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Abstract

A novel methodology is employed to develop algo-
rithms for computing sparse solutions to linear inverse
problems, starting from suitably defined diversity mea-
sures whose minimization promotes sparsity. These
measures include p-norm-like (£,<yy) diversity mea-
sures, and the Gaussian and Shannon Entropies. The
algorithm development methodology uses a factored rep-
resentation of the gradient, and involves successive re-
lazation of the Lagrangian necessary condition. The
general nature of the methodology provides a system-
atic approach for deriving a recently developed class of

algorithms called FOCUSS (FOCal Underdetermined

System Solver), and a natural mechanism for extend-
ing them.

1 Introduction

The need to compute sparse solutions to linear in-
verse problems arises in many applications, e.g. bio-
magnetic imaging, signal representation, speech cod-
ing, bandlimited extrapolation and spectral estimation,
direction of arrival estimation, functional approxima-
tion, failure diagnosis, and pattern recognition for med-
ical diagnosis [1, 2, 3, 4, 5, 6, 7, 8. From the large
number of potential applications, it is clear that an ef-
fective solution to this problem has wide ranging con-
sequences.

This work is motivated by the FOCal
Underdetermined System Solver (FOCUSS) algorithm
presented and analyzed in [5]. We present a system-
atic derivation of the FOCUSS class of algorithms by
applying optimization principles to minimize suitable
diversity measures. The benefits of the approach are
twofold. Firstly, it provides a strong theoretical foun-
dation for the FOCUSS algorithm which results in new
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insights, and facilitates a more complete analysis. Sec-
ondly, it exposes the general principles underlying the
algorithm providing a natural mechanism for extending
them.

The outline of the paper is as follows. In Section 2
we present the p-norm-like (p < 1, including p nega-
tive) diversity measures, and the Gaussian and Shan-
non Entropy measures of sparsity proposed in [6] and
[2], and define the problem as that of minimizing these
measures subject to the constraint that the measure-
ment vector be a feasible solution. In Section 3, we
employ a novel methodology to derive an iterative al-
gorithm that selects a sparse representation by min-
imizing the p-norm-like sparsity measures, excluding
(temporarily) the case p = 0. The iterative algorithm
is derived using a factored representation of the gra-
dient, and by successive relaxation of the Lagrangian
necessary conditions for a minimum. In Section 3.2
convergence analysis of the algorithm is performed, ex-
panding the scope of the convergence results previously
prescribed in [5]. In Section 4, we focus on the case
p = 0. We show that the p-norm-like algorithm ob-
tained by setting p — 0 and the algorithm obtained
from minimizing the Gaussian Entropy are identical,
and argue that this algorithm effectively minimizes the
numerosity measure described by [2]. In Section 5, the
methodology is used to derive an algorithm to minimize
the Shannon entropy.

2 PROBLEM FORMULATION

The problem of computing sparse solutions to linear
inverse problems can be formulated as the problem of
finding a sparse solution to an underdetermined system
of equations [7, 8]. Let A be an m X n matrix formed
using the vectors derived from the forward model. We
have an underdetermined system where m < n and
it is assumed that rank(A) = m. Denoting the given
measurement vector by b, a m x 1 vector, the inverse



problem consists of solving for z, a n x 1 vector, such
that

Az =b. 1)

The problem of computing a sparse solution requires
that x be sparse, i.e. most of the entries of z be zero.
Eq. (1) ensures that z is a consistent representation of
b, and the sparsity requirement ensures that the solu-
tion is concentrated.

The inverse problem has many solutions. Any solu-
tion can be expressed as

T =Zmn + U,

where z,,, is the minimum 2-norm solution (i.e. so-
lution with the smallest £ norm!® defined as ||z||2
S, x[i)?) and is given by Zpm, = AT, where A de-
notes the Moore-Penrose pseudoinverse. The vector v
is any vector that lies in A(A), the null space of A.
In this case A has a nontrivial nullspace of dimension
(n —m). In many situations, a popular approach has
been to set v = 0 and to select x,,, as the desired so-
lution. However, the minimum 2-norm criteria favors
solutions with many small nonzero entries, a property
that is contrary to the goal of sparsity/concentration
[5, 7]. Consequently there is a need to define other func-
tionals, referred to here as diversity measures, which
when minimized lead to sparse/concentrated solutions.

The question of good diversity measures has been
studied in the past and a good discussion can be found
in [6, 2], and in the literature on linear inverse problems
[1]. A popular diversity measure is E® (z), where

E0(@) = 3 [elill?, 0<p<1.
i=1

We extend this class to include negative values of p
leading to the following general class of diversity mea-
sures,

EW(z) = sgn(p) ) lelill”, p<1, (2)
i=1
- { S lelillr,  0<p<1
B = it o 1A, p<O
_ +1, 0<p<1 . .
where sgn(p) = { -1 p<0 The diversity

measures E® (z) for 0 < p < 1 are the general fam-
ily of entropy-like measures defined in [6, 2], and also
discussed in [1], for computing sparse solutions. The

1For simplicity, by default ||.|| will denote the 2-norm and all
other norms will be explicitly indicated.
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motivation for these diversity measures is that their
minimization subject to the constraint (1) results in
sparse solutions. Due to the close connection to £,
norms, we refer to these measures as “ip<t) diversity
measures” and often, more simply, as the “p-norm-like
diversity measures.” It is well known that for p < 1, £,
is not a true norm [1].

The diversity measure for p = 0, the numerosity dis-
cussed in [2], is of special interest because it is a direct
measure of sparsity, providing a count of the number
of nonzero elements of a vector z:

EO)(z) = #{i : ofi] # 0}.

Finding a global minimum to the numerosity mea-
sures requires an enumerative search and is NP hard
[3]. Consequently, alternate diversity measures that are
more amenable to optimization techniques are of inter-
est. The E®) (z) measures for p < 1,p # 0 are useful
candidate measures in this context, and are indirectly
related to sparsity in that when minimized they yield
sparse solutions. However, these measures have the
disadvantage that they can have many local minima
which can result in optimization algorithms converg-
ing to suboptimal solutions, i.e. solutions with more
nonzero entries than absolutely necessary. This prob-
lem can be alleviated somewhat with the use of a good
initial condition which is likely to be available in en-
gineering applications [5]. For a more detailed discus-
sion of these diversity measures for 0 < p < 1 the
reader is referred to [6, 2, 1]. Additional discussion
can be found in [9]. To avoid potential confusion, it
should noted that minimization of E(?)(z) is consider-
ably different from the standard £, optimization prob-
lem min, [|Az — b5, p > 1 [10].

The diversity measures E® (z) for p < 0 are also
good (indirect) diversity measures. For example con-
sider p = —1,

B @) == ﬁ .

E(=Y(z) will be minimized by making the entries of z
small, thereby encouraging sparsity.

Many other diversity measures can be defined [9].
We only examine here the Shannon Entropy and Gaus- -
sian Entropy, two other diversity measures described in
[6, 2]. The Shannon Entropy diversity measure Hg(z)
is defined as

—izfr[z] InZ[i], where Z[i] = |2la]|?

.
2 el

Hg(x)

(3)



The Gaussian Entropy diversity measure Hg(z) is de-
fined as

H(z) = Y lnlafi)P. (4)

3 {p<1) DIVERSITY MEASURES

In this section, we develop a novel methodology for
deriving algorithms to minimize the £(,<;) class of di-
versity measures defined by (2) subject to the linear
constraint (1). For now, we exclude the case p = 0;
the details pertaining to this special case are provided
in Section 4. The algorithm is derived in Section 3.1
using a factored representation for the gradient, and
by successive relaxation of the Lagrangian necessary
conditions. Interestingly, the approach turns out to
be a systematic procedure for deriving a class of algo-
rithms called FOCUSS developed in [5]. Additionally
the methodology employed provides a mechanism for
generalizing and deriving FOCUSS-like algorithms to
other situations.

3.1 Algorithm Derivation

To minimize the £(,<;) diversity measures subject to
the equality constraints (1), we start with the standard
method of Lagrange multipliers. Define the Lagrangian

L(z, ),
L(z,\) = EP (z) + AT (Az — b),

where X is the m x 1 vector of Lagrange multipliers.
A necessary condition for a minimizing solution z, to
exist is that (z.,\.) be stationary points of the La-
grangian function, i.e.

Vel{z, M) = VE®(z,)+ ATA\. =0

VaL(ze As) Az, —b=0. ()

The gradient of the diversity measure E(P)(z) with re-
spect to element z[i] can be readily shown to be

Vo EW (z) = |pl (|2[i)P~>=[d).-

Substituting this in (5) results in a nonlinear equation
in the variable z, with no simple solution being evident.

To remedy the situation, we suggest using a partic-
ular factored respresentation for the gradient vector of
the diversity measure, i.e.

V.EP () = a(z)I(z)z, (6)

where a(z) = |p|, and II(z) = diag(Jz[i]|P~?). From
(5) and (6), the stationary points satisfy

a(z ) (z,)z. + ATA =0 and Az, —b=0. (7)
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Note that for p < 1, T~!(z.) = diag(|z[i]|*~?) exists
for all z. From (7) we have
1

-1 Ty T ..
@yl @A

Ty = — (8)
Substituting for z. in the second equation of (7) and
solving for A, results in

A = —afz,) (AT (z)AT) b 9)
Substituting this expression for A, in (8) then results
in
2y = T () AT (AT (z)AT) 0. (10)
Eq. (10) is not in a convenient form for computation
as the right side depends on z.. However, it indicates
the condition that the stationary point must satisfy
and also suggests the following iterative procedure for
computing z.,

Trgr = I Hap) AT (AT () AT) D (11)
The computation of 17! (zy) = diag(|zx[i]|?~?)) for
p < 1 does not pose any implementation problems,
even as elements z[i] converge to zero (as is desired,
the goal being a sparse stationary point z,). Note that
if any element z[i] is zero, then the corresponding di-
agonal term in JT~! is also zero.

More insight into the methodology is obtained by
interpreting the approach as a method of solving suc-
cessive constrained weighted minimum norm problems.
Note that each iteration of (11) corresponds to comput-
ing a weighted minimum-norm solution to (1), i.e.

41 = argmin [z7 177! (z)z subject to Az = b

Defining the symmetric scaling matrix W by
W-2(z) & II(z) diag(|z[i]|P~2), with W(z)
diag(|z[i)|'~ %), a computational alternative to the al-
gorithm can be obtained which has the form

Wi = diag(lexlil]'™%)
Qr+1 A 1b, where Apyy = AWiya (12)
Trr1 = Wigrqrsr-

The algorithm (12) has similarities to Affine Scaling
Methods, a class of interior point optimization meth-
ods, where the weighting matrix W (z) plays the role of
the Affine Scaling Transformation (AST) matrix. More
details on this connection can be found in [11], and be-
cause of this connection we often refer to the algorithm
as an affine scaling algorithm or an AST algorithm.
The methodology employed in arriving at the it-
erative algorithm (11) from (6) and (7) is novel. It



is closely related to the algorithms developed in the
context of the ¢, optimization problem of minimizing
[Az — b||p, p > 1 [10]. In the £, optimization prob-
lem, there are no constraints, and it is customary to
deal with an overdetermined system of equations; re-
laxation of the necessary condition for the minima leads
to a sequence of weighted least-squares problem. The
algorithm developed (c.f. (11)) can be viewed as an
extension of the methodology to the underdetermined
problem.

3.2 Convergence Analysis

Having proposed and motivated the £,<;)-class of
algorithms given by (11) (equivalently, by (12)), we
now turn to the issue of examining its convergence be-
havior. The special case of the numerosity measure,
corresponding to p = 0, needs special attention and is
deferred to the next section. A convergence analysis of
the FOCUSS class of algorithms was earlier carried out
in [5]. The insights provided by the systematic deriva-
tion presented in section 3.1 enables strengthening of
the result shown in [5]. The main result is as follows.

Theorem 1 Starting from a bounded feasible solution
xg, the algorithm (12) minimizes the Ly,<1) diversity
measure and converges almost surely to o relative min-
imum, which for p < 1 is a basic or degenerate basic
solution with at most m non-zero entries.

The details of the proof can be found in [11]. Here we
highlight the main improvement obtained. To establish
convergence, a descent function is required and it is
shown that the descent function for these algorithms is
the diversity measure itself, i.e.

EP)(zh41) < BW(z1), 2 ¢ T,

where I' is the solution set. In [5], to prove conver-
gence of the FOCUSS-class of algorithms the £(,<)
diversity measures were also used as descent functions.
However, for p < 1, and p # 0, the decrease of the de-
scent function was established under more restrictive
conditions; by either restricting the z[¢] to be positive,
or, more generally, by requiring that the z[i] all lie
in the same quadrant. We remove this restriction and
show decrease in the descent function starting from any
Tg € R™.

4 NUMEROSITY AND GAUSSIAN
ENTROPY

We now pay special attention to the case where p =
0, which, as previously discussed, yields a numerosity

measure which exactly counts the number of nonzero
entries,

E(O)(a:) =#{i:zfi] #0} = Z 1(z[d]),

where
1,
0,

w6l ={ 5 70

This is the measure one ideally would prefer to min-
imize as observed in [1, 6, 2]. Unfortunately, this
function is not directly suitable for minimization as
the function is discontinuous in the regions of inter-
est (when any z[i] goes to zero), and has a gradient
of zero everywhere else. However, the class of AST al-
gorithms given by (12) (equivalently, by (11)) yields a
well-behaved algorithm even when p = 0. Indeed, let-
ting p = 0 in (12) yields the basic FOCUSS algorithm
of [5] and involves the use of a well-defined scaling ma-
trix W(z) = diag(|z[¢]]). Although the algorithm (12)
is well-defined for p = 0, the convergence analysis dif-
fers somewhat from the p # 0 analysis described in
section 3.2. In [5], a convergence analysis is given and
it is shown that the basic (p = 0) FOCUSS algorithm
minimizes the Gaussian Entropy Hg(z) defined by (4).
Here we show that there are even stronger connections,
algorithmically and analytically, of the p = 0 algorithm
to the Gaussian Entropy.

Algorithmically, one can consider minimizing di-
rectly the Gaussian Entropy, or the monotoni-
cally related (and hence equivalent) cost function
Exp(Hg(z)) = I |z[i]|*>. The latter one is preferable
if one is interested in a function that is bounded from
below. However, the Gaussian entropy is adequate for
the discussion to follow.

An AST algorithm can be derived to minimize the
Gaussian Entropy following along the lines outlined in
Section 3.1; merely replace E®)(z) by Hg(z) in the .
analysis. The only new quantity required is the gradi-
ent of Hg(x), which can be readily shown to have the

- following factored representation:

958

V.Ha(z) = aclz)llg(z)z,

——1—~) The scalar
zfi]?

factor ag(z) does not affect the algorithm and IIg(z)
leads to an Affine Scaling algorithm with a scaling ma-
trix given by W(z) = diag(|z[i]|). Note that this is
same scaling matrix as that obtained by setting p = 0
in algorithm (12), which was derived for the minimiza-
tion of the £,<;y diversity measure assuming p # 0. A

where ag(z) = 2 and IIg(z) = diag(



similar algorithmic conclusion is reached if one tries to
minimize Exp(Hg(z)) = [T, |[i]|>.

Interestingly, the monotonically related functional
Exp(Hga(z)) = 1, |z[il|* provides an analytic con-
nection to the £(,<;)y diversity measures via the
arithmetic-geometric mean inequality [12]

I R
(i l2fl]P)™ <~ > laldP.
i=1
This implies that for all p and |z[i]| > 0,

1
1 - P L 1
(-2507@)" < BHaEF < (256
where pt > 0 and p~ < 0. We have equality in the
limit p — 0 establishing a connection between the
Gaussian entropy and the £<;y diversity measures,
ie. [12]

1
e e = lim (lE(m(x)) . (13)

p—0+ \ N

One can also relate the Gaussian Entropy to the
£(p<1) diversity measures via a Taylor series expansion
[11]. A related discussion along these lines can be found
in [2].

5 SHANNON ENTROPY

An algorithm for minimizing the Shannon Entropy
diversity measure Hg(z) defined by (3) and discussed
in [6, 2] can also be developed using the factored rep-
resentation of the gradient, and the relaxation of the
Lagrangian neccesary condition approach developed in
section 3.1. This necessitates taking the gradient of
the diversity measure, which has the following factored
representation:

VeHs(z) = as(z)Is(z)z,

where ag(z) and

2
ll=(13

Is(z) = —diag (Hs(z) + In&[i]), where Z[i] = |z[3]|*

Retracing the argument given in Section 3.1 through
equation (11) suggests that we focus on the iteration

oy, = I3 () AT (AT (zk) AT) 10

The superscript r is used here because, unlike the p-
norm-like case where II(z) is positive definite, IIg(x)
is indefinite, calling for some modifications in order to

I

develop an algorithm that provably converges. It is
shown in [11] that a suitably modified algorithm to
minimize the Shannon entropy is

Thpy = { x£+1; (:L'TZ+1 gHS(wk)$TZ+1 <0
2ok — Thyrs  (Thg)" Hs(@r)gy, > 0. )
14
Though the algorithm converges, it does not converge
to a truly sparse solution. However, the diversity mea-
sure does promote concentration in that the final solu-
tion does tend to have a large number of entries with
very small (albeit nonzero) amplitudes. More details
can be found in [11]. Extensions of the diversity mea-
sures along with a general convergence framework can
, be found in [9].
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