now, we establish a connection between the new
minimum norm solution x

�
and the solution to the

original system as given in (1) and this lemma is
proved in Appendix A.2.

Lemma 5. For x
�
given by x

�
"A�

�
b, where A�

�
has

been dexned in Lemma 4, we have Ax
�
"b. Further-

more, P
�
x
�
"(I!e(

�
e( �
�
)x

�
"x

�
, showing that x

�
is

zero in the k
�
th position.

We can write the new solution
x
�
"A�

�
b"A�b!K

�
e( �
�
A�b as

x
�
"x

�
#�x

�
where x

�
"x� (6)

and

�x
�
"x

�
!x

�
"!K

�
e( �
�
x
�
3N(A).

Since �x
�
�x

�
,

��x
�
���"��x

�
���#���x

�
���"��x����#���x

�
���. (7)

This shows that ���x
�
��� can be interpreted as the

`costa of zeroing out the k
�
th component of x� to

obtain a more sparse solution. More generally at
the lth iteration, we need to solve

x
�	�

"argmin
�

��x�� s.t. A
�	�

x"b. (8)

We have A
�	�

x
�	�

"A
�
P
�	�

x
�	�

"b with
rank(A

�
)"m, and e(

�	�
chosen such that

(I!A�
�
A

�
)e(

�	�
O0. We can therefore iterate on the

solution of the problem as stated in (5) to solve (8).
So, making the substitutions in Lemma 4 of 0Pl
and 1P(l#1), we obtain

x
�	�

"A�
�	�

b"(I!K
�	�

e( �
�	�

)x
�

"(I!K
�	�

e( �
�	�

)(I!K
�
e( �
�
)x

���

"

�
�

�	�	�

(I!K
�
e( �
�
)x

�
, x

�
"x�. (9)

To "nd how this new solution vector is related to
the original set of equations, we "rst establish the
value of AK

�	�
since the value of AK

�
was re-

quired before.

Lemma 6. AK
�	�

"0, ∀j"1,2, l.

Proof.

AK
�	�

"A(I!A�
�
(A

�
A�

�
)��A

�
)e(

�	�

"A(I!P
���

A�(A
�
A�

�
)��AP

���
)e(

�	�

"Ae(
�	�

!(AP
���

)P
���

A�(A
�
A�

�
)��Ae(

�	�

"(I!A
�
A�

�
(A

�
A�

�
)��)Ae(

�	�
"0. �

With this lemma established, the next lemma
follows as a direct consequence.

Lemma 7. For x
�
, j"1,2, l#1, as generated in

(9), Ax
�
"b (i.e. all x

�
which solve A

�
x
�
"b also

solve Ax
�
"b).

From the lemmas above, it is clear that for the lth
iteration, we have

x
�	�

"x
�
#�x

�	�
, �x

�	�
"!K

�	�
e( �
�	�

x
�
, (10)

where both x
�	�

and x
�
solve Ax"b and (as seen

for l"0)

�x
�	�

"x
�	�

!x
�
3N(A). (11)
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Table 1
Full row rank system: algorithm for backward elimination

Initializations: A3C���, rank(A)"m; A
�
"A; A�

�
"A�"

A�(AA�)��; x
�
"x�"A�b; �x

�
"0; �x

�
"0; D

�
"�

loop l*0 until Select " False
� Select "�k

�	�
�D

�
,e( �
�	�

A�
�
A

�
e(
�	�

O1� and CRITERIA
(see text).

� D
�	�

"D
�
	�k

�	�
�

� K
�	�

"

(I!A�
�
A

�
)e(

�	�
1!e( �

�	�
A�

�
A

�
e(
�	�

; A�
�	�

"(I!K
�	�

e( �
�	�

)A�
�

� �x
�	�

"!K
�	�

e( �
�	�

x
�

� �x
�	�

"�x
�
#�x

�	�
� x

�	�
"x�#�x

�	�
end loop

Table 2
Deletion criteria

� Random selection of k
�	�

.
� k

�	�
"argmin

��	��
�
���x

�	�
��, i.e., the minimum perturbation,

as measured in the 2-norm, of the current solution is used in
selecting the column.

� k
�	�

"argmin
��	��
�

���x
�
#�x

�	�
��, i.e., we perturb the initial

solution by the minimum amount possible as measured in the
2-norm.

� Entropy-like measures, such as the Shannon entropy-like
function de"ned as

H
�
(x)"!

�
�
�	�

x
 (i) lnx
 (i) where x
 (i)"
�x(i)��
��x���

�

. (13)

� p norms where p)1:

��x��
�
"

�
�
�	�

�x(i)�� (14)

So by iterating (10) and (11) we obtain

x
�	�

"x
�
#�x

�	�
"x�#�x

�	�
(12)

where

�x
�	�

"

�	�
�
�	�

�x
�
3N(A), �x

�
"0

and

��x
�	�

���"��x����#���x
�	�

���.

In deriving this algorithm, the solution vector
has been calculated at every stage. Moreover, we
have access to the incremental change in the solu-
tion and also the change in the solution from its
initialization as the minimum 2-norm solution as
given in (2). This allows us to examine many di!er-
ent criteria in choosing the next column to be
deleted from the dictionary as we will see in Section
6. However, we "rst summarize the algorithm we
have so far in Table 1 before moving on to consider
the criteria which may be useful in "nding a sparse
solution.

3.3. Deletion criteria

In [11,23,40], an overdetermined system of equa-
tions was considered and the error in representing
b was used as a criterion for eliminating columns.
However, in our derivation, we have assumed an
underdetermined system of equations. Since the
representation error will be zero while the system

has full row rank, this cannot be used as a criterion
for deleting columns. We have derived an expres-
sion which recursively gives the solution vector in
each iteration. This gives us #exibility in choosing
a criterion to use for selection of the next
column k

�	�
to be deleted. Some of the possible

deletion criteria which we could use are given in
Table 2.
The p-norm and Shannon entropy-like functions

given in Table 2 are known to be good concentra-
tion measures which preferentially select sparse
solutions [39,25].

4. Backward elimination*rank de5cient case

Since A is assumed to have full row rank, the
algorithm outlined in Section 3 will break down
when (n!m) columns have been zeroed out from
A. E!ectively, these columns have been removed
from A so that we no longer have a full row rank
system. Therefore, the algorithm must be modi"ed
in order to remove more columns from A. This is
addressed in the following subsections.

4.1. Algorithm overview

We assume that �"(n!m) columns have been
removed from A and that rank(A) is still m, i.e., the

1854 S.F. Cotter et al. / Signal Processing 81 (2001) 1849}1864



columns D�"�k
�
, k

�
,2, k�� have been replaced

by columns of zeros in A. In order to achieve
further sparsity in the solution vector, columns not
in D� must be removed. This is essentially the same
problem as that considered in [11,23,40] (i.e., where
the system is overdetermined). The criterion for
deletion of columns in these papers was to choose
the column which, when eliminated, resulted in the
smallest increase in the representation error. In our
approach, as was done in [40] but not [11,23], we
additionally calculate the solution at each iteration.
This allows us to experiment with di!erent criteria,
as given in Table 2, in choosing a column for
elimination.
We continue our derivation for the rank de"cient

case in the same vein as was done in the previous
section for the full row rank system. Therefore, we
develop recursions for A�

�	�
and x

�	�
for

l"�,2,(n!1) as well as the representation error
which is now no longer zero. The system of equa-
tions is still considered to be underdetermined with
the columns chosen for deletion replaced by col-
umns of zeros. Our main recursion is on
A�

�
(Lemma 9) which requires the recursive compu-

tation of (A�
�
A

�
)� in Lemma 10. A recursion was

developed for the quantity (A�
�
A

�
)�� in [40] where

the assumption is that A
�
is full column rank but,

since our development is di!erent, alternate proofs
are required. The recursions derived turn out to be
essentially identical to those in [40]; the lemmas are
given in the text with the proofs included for com-
pleteness in the appendices.
It is evident from Lemma 1 that the columns

which remain must satisfy (I!A��A�)e( �	�
"0,

which is equivalent to e(
�	�

3R(A�� ). These columns
will in general perturb the solution and so the set of
equations, as in (4), can no longer hold with equal-
ity. Since error will be introduced, one possibility
for selecting the column to be deleted from A is to
"nd the column k

�	�
which minimizes the repres-

entation error

�
�	�
O��A

�	�
x
�	�

!b��, l"�,2, n!1

where A
�	�

"A�P�	���	�
. (15)

To search for these indices, we start with the matrix
A

�
which has been found at the "nal step of the full

row rank algorithm, i.e., l"�.

The problem for subsequent values of l can be
stated as "nding

x
�	�

"argmin
�

��A
�	�

x!b��"A�
�	�

b,

l"�,2, n!1, (16)

assuming that A
�
is available from the previous

iteration. Recall that in this derivation, the columns
are not deleted but are replaced by columns of
zeros and so we always have an m�n matrix. The
pseudo-inverse is therefore given as [45]

A�
�	�

"A�
�	�

(A
�	�

A�
�	�

)�

"P
�	�

A�
�
(A

�
P
�	�

A�
�
)�, (17)

where A
�	�

A�
�	�

is no longer invertible since
A

�	�
has less than m nonzero columns.

As was done through Lemma 4 of Section 3 for
the full row rank system of equations, a recursion
must be established for the computation of A�

�	�
to

allow e$cient implementation of this algorithm.
This is detailed in the following section.

4.2. Ezcient algorithm implementation

Once, more than �"(n!m) columns have
been removed from A, the matrices
A

�	�
, l " �,2,(n!1), are rank de"cient, i.e.,

rank(A
�	�

)(m. The remaining columns form
a linearly independent set of vectors and we estab-
lish the following lemma for each of these nonzero
columns.

Lemma 8. Let A
�	�

3C���, n'm have p(m non-
zero columns with the remaining columns composed
entirely of zeros. In addition, assume that the p non-
zero columns are linearly independent
(rank(A

�	�
)"p). Then, for every nonzero column,

a
��
, j"1,2, p, we have (I!A�

�	�
A

�	�
) e(

�
"0.

Proof. Without loss of generality, assume that the
"rst p columns of A

�	�
are nonzero so that

A
�	�

can be partitioned as

A
�	�

"[G 0],
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Table 3
Rank de"cient system: algorithm for backward elimination

Initialization: From the full row rank case, we have
x� ,�� ,�� ,A�� ,D� ,K� , B� and we de"ne DI �"� to store the col-
umns added by this algorithm. Recall that B

�
O(A�

�
A

�
)�.

loop l*� until Select " False
� Select"�k

�	�
�DI

�
	D� ,��	�

)�� and CRITERIA
� DI

�	�
"DI

�
	�k

�	�
�

� K
�	�

"

B
�
e(
�	�

e( �
�	�

B
�
e(
�	�

� B
�	�

"B
�
!

B
�
e(
�	�

e( �
�	�

B�
�

e( �
�	�

B
�
e(
�	�

� �x
�	�

"!K
�	�

e( �
�	�

x
�

� �x
�	�

"�x
�
#�x

�	�
� x

�	�
"x�#�x

�	�
� �

�	�
"�

�
#��

�	�
where ��

�	�
"

(e( �
�	�

x
�
)�

e( �
�	�

B
�
e(
�	�end loop

with x correspondingly partitioned as x"[x
�
x
�]
. Then (A

�	�
A�

�	�
)�"(GG�)� and

A�
�	�

A
�	�

"A�
�	�

(A
�	�

A�
�	�

)�A
�	�

"�
G�(GG�)�G 0

0 0�"�
I 0

0 0�,

which follows from the fact that A�
�	�

A
�	�

is the
orthogonal projection of R� onto R(A�

�	�
) and,

therefore, for any x�3R�, G�(GG�)�Gx�"x�
which gives the required result. �

With this condition established on the non-
zero columns, we can now formulate a recursion
for the computation of A�

�	�
, which is proved in

Appendix A.3.

Lemma 9. Assume (I!A�
�
A

�
)e(

�	�
"0, then

A�
�	�

"(I!K
�	�

e( �
�	�

)A�
�

K
�	�

"

B
�
e(
�	�

e( �
�	�

B
�
e(
�	�

, B
�
"(A�

�
A

�
)�. (18)

In this update, the quantity B
�
"(A�

�
A

�
)� must be

available. This was not necessary in the algorithm
developed for the full row rank system. Therefore,
to decrease the computation involved in the
implementation, a recursion for B

�
is established

in the following lemma with the proof given in
Appendix A.4.

Lemma 10. B
�	�

"(A�
�	�

A
�	�

)� can be computed
as

B
�	�

"B
�
!

B
�
e(
�	�

e( �
�	�

B�
�

e( �
�	�

B
�
e(
�	�

when (I!A�
�
A

�
)e(

�	�
"0. (19)

Finally, we develop a recursive expression for the
representation error as given in (15). The proof of
the following lemma is given in Appendix A.5.

Lemma 11. Assume (I!A�
�
A

�
)e(

�	�
"0, then

�
�	�

"�
�
#

(e( �
�	�

x
�
)�

e( �
�	�

B
�
e(
�	�

, B
�
"(A�

�
A

�
)� (20)

which can be written as

��
�	�

"�
�	�

!�
�
"

x�
�
(k

�	�
)

[(A�
�
A

�
)�]

��	����	�

. (21)

From (16) and (18), we have

x
�	�

"A�
�	�

b"(I!K
�	�

e( �
�	�

)A�
�
b

"(I!K
�	�

e( �
�	�

)x
�

"x
�
!K

�	�
e( �
�	�

x
�

(22)

or, as before,

x
�	�

"x
�
#�x

�	�
, �x

�	�
"!K

�	�
e( �
�	�

x
�
, (23)

where K
�	�

is given by (18) and
(I!A�

�
A

�
)e(

�	�
"0. �x

�	�
is of the form

�x
�	�

"B
�
M"(A�

�
A

�
)�M3R(A�)�N(A).

Since �x
�	�

has no component in the nullspace
it does not disrupt the zeroing which has been
done earlier. Summarizing the development done
in this section, we give the algorithm for the rank
de"cient case in Table 3.
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4.3. Deletion criteria

Note that we were able to achieve �x�3N(A),
because the system A� still had full row rank. The
quantity �x

�
!�x�"��

�	�	�
�x

�
3R(A�)�N(A)

is the part of the sparsity adjustment that is causing
�
�
to be nonzero. There is again #exibility in the

choice of selection criteria. In this case, our
development was based on "nding x which satis"es
(15) but we can choose to use other criteria in
determining which column to delete as detailed in
Table 2.
It is also readily seen that it is possible to merge

the algorithms given in Tables 1 and 3 based on the
outcome of the test (I!A�

�
A

�
)e(

�	�
O0. If this

holds for a given column, then the recursion de-
tailed in Table 1 for the full row rank case is run. If
it does not hold, the algorithm as given in Table 3
is run.

5. Computation

Consideration of the computation required to
implement this algorithm is much the same as in
[38]. We detail the computation required for the
full row rank recursions since these are not con-
sidered there. The initial computation requires the
calculation of A� and x�. One method for doing this
is "rst to form (AA�)�� which requires
2nm�#4m�/3 #ops [17]. Then A� is obtained with
a further 2nm� #ops and x� requires 2mn #ops.
From Table 1, it is seen that the calculation of
K

�	�
requires A�

�
A

�
. Initially A�A is formed at the

expense of 2mn� #ops and then the recursion is

A�
�	�

A
�	�

"(I!K
�	�

e( �
�	�

)A�
�
A

�	�

"A�
�
A

�	�
!K

�	�
�e( �

�	�
A�

�
A

�	�
�.

If there are i nonzero columns, then this update
requires O(i�) #ops.
For the rank de"cient case, the iteration com-

plexity is approximately 2i�, as in [40]. Therefore,
given that the iterations are from i"n!1:!1:r,
a total of 2(n�!r�)/3 #ops are required. By way of
comparison, the #op count for the ORMP, which is
the most complex forward selection method [10] is

O(m(n!r)). Since, r is usually small, the algorithm
complexities can be approximated as O(n�) for
backward elimination and O(nm) for ORMP.

6. Simulations

We now present simulation results on the algo-
rithms that have been derived in the previous sec-
tions. In the "rst set of simulations, there is no noise
present. Then noise is added to the solution vector
and the performance of the algorithms is assessed
under these noisy conditions.

6.1. Clean data

The "rst experiment performed was on clean
data, i.e., where the solution vector b was uncorrup-
ted by noise. The dictionary A is created as a ran-
dom m�n matrix A whose entries are Gaussian
random variables withmean 0 and variance 1. Each
column is then normalized. A sparse solution, x

�
,

with a speci"ed number of nonzero entries r is
created; the indices of these r entries are randomly
generated using a uniform distribution, and their
amplitudes are Gaussian random variables. The
vector b is computed as b"Ax

�
so that the solu-

tion is known and b is then normalized.
As a "rst test, we looked at di!erent criteria for

the choice of the column to be deleted. For the
purposes of this experiment we chose the dimen-
sions of A as 20�30 and the value of r as 4 (other
dimensions and values for r were experimented
with and yielded similar results). One hundred
trials were performed with the matrix A, nonzero
entries and amplitudes in x

�
randomly created in

each trial. A success is where we obtain the four
vectors used in generating our solution as the four
remaining vectors in our dictionary once all others
have been zeroed out. Therefore, our measure of
success is that of a component detection problem.
In the "rst experiment, the following four criteria

were used: k
�	�

randomly selected (which gives
a baseline for the results obtained by the other
methods), Shannon entropy as was given in (13),
k
�	�

"argmin
��	��
�

���x
�	�

��, k
�	�

"argmin
��	��
�

���x
�
#�x

�	�
��. The results obtained are given in

Fig. 1. From this experiment it was seen that,
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Fig. 1. Percentages of successful trials using 4 di!erent
criteria where the columns correspond to: 1. k

�	�
randomly

selected, 2. k
�	�

"argmin
��	��
�

���x
�	�

��, 3. k
�	�

"arg
min

��	��
�
���x

�
#�x

�	�
��, 4. Shannon Entropy.

Fig. 2. Comparison of forward selection algorithms and back-
ward elimination algorithm. 5 p-norms are used as di!erent
criteria for the backward elimination algorithm and the columns
represent respectively MMP, ORMP, p"0.8,0.85,0.9,0.95,1.0.

after deleting (n!m)"10 columns, if we have not
deleted any column from the r columns used to
form the solution, then we obtain the exact solu-
tion. Therefore, it is not necessary to go to the rank
de"cient part of the algorithm as has been derived
in Section 4. It is possible to implement this part of
the algorithm but our success in "nding the solu-
tion has already been determined. Purely from the
algorithm as described in Section 3, we determine
the solution or fail.
The Shannon entropy, a concentration measure

which is de"ned in (13), performed much better
than the other criteria. This led us to consider the
class of p-norms with p)1, an alternative set of
concentration measures as given in (14), as a means
of selecting the columns for deletion. In fact, we
performed the experiments for all values of p from
0.25 to 1.2 in steps of 0.05.We only plot the "ve best
values of p in Fig. 2. As a comparison with the "rst
experiment, we were able to achieve 94}98% using
these p-norms as opposed to the Shannon entropy
where we had 82% success.
Now that we have established which criteria per-

form best in noise-free conditions, we look at how
this backward elimination algorithm performs in
comparison to two forward selection procedures
termed MMP and ORMP in [1]. These results are

also presented in Fig. 2 where we see that the
backward elimination algorithm employing the p-
norm performs slightly better than the forward
pursuit algorithms. This, however, is at the expense
of having a much higher operation count in the
backward elimination method than in the for-
ward pursuit algorithms as has been outlined in
Section 5.

6.2. Noisy data

In the simulations presented in the previous sec-
tion, it was not necessary to implement the elimina-
tion algorithm as derived for the rank de"cient
system of equations since the solution was obtained
while the systemwas still of full row rank. However,
in the presence of noise this is no longer the case.
We still need to reduce the dictionary size further in
order to "nd which columns were used in forming
the solution vector b. The algorithm developed in
Section 4 must be used to achieve this goal.
The dictionary size was again set as 20�30 and

the solution was generated using r"4 vectors,
chosen at random, from the dictionary and linearly
combined. Hundred trials are carried out, as before,
but Gaussian noise of power !20 dB is added to
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Fig. 3. Comparison of (a) Exhaustive Search, (b) ORMP, (c) MMP and (d) Backward Elimination in noise with r"4. The number of
vectors in the solution set which match those used in generating b was obtained for each trial and the percentages are plotted.

the solution in each trial. The number of vectors
sought is assumed to be known and, just as in the
noise-free experiment, a success is where we obtain
the four vectors used in generating our solution as
the four remaining vectors in our dictionary once
all others have been zeroed out. Given that there is
noise in the solution, this may not necessarily be the
best subset of four vectors for representation of the
signal b.
In the experiment of the previous section, the

p-norm was found to be the most e!ective search
criterion. Therefore, as a starting point in these
trials, this was also used as the search criterion for
the rank de"cient set of equations. Even though we
arrived at the rank de"cient part of the algorithm
without having deleted one of the solution vectors
in 84% of cases, using the p-norm in this part of the
experiment proved disastrous. We ended up suc-
cessfully "nding the solution set in less than 7% of
cases over a range of values of p.

Clearly, the criterion used for selection of col-
umns to be deleted in the rank de"cient case needed
to be re-appraised. In this stage of the algorithm,
rank(A

�	�
)(m so that error is introduced in ap-

proximating the solution vector b and this is given
by (15). In [11], it is shown that selection of the
column which minimizes the representation error
at each stage (i.e., the column is chosen as in (15))
leads to a sparse solution. Therefore, the p"1
norm was used while the system of equations con-
sidered was of full row rank and thereafter the
columns were deleted so as to minimize the repres-
entation error. For comparison purposes, we ex-
haustively searched over all ��C

�
subsets to "nd the

actual optimal subset yielding the smallest repres-
entation error. The forward selection algorithms
MMP and ORMP [1] were also run on the trials.
The results obtained for MMP, ORMP, backward
elimination and exhaustive search are plotted
in Fig. 3. In this "gure, the histograms give the
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Fig. 4. Comparison of (a) ORMP, (b) MMP and (c) Backward Elimination in noise with r"7. The number of vectors in the solution set
which match those used in generating b was obtained for each trial and the percentages are plotted.

Fig. 5. The 16 trials in Fig. 3 which failed due to the full row
rank part of the algorithm are removed. For the remaining trials,
the percentages in which 0}4 of the vectors used in the generat-
ing set are matched in the solution set are plotted.

number of trials in which 0}4 of the vectors
used in generating b are found in the solution
subset. The value of r was then increased to 7
while the SNR was maintained at a level of 20 dB
and the same experiment was repeated. The results
from this experiment are plotted in Fig. 4 in a
similar manner to Fig. 3 (the exhaustive search is
no longer feasible because of the large number of
subsets).
From Fig. 3, we see that with r"4 the perfor-

mance of all the suboptimal algorithms in detecting
the dictionary components present in the noisy
vector, b, is very close to that obtained by using an
exhaustive search. Also, we note that the backward
elimination method's performance is slightly in-
ferior to that of the forward pursuit methods. For
the case r"7, the backward elimination performs
as well as the other algorithms in obtaining all
seven vectors. However, taking into account those
trials where all seven vectors were not found, its
performance is worse than that of the other
methods.
As was stated previously, the part of the algo-

rithmwhich handles the full row rank system will in
many cases delete one of the columns required for
the solution. Therefore, as a "nal indication of how
well the rank de"cient algorithm works, we dis-
count these cases (16 trials) in the experiment as
described for Fig. 3 and plot our results over the
remaining trials. The results of this experiment are
shown in Fig. 5 and indicate a success rate of 68%
in these trials.

7. Conclusion

We started from an underdetermined system of
equations and set out to "nd a solution which is
sparse using a backward elimination algorithm. In
developing an algorithm to achieve this, we found
the new solution in each iteration. This allowed us
to examine many di!erent (including entropy-
based) criteria for the deletion of vectors. Di!erent
criteria could potentially be combined and it is
possible to switch between criteria at a given stage
of the algorithm. In our simulations, from our
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exploration of di!erent criteria in the implementa-
tion of the backward elimination algorithm, we can
conclude that the set of p-norms close to 1 performs
best in choosing columns to remove from the full
row rank system. However, once the system be-
comes rank de"cient, this criterion no longer leads
to sparsity, and a minimum representation error
criterion gives the best results.
The computational complexity of the algorithm

was outlined and its complexity is, in general, far
greater than that of a forward selection algorithm.
We demonstrated that the algorithm can perform
as well as a forward selection algorithm in a com-
ponent detection problem on a test-case system.
However, we envision that the backward elimina-
tion algorithm would, most likely, be used in prac-
tice to prune a sparse solution obtained more
cheaply using an alternative algorithm.

Appendix A

A.1. Proof of Lemma 4
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A.2. Proof of Lemma 5

We note that K
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"0 [5]. Thus Ax
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A.3. Proof of Lemma 9

To compute (17), we need to make use of the
following lemma from [5] which generalizes the
Sherman}Morrison}Woodbury matrix inversion
lemma.

Lemma (Campbell and Meyer [5]). Consider the
matrix �#cd� where c3R(�), d3R(��), and
1#d���c"0. Then

(�#cd�)�"��!kk���!��h�h#(k���h�)kh,

(A.1)

where k"��c and h"d���.

Using the above lemma, we now proceed to the
proof of Lemma 9 taking �"A
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we have
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A.5. Proof of Lemma 11
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