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ABSTRACT

Component estimation arises in Independent Component
Analysis (ICA), Blind Source Separation (BSS), wavelet
analysis and signal denoising [1], image reconstruction [2, 3],
Factor Analysis [4], and sparse coding [5, 6]. In theoretical
and algorithmic developments, an important distinction is
commonly made between sub- and super-gaussian densities,
super-gaussian densities being characterized as having high
kurtosis, or having a sharp peak and heavy tails. In this pa-
per we present a generalized convexity framework similar to
a classical concept of E.F.Beckenbach [7], which we refer to
as relative convexity. Based on a partial ordering induced
by relative convexity, we derive a new measure of function
curvature and a new criterion for super-gaussianity that
is both simpler and of wider application than the kurtosis
criterion. The relative convexity framework also provides
an inequality that can be used to derive stable and effec-
tive descent algorithms for estimation of the parameters
in the Bayesian linear model when sub- or super-gaussian
priors are used. Apparently almost all common symmet-
ric densities are comparable in this ordering to Gaussian,
and thus are either sub- or super-gaussian, despite the fact
that the measure is instantaneous, in contrast to moment-
based measures. We present several algorithms for compo-
nent estimation that are shown to be descent algorithms
based on the relative convexity inequality arising from the
assumption of super-gaussian priors. We also show an in-
teresting relationship between the curvature of a convex or
concave function and the curvature of its Fenchel-Legendre
conjugate, which results in an elegant duality relationship
between estimation with sub- and super-gaussian densities.

1. INTRODUCTION

Our research was inspired by the problem of learning data
representations based on a linear generative model [8, 5,
9, 6, 10, 11, 12, 13]. Given observations Y = [y1 . . . yN ],
the problem is to estimate the parameters A ∈ Rm×n and
X = [x1 . . . xN ] in the Bayesian linear model,

yk = Axk + νk, k = 1, . . . , N (1.1)

assuming that the sources xk are independent. The low
noise limit is equivalent to the case in which the noise ran-
dom variables νk are not present. Since Field [8], much con-
sideration has been given to representations that assume

This research was partially supported by NSF Grant
No. CCR-9902961. Authors can be contacted at
{japalmer,kreutz}@ucsd.edu.

sparse and distributed sources, i.e. many source compo-
nents with relatively few of the components having signifi-
cant magnitude, or “active”, at any given time. One way to
ensure a sparse representation is to take A to be “overcom-
plete”, or have more columns than rows. However, sparse
coding can also be carried out when the matrix A is not
overcomplete, for example when the data is high dimen-
sional but occupies a relatively low dimensional manifold
[14].

In the complete and undercomplete cases A ∈ Rm×n,
m ≥ n, various information theoretic criteria can be used to
obtain algorithms for estimating A [15, 16, 17, 18]. Many
of these methods are known to be equivalent to gradient
based algorithms for Maximum Likelihood (ML) estimation
assuming certain sparse, or super-gaussian priors. In the
overcomplete case, A ∈ Rm×n, m < n, it is common to
start from the statistical framework.

Two main statistical approaches have been used in the
estimation of overcomplete A: an ML approach estimat-
ing A by (approximately) marginalizing over X, and a joint
maximum à posteriori (MAP) estimation approach estimat-
ing both A and X. Lewicki and Olshausen [9] and Lewicki
and Sejnowski [6] propose an approximate ML framework.
The likelihood is marginalized over the possible generating
sources,

p(Y|A) =

∫
p(Y,X|A) dX

and the resulting integral is approximated by a Gaussian
density. Various other approximations are made to obtain
a generalization of the Infomax algorithm of Bell and Se-
jnowski [16]. Girolami [13] also uses the ML approach, but
employs a variational approximation similar to those used
by Jaakkola [19]. An algorithm is derived using a vari-
ational bound on the Laplacian (sparse) prior that makes
the marginalization tractable. The EM algorithm is used to
optimize the variational likelihood over the augmented set
of parameters. As the variational parameters converge, the
variational approximation approaches Laplacian. This al-
gorithm apparently converges to a local minimum of p(Y|A)
itself rather than an approximation as in [6]. It is also glob-
ally convergent via the EM algorithm. As usual, however,
the algorithm is subject to convergence to local optima.

Another approach is to find the joint estimate of A and
X. Here we maximize,

p(A,X|Y) = p(Y|A,X) p(A,X)

For the optimization to be well defined, a constraint must
be put on either X or A, which amounts to determining



p(A,X) [15, 10, 12]. Olshausen and Field [5] used a cost
function equivalent to that implied by the MAP framework.
The MAP framework is used explicitly in Hyvärinen [10]
for complete and undercomplete A, and in Kreutz-Delgado
and Rao [12] for overcomplete A. 1 Algorithms are also
found in [11]. The usual idea is to view the log likelihood
as consisting of an error term and a sparsity term, and
alternately adapt X and A, with X adapting to increase the
sparsity of the representation, and A adapting to maintain
fidelity of the representation.

In this paper we employ the MAP framework to estimate
A and X given Y in a novel way. Rather than adapting A
to reduce an error term only, thus reducing the sparsity
of the representation only indirectly, we derive a general
procedure for adapting A to reduce the source prior term
directly in the noiseless case, and show that the noiseless
analysis can be applied to the noisy case as well by a change
of variables. The noiseless algorithms can be seen as new
generalizations of the Infomax algorithm [16] to the over-
complete case, which differ from that given in Lewicki and
Sejnowski [6]. The noisy algorithms are similar to the ap-
proximate algorithms found in [10] for the complete and
undercomplete cases. Our analysis however does not re-
quire A to be invertible, and we derive a descent algorithm
for the original cost function, not an approximation. The
generality of the approach allows application to the under-
complete dictionary case as well, which may be useful when
the intrinsic dimensionality of the data is less than the di-
mensionality of the observed vectors [14]. For example, an
image compression scheme might code 12 pixel × 12 pixel
blocks, but the image blocks that are coded may have a
simple structure that is representable in fewer than the 144
basis vectors that result from using even a complete repre-
sentation, much less an overcomplete representation.

The organization of the paper is as follows. In section 2
we discuss the results of an investigation into the notion of
sub- and super-gaussianity. We derive a criterion for sub-
and super-gaussianity that is seemingly more natural and
of wider application than the commonly used kurtosis cri-
terion. The criterion is based on a generalization of the no-
tion of convexity which we call relative convexity. In section
3, we show that the optimization problem associated with
the MAP estimation framework can always be formulated
as an equality constrained nonlinear optimization problem,
and we apply the relative convexity theory to derive a de-
scent algorithm for estimating super-gaussian components
or sources with a given A. The proposed criterion for super-
gaussianity applies to all of the densities commonly taken to
be super-gaussian, including the Cauchy density. In section
4, we use the relative convexity framework to derive algo-
rithms for component estimation. We first derive a globally
convergent algorithm for A assumed to have unit Frobenius
norm. This algorithm is suggestive of a sort of Lagrangian
fixed point algorithm. We formulate the Lagrangian and
optimality conditions for A and X, and propose a general
procedure for deriving fixed point algorithms for the esti-

1It is commonly assumed that the MAP approach is a simplified
version of the more appropriate ML framework. Theoretical argu-
ments aside, in our experiments the ML algorithm of [13] seemed to
be subject to more local optima and degenerate solutions than the
MAP algorithms.

mation of A and X corresponding to different priors on A.
We give algorithms for the particular cases of p(A) uniform
over unit Frobenius norm matrices ‖A‖F = 1, and p(A)
uniform over unit column norm matrices A = [a1 · · · an],
‖ai‖ = 1, i = 1 . . . n. Finally we state a duality result for
relative convexity that allows the analysis to be applied to
sub-gaussian estimation as well.

2. SUPER-GAUSSIANITY, RELATIVE
CONVEXITY AND SQUARE-CONCAVITY

2.1. The measure of super-gaussianity

Along with the sparsity criterion, Field [8] advocates kurto-
sis as a measure of sparsity. The kurtosis of a zero mean ran-
dom variable X can be defined as the difference between the
fourth moment of X and the fourth moment of a Gaussian
random variable of equal variance, or E(X4)− 3E(X2)2. If
a density has positive kurtosis, then it is likely to be more
peaked about the mean, and have “heavier tails” than the
Gaussian density. Such a density is commonly called super-
gaussian, while a density with negative kurtosis is called
sub-gaussian. The kurtosis criterion is not without contro-
versy (see [20, §6] and references therein) but in general it
coincides with the intuitive notion of sparsity of a random
variable, that it be more likely to be either zero (inactive) or
relatively large in magnitude (active) with little probability
of “in between” values. A key feature of the kurtosis is its
ordering of densities with respect to the Gaussian density,
with sub-gaussian densities on one side and super-gaussian
densities on the other.

In [21] an operational approach is taken to the partial
ordering of densities with respect to Gaussian. The concept
of “over-gaussianity” is defined as a density’s having a tail
that is asymptotically heavier than than the Gaussian tail,
with sub-gaussianity defined similarly. A theorem is given
that for a unimodal density having two points of intersec-
tion with the normalized Gaussian density, the density is
over-gaussian if and only if the density has positive kurtosis.
Comparing the (asymptotic) heaviness of the tails is a natu-
ral way to compare densities in this context, and provides a
relatively simple way to compare densities with Gaussian.
We could similarly compare the order of the negative log
density to the order of x2. The comparison of asymptotic
order however does not address the issue of peakedness.
A similar theorem is given in Finucan [22] which assumes
four density crossings (both sharper peak and heavier tails)
rather than two crossings as in [21] (heavier tails only).

We are interested here in a simple measure that simulta-
neously responds to the properties of peakedness and heav-
iness of tail of a density, a sort of measure of curvature,
which is different from a measure of variance, dispersion,
scale, or asymptotic order. In the following we derive such
a measure within a framework called relative convexity. A
similar idea was given by Beckenbach [7], and according to
[23] also by E.Hopf (1926). H.Oja [20] uses similar concepts
to define moment based kurtosis criteria. The measure we
derive here is in fact instantaneous, but a basic inequality
with respect to the Gaussian density is satisfied uniformly
by almost all common symmetric densities. The form of
the measure is similar to that of the geometric measure of



curvature, and to the instantaneous kurtosis measure devel-
oped in [24]. In this paper we shall consider only symmetric,
unimodal densities.

2.2. Relative convexity

Let f :R→ R be increasing on the interval (a, b). The basic
criterion for convexity of f is f(αx + ᾱy) ≤ αx + ᾱy for all
x, y ∈ (a, b) [25, 26]. This may be interpreted as asserting
that for any two points x and y in (a, b), the function value
at all intervening points is less than the value of the linear
function defined to match the value of f at the points x and
y. In the intervals (a, x) and (y, b), the value of the convex
function f will be greater than that of the linear function
[26]. Analytically, we have f convex on (a, b) if,

f(y) ≤ f(x0) +
f(x1)− f(x0)

x1 − x0
(y − x0) ∀x0 ≤ y ≤ x1

The inequality is reversed for y in (a, x0), or (x1, b). Letting
x1 → x0 ≡ x, we have the ordinary definition of convexity
for differentiable f ,

f(y) ≥ f(x) + f ′(x)(y − x) ∀x, y ∈ (a, b)

Concavity can be defined similarly by reversing the inequal-
ities. Thus convexity of a function on an interval can be
seen as a relationship between the function and a linear
model of the function based on the function value and first
derivative.

This conception of convexity as a relationship between
functions can be generalized to compare a function to non-
linear functions as well. This idea was also proposed by
E. F. Beckenbach [7], and is related to the generalized con-
vexity framework given in [23]. Let h : R → R be strictly
increasing on (a, b). From considerations similar to those
given in the linear case, we can define f to be convex rela-
tive to h on (a, b) if a model of h using an affine transform
of f , given by αf + β, defined so that f and h are equal at
two given points, behaves in a manner similar to the line in
the convex case. For any three points x0 < y < x1 in the
interval (a, b), we then have,

f(y) ≤ f(x0) +
f(x1)−f(x0)

h(x1)−h(x0)
(h(y)− h(x0)) ∀y ∈ (x0, x1)

with the inequality reversed in (a, b) outside (x0, x1). Again
letting x1 → x0 ≡ x, we have f convex relative to h on (a, b)
if,

f(y) ≥ f(x) +
f ′(x)

h′(x)
(h(y)− h(x)) ∀x, y ∈ (a, b) (2.1)

We define relative concavity in the same way, reversing the
inequalities. It may be verified that the condition (2.1) is
equivalent to the differential definition of the convexity of
the composite function f ◦ h−1 on the interval (h(a), h(b)).
Thus we have f convex relative to h on (a, b) if f ◦ h−1 is
convex on (h(a), h(b)), which is equivalent to h◦f−1 concave
on (f(a), f(b)). The convexity of f ◦ h−1 is also equivalent
in the sense of [23] to order 2 convexity of f with respect to
h [23, p. 416]. According to [20], a similar concept is given
by W.R. van Zwet (1964).

It is not difficult to show that the relative convexity re-
lation induces a partial ordering on the set of functions
increasing on (a, b) even without the requirement of differ-
entiability [27]. Thus we can write f � h for f convex
relative to h (h concave relative to f), and f � h for f
concave relative to h (h convex relative to f). For f and h
decreasing, we define f(x) to be convex relative to h(x) on
(a, b) if f(−x) is concave relative to h(−x) on (−b,−a).

If f and h are twice differentiable on (a, b), we can use the
second derivative criterion for convexity to derive a simple
criterion for f � h. It may be verified that the condition,

D2[f ◦ h−1](x) ≥ 0 ∀x ∈ (h(a), h(b))

for f and h increasing, is equivalent to,

f ′′(x)

f ′(x)
≥ h′′(x)

h′(x)
∀x ∈ (a, b) (2.2)

This suggests that we can define a measure of relative con-
vexity of one-dimensional increasing functions by the opera-
tor K :f → f ′′/f ′ = D log Df , such that f � h corresponds
to K(f) ≥ K(h). The magnitude of this measure may be
seen as a measure of function curvature, or of function or-
der. Note that the relation is invariant to affine scaling of
f , i.e. K(f) = K(αf + β) for all α > 0 and β ∈ R.

2.3. Square-concavity and super-gaussianity

We define f to be square-convex if f � x2, and square-
concave if f � x2 in the partial ordering defined by the
relative convexity relation. In the important case of square-
concavity, for f symmetric and strictly increasing on (0,∞),
(2.1) becomes,

f(y) ≤ f(x) +
f ′(x)

2x
(y2 − x2) ∀x 6= 0, y ∈ R (2.3)

and (2.2) becomes,

f ′′(x)

f ′(x)
≤ 1

x
∀x > 0 (2.4)

We can apply the notion of square-concavity to densities
that are symmetric, zero mean, and unimodal by taking
the criterion for super-gaussianity to be negative log square-
concavity on (0,∞). Then p(x) will be super-gaussian if

D log D log
1

p(x)
≤ 1

x
∀x > 0 (2.5)

In this form as an operator on densities, the measure can
be seen as a sort of second order score function. Equiv-
alently, p(x) is negative log square-concave if it satisfies
p′′(x)/p′(x)− p′(x)/p(x) ≤ 1/x for all x > 0.

In [20] and references therein, two distribution functions
F and G are compared by considering the convexity of the
function G−1F . This is obviously very similar to the cri-
terion given here, but taking the second derivative of this
expression and deriving a measure from an inequality simi-
lar to (2.2), we would get a measure in terms of the inverse
of the distribution function. The inverse distribution can
be used if it is available, but for many common densities it



cannot be evaluated in closed form, notably for the Gaus-
sian density. In [20], moment-based criteria are primarily
considered for the measure of kurtosis. The advantage of
the measure we derive is that it depends only on derivative
information about the densities themselves, and contains
no inverse distributions or moments.

A criterion essentially the same as the negative log square-
concavity criterion is employed in the Bayesian image re-
construction literature [2, 3] to identify “edge-preserving”
negative log priors. There the admissible negative log prior
terms φ are such that φ(

√
·) is concave, which is equivalent

to the square-concavity of φ as given here. Other simi-
lar criteria for half-quadratic algorithms are used to ensure
the φ is at most square order in some sense [3]. The half-
quadratic algorithm in [2] is in fact very similar to the al-
gorithm for source estimation derived in the next section.
The square-concavity idea is also used in [19, p. 52] and
followed by [13, p. 2530]. We will use the square-concavity
inequality (2.3) to prove descent for the component analysis
algorithms given in section 4.

3. MAP ESTIMATION OF SUPER-GAUSSIAN
SOURCES

Consider the MAP estimate of the sources in the linear
model (1.1) for known A,

x̂ = arg min
x
− log pX(x)− log pY |X(y|x)

= arg min
x

n∑
i=1

fi(xi) +

m∑
j=1

dj(yj − āT
j x)

where āj is the jth row of A, fi(xi) ≡ − log pXi(xi) and
dj(yj−āT

j x) ≡ − log pYj |X(yj |x). We assume that all source
and noise random variables are independent with (not nec-
essarily identical) unimodal, zero mean, super-gaussian den-
sities. Defining e ≡ y −Ax, the problem can be written,

x̂ = arg min
x,e

n∑
i=1

fi(xi) +

m∑
j=1

dj(ej) s.t. Ax + e = y (3.1)

Then defining Ã ≡ [A I ] and x̃ ≡
[
xT eT

]T
, we have

ˆ̃x = arg min
x̃

n+m∑
i=1

f̃i(x̃i) s.t. Ãx̃ = y (3.2)

where we define f̃i to range over the fi and dj functions,
each of which is assumed square concave (this includes Gaus-
sian noise and L1 error as special cases). The formulation
of the problem (3.2) includes the zero noise limit case for
complete and overcomplete A, as well as the case for un-
dercomplete A when noise dominates or source priors are
uninformative. Ã is overcomplete and full rank regardless
of the dimension and rank of A. Thus we can solve all of the
estimation problems mentioned by deriving an algorithm to
solve the overcomplete case, x̂ = arg minx

∑n
i=1 fi(xi) such

that Ax = y.
By assumption, we have each component function fi :

R→ R symmetric, square-concave, and increasing with the
magnitude of its argument. This increasing property im-
plies that x and ∇f(x) are in the same orthant for all x,

so that that W∇f(x) ≥ 0, where W ≡ diag(x). Consider
the problem minx∈C f(x), where C is a convex set, e.g. the
linear variety defined by Ax = b. We can use the inequal-
ity (2.3) to define a descent algorithm as follows. At each
iteration l, for each xk, k = 1 . . . N , we have for arbitrary z,

f(z)− f(xk) =

n∑
i=1

fi(zi)− fi(xi,k)

≤ 1

2
∇f(xk)T W−1

k

(
z2 − x2

k

)
≡ 1

2
zT Πk z − 1

2
xkΠk xk (3.3)

where Wk ≡ diag(xk), and Πk ≡ diag
(
W−1

k ∇f(xk)
)
≥ 0.

Thus if we take for xk+1,

xk+1 ← arg min
x∈C

xT Πk x (3.4)

we can guarantee that right side of (3.3) is negative, and
thus f(xk+1) ≤ f(xk). When C is the linear variety defined
by Ax = y, the minimization can be carried out by solving,[

Πk AT

A 0

] [
xk+1

λ

]
=

[
0
y

]
(3.5)

where Πk(xk) ≡ diag(W+
k ∇f(xk)), and W+

k is the pseu-
doinverse, obtained in this case by inverting the non-zero
components of diag(xk). We can write xk+1 in closed form
as,

xk+1 = Π+
k (xk)AT

(
A Π+

k (xk)AT
)−1

y (3.6)

In the overcomplete case with noise, optimizing [xT eT ]T ,
we have,

xk+1 = Π+
k (xk)AT

(
A Π+

k (xk)AT + Π+
k (ek)

)−1

y (3.7)

where Vk ≡ diag(ek) and Πk(ek) ≡ diag(V +
k ∇d(ek)). It

is unnecessary to solve for ek+1 as it is constrained to be
y − Axk+1. In the undercomplete case, using the matrix
inversion lemma, (3.7) becomes,

xk+1 =
(
Πk(xk) + AT Πk(ek)A

)−1

AT Πk(ek)y (3.8)

For super-gaussian priors, some components of the Πk ma-
trix may tend to infinity. In (3.7) this is unproblematic as
Π+

k is used, in which the corresponding component will tend
to zero. In (3.8) it may be necessary to explicitly check for
very small components.

The descent properties guaranteed by these iterations
play a role in the derivation of descent for component esti-
mation algorithms given in the next section.

4. MAP ESTIMATION OF COMPONENTS

We now address the problem of estimating both A and X.
We first derive a descent algorithm, showing that the iter-
ates decrease the negative log likelihood at each iteration.
We approach the unconstrained problem by formulating it
as a constrained optimization problem, and deriving a de-
scent algorithm for the objective function such that the



constraints are satisfied at each iteration. The objective
function is precisely the posterior likelihood, not an ap-
proximation.

Let A be uniformly distributed over a compact set SA ⊂
Rm×n. Let Y = [y1 . . . yN ] be observations from the linear
model, yk = Axk + νk, with all random variables in the
model independent, zero mean, symmetric, and negative
log square-concave (super-gaussian). We consider the zero
noise limit problem (3.1), with the general problem handled
almost identically. We wish to find A and X = [x1 . . . xN ]
to minimize

∑
k f(xk) ≡ f(X) subject to AX = Y, A ∈ SA.

We develop a descent algorithm for f(X) such that at
each iteration we have AX = Y, and A ∈ SA. The iterates
of the algorithm shall be denoted by l = 1, 2, . . . , and we
denote Â, X̂, and x̂k at the lth iteration by Al, Xl, and
xk,l respectively. Considering the development of the pre-
ceding section, we shall assume that given Al+1, we update

X̂ according to (3.6), so that,

xk,l+1 = Π+
k,lA

T
l+1(Al+1Π

+
k,lA

T
l+1)

−1yk (4.1)

where Πk,l ≡W+
k,l∇f(xk,l), and Wk,l ≡ diag(xk,l). This up-

date guarantees feasibility of Xl+1 at the end of an iteration

consisting of updating Â and then updating X̂, and guar-
antees that X̂ moves in a reasonable direction. Although
updating the source estimates according to (3.6) provides
descent in the case of known constant A, (4.1) does not
in general reduce f(xk), since (3.6) only guarantees that
f(xk,l+1) < f(xk,l) for xk,l feasible. After Al is updated to
Al+1, Xl is no longer feasible. Thus updating it according
to (4.1) does not alone guarantee descent of f(X; A). We
can, however, guarantee that f(Xl+1; Al+1) < f(Xl; Al) by
exploiting our knowledge that Xl will change to Xl+1 ac-
cording to (4.1) after we update Al to Al+1. Using the
inequality (3.3) for square-concave functions, we have for
each xk,

f(xk,l+1)− f(xk,l) ≤
1

2
xT

k,l+1Πk,l xk,l+1 −
1

2
xk,lΠk,lxk,l

Using (4.1), for each xk we have,

xT
k,l+1Πk,lxk,l+1 = yT

k (Al+1Π
+
k,lA

T
l+1)

−1yk

Define the functions,

hk(A) ≡ yT
k (AΠ+

k,lA
T )−1yk − xk,lΠk,lxk,l

and h(A) =
∑

k hk(A). Then we have f(Xl+1) − f(Xl) ≤
h(Al+1). Now consider the value of h at Al. We have,
hk(Al) = yT

k (AlΠ
+
k,lA

T
l )−1yk − xk,lΠk,lxk,l = x̄k,lΠk,lx̄k,l −

xk,lΠk,lxk,l, where x̄k =arg minx xT Πk,lx s.t. Alx=yk.Thus,

h(Al) =
∑

k

hk(Al) =
∑

k

(
x̄k,lΠk,lx̄k,l − xT

k,lΠk,lxk,l

)
≤ 0

since Alxk,l = yk for all k, and x̄k achieves the minimum of
xT Πk,lx for Alx = y. Thus if we can find Al+1 ∈ SA such
that h(Al+1) < h(Al), then we will have,

f(Xl+1)− f(Xl) ≤ h(Al+1) < h(Al) ≤ 0

For simplicity, we use the method of gradient descent to
decrease h. First suppose SA is the sphere of unit Frobenius

norm matrices. We could define geodesic gradient descent
algorithms to maintain A in SA, but a more convenient
method is to simply project the gradient of A evaluated at
Al onto the the subspace orthogonal to the “vector” Al,
i.e. onto the hyperplane tangent to the sphere of constant
Frobenius norm at Al [12]. Since the projection operator is
positive semidefinite, the projected gradient is still a descent
direction. For the projected gradient, we have,

Al+1 = Al − α Proj (
∂h(Al)

∂A
)

= Al − α

∂h(Al)

∂A
−

〈
∂h(Al)

∂A
, Al

〉
〈Al, Al〉

Al

 (4.2)

The partial derivative of hk(A) = yT
k (AΠ+

k,lA
T )−1yk with

respect to A can be found using standard matrix calculus
to be,

∂h(A)

∂A
= −2

∑
k

(AΠ+
k,lA

T )−1ykyT
k (AΠ+

k,lA
T )−1AΠ+

k,l

(4.3)
With this we have for the inner product in (4.2),〈

∂h(Al)

∂A
, Al

〉
= tr

(
∂h(Al)

∂A
AT

l

)
= −2

∑
k

tr
(
(AlΠ

+
k,lA

T
l )−1ykyT

k

)
= −2

∑
k

yT
k (AlΠ

+
k,lA

T
l )−1yk

Define λ̄k,l ≡ (AlΠ
+
k,lA

T
l )−1yk. Then, absorbing the factor

of 2 into the parameter α, and using the definition of x̄k ≡
Π+

k,lA
T
l λ̄k,l, the update (4.2) becomes,

Al+1 =

(
1− α

∑
k λ̄T

k,lyk

‖A‖2F

)
Al + α

∑
k

λ̄k,lx̄
T
k,l

Or, redefining α, we can write,

Al+1 = (1− α)Al + α ‖A‖2F

∑
k λ̄k,lx̄

T
k,l∑

k λ̄T
k,lyk

(4.4)

which makes the setting of α much easier by reducing or
eliminating dependence of the step size on the problem size.
Note that in this setup we must finish the iteration by up-
dating Xl according to (4.1), which amounts to a sort of

double iteration on X̂. The iterations, however, must be
done as prescribed for the algorithm to perform as stated.
For example, we cannot simply iterate (4.1) twice since the
derived descent depends on the two updates being done
with different Π parameters (see (4.5) below).

It may be seen that in the case of complete A, this al-
gorithm is equivalent to the Infomax algorithm of [16], and
is thus a generalization of Infomax different from the algo-
rithm given in [6]. The latter algorithm and the algorithm
given in [12] may be seen as using alternative estimates of
the Lagrange multiplier type vectors λk. Writing the La-
grangian for the optimization problem under consideration,
we have,

L(A,X) =
∑

k

(
f(xk) + λT

k (yk −Axk)
)

+ µ(‖A‖2F − 1)



Setting the partial gradients of L equal to zero suggests,

λ∗k = (A∗Π+(x∗k)A∗T )−1yk

A∗ =

∑
k λ∗kx∗T

k∑
k λ∗T

k yk
x∗k = Π+(x∗k)A∗T λ∗k

Thus, except for the norm multiplier, (4.4) can be seen
as a fixed point Lagrangian algorithm. Indeed, eliminating
‖A‖2F from the expression yields an algorithm that is shown
experimentally to converge to a solution with unit Frobe-
nius norm, though it may temporarily increase the objective
function on its way. The iteration given in (4.4), if initial-
ized with a unit norm matrix, will, as expected, steadily
but very slightly increase the norm of A, usually coming to
a fixed point before increasing by more than 10−4. Also as
expected it monotonically decreases the objective function
for “natural” step sizes of approximately 10−2 or 10−1.

One problem with algorithms of this form for compo-
nent estimation however, as noted in [6] and elsewhere, is
that there is nothing to prevent individual columns from
going to zero, reaching a sort of degenerate solution. We
can eliminate this problem by constraining A to have unit
column norm. In this case the Lagrangian is,

L(A,X) =
∑

k

(
f(xk) + λT

k (yk −Axk)
)

+

n∑
i=1

µi(a
T
i ai − 1)

where A = [a1 . . . an]. Following the example of the con-
strained Frobenius norm case, we can derive a fixed point
Lagrangian algorithm that converges to an A∗ with unit
column norms. We follow the same protocol suggested by
the globally convergent algorithm. Let Wk,l = diag(xk,l).
We first calculate the Lagrange multiplier and x̄k estimates,

Πk,l = diag(W+
k,l∇f(xk,l)) λ̄k,l = (AlΠ

+
k,lA

T
l )−1yk

µ̄l =
∑

k

Wk,lA
T
l λ̄k,l x̄k,l = Π+

k,lA
T
l λ̄k,l

Then update A,

Al+1 = (1− α) Al + α

(∑
k

λ̄k,lx̄
T
k,l

)
diag(µ̄l)

−1

Finally, update the xk using the new A, and (old) Πk,l.

λk,l = (Al+1Π
+
k,lA

T
l+1)

−1yk xk,l+1 = Π+
k,lA

T
l+1λk,l (4.5)

To conclude, we give a duality relationship between sub-
and super-gaussian densities as here defined, which allows
similar algorithms to be formulated for sub-gaussian estima-
tion. The Fenchel-Legendre conjugate of a convex function
f , defined by f∗(φ) = supx φ x − f(x), is used in the dual
of a convex optimization problem, e.g. minAx=y f(x) can
be obtained by solving max Vφ=0 x̄T φ− f∗(φ), where V is a
basis for the null space of A, and Ax̄ = y (see[25]). For f
concave, f∗(φ) = infx φ x− f(x).

Theorem 1 (Fenchel-Legendre conjugate symmetry
[27]). Let f be increasing and convex or concave on D, with
Fenchel conjugate f∗ defined on D∗. Then f � x2 on D if
and only if f∗ � φ2 on D∗. Also, f � log on D if and only
if f∗ � log on D∗.

This is similar to the result that an increasing func-
tion f is convex on (a, b) if and only if f−1 is concave on
(f(a), f(b)).
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