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ABSTRACT
Given a large overcomplete dictionary of basis vectors, our
goal is to efficiently representL > 1 signal vectors us-
ing coefficient expansions marked by a common sparsity
profile. This generalizes the standard sparse representation
problem to the case where we have access to multiple re-
sponses that were putatively generated by the same small
subset of features. Ideally, we would like to uncover the as-
sociated sparse generating weights, which can have physical
significance in many applications. The generic solution to
this problem is combinatorial and therefore we seek approx-
imate procedures. Sparse approximation algorithms tailored
to the multiple response domain have typically fallen into
two categories: Greedy algorithms such as Matching Pur-
suit or regularized least-squares methods such as Basis Pur-
suit and FOCUSS. While these approaches have been exten-
sively analyzed by others, there has been comparably less
progress with regard to the development new sparse approx-
imation cost functions and algorithms. Herein, we derive an
alternative cost function and associated learning rule based
upon a sparse Bayesian learning formulation that improves
upon existing methods in many cases.

1. INTRODUCTION

Suppose we are presented with a set ofL target signals (or
responses) inRN , T = [t·1, . . . , t·L], and an overcomplete
dictionary of basis vectors,Φ ∈ RN×M , that are linked by
a generative model of the form

T = ΦW + E , (1)

whereW = [w·1, . . . , w·L] = [w1·; . . . ;wM ·] is an un-
known weight matrix andE is noise. Moreover, suppose we
have some prior belief that everyt·j has been generated by a
sparse coefficient expansion, each of which is characterized
by a common sparsity profile, i.e., most rows ofW have
zero norm. Such a situation arises in many diverse applica-
tions such as neuromagnetic imaging [8], communications
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[3], and signal processing [6]. GivenT and Φ, the esti-
mation goal in each case is to approximate the row-sparse
generating weights.

Given a statistical model for the noiseE , we can for-
mulate the likelihood forW . Furthermore, if we assume
some sparse prior distribution onW , we may then consider
finding the posterior distributionp(W |T ), which allows us
to assess which basis vectors (i.e., columns ofΦ) are im-
portant in representingT . For example, given a Gaussian
likelihood and aǹ 0-quasi-norm-based row prior, we could
search for the posterior mode via

min
W

‖T − ΦW‖2F + λ

M∑

i=1

I [‖wi·‖2 > 0] . (2)

Unfortunately, this problem has a combinatorial number of
suboptimal local minima, as do many MAP estimation prob-
lems involving sparsity-inducing priors (an exception being
the Laplacian-based Basis Pursuit formulation, which leads
to a linear programming implementation). Rather than em-
barking on a difficult mode-finding expedition, we instead
enlist an alternative Bayesian strategy that is concerned with
exploring regions of significant probability mass. Specifi-
cally, we posit a standard sparse prior and then adopt a con-
venient class of variational approximations that allow us to
directly track areas of probability mass in the full distribu-
tion. Moreover, this particular approximation consistently
places its prominent posterior mass on the appropriate re-
gion of W -space necessary for sparse recovery. The un-
derlying methodology is based on previous work in [12].
Additional details can be found in [13].

2. ALGORITHM DERIVATION

We must first specify the functional forms for our assumed
likelihood and prior. Starting with the former, we postulate
p(T |W ) to be conditionally Gaussian with noise variance
σ2. Thus, for eacht·j , w·j pair, we have,

p(t·j |w·j) = (2πσ2)−N/2 exp
(
− 1

2σ2
‖t·j − Φw·j‖22

)
.

(3)



Next, we will denote our specific hypothesis (or prior be-
lief) thatW is row-sparse asH. To encourage few nonzero
rows inW (or equivalently, few selected columns ofΦ), we
choose the sparsity-inducing Student’s t-distribution as the
basis ofp(W ;H). Specifically, we adopt the following form
for thei-th row of W:

p(wi·;H) = C

(
b +

‖wi·‖22
2

)−(a+L/2)

, (4)

wherea, b, andC are positive constants. Such a prior favors
rows with zero norm (and therefore all zero elements) owing
to the sharp peak at zero and heavy tails. The row priors may
then be multiplied together to formp(W ;H). Given these
selections, the resulting joint densityp(W,T ;H) cannot be
easily evaluated to affect sparse recovery and so we con-
sider a reasonable approximation. In choosing an approx-
imate modelp(W,T ; Ĥ), we would like to match, where
possible, significant regions of probability mass in the true
modelp(W,T ;H). For a givenT , one obvious way to do
this is to selectĤ by minimizing the sum of the misaligned
mass, i.e.,

L(Ĥ) ,
∫ ∣∣∣p(W,T ;H)− p(W,T ; Ĥ)

∣∣∣ dW. (5)

We must now consider a suitable class of approximationsĤ
such that (5) is computable. By extending convexity results
from [12], we can form a rigorous lower bound to each row
prior via

p(wi·;H) ≥ p(wi·; Ĥ) , exp
(
− b

γi

)
γ−a

i N (0, γiI) . (6)

Combining each of these approximate row priors, we ar-
rive at the full approximate priorp(W ; Ĥ) =

∏
i p(wi·; Ĥ),

whose form is modulated by a vector of variational param-
etersγ = [γ1, . . . , γM ]T . At this point, we are positioned
to minimize (5) usingĤ selected from the set of variational
approximations. Specifically, using thep(W ; Ĥ) derived
above, (5) simplifies to

L(γ) ≡
∫
−p(T |W )p(W ; Ĥ)dW

≡
L∑

j=1

1
2

[
log |Σt|+ tT

·jΣ
−1
t t·j

]
+

M∑

i=1

(
b

γi
+ a log γi

)
, (7)

whereΣt , σ2I + ΦΓΦT , Γ , diag(γ), and the varia-
tional assumptions have conveniently allowed us to remove
the absolute value and therefore, explicit dependency on
p(W,T ;H). Treating the unknown weightsW as hidden
data, we can optimize this expression using a simple EM

algorithm. For the E-step, this requires computation of the
posterior moments

Σ , Cov[w·j |T ;γ] = Γ− ΓΦT Σ−1
t ΦΓ, (8)

M = [µ·1, . . . , µ·L] , E[W |T ; γ] = ΓΦT Σ−1
t T,

while the M-step is expressed via the update rule

γ
(new)
i =

1
L‖µi·‖22 + Σii + 2b

1 + 2a
(9)

for all i = 1, . . . , M . Interestingly, whenL = 1 both
(8) and (9) can be reduced to the sparse Bayesian learning
(SBL) iterations (the EM version) derived in [10] for single
response models. Because of this affiliation, we shall refer
to this multiple response algorithm as M-SBL, forMultiple
response modelSparseBayesianLearning.

Using the specified update rules forγ, we arrive at the
approximate posteriorp (W |T ; γ∗), whereγ∗ indicates a
fixed point of (8) and (9). This distribution is multivariate
Gaussian with moments given by (8). Also, we find that
when we choosea = b → 0, many of theγ∗i ’s are equal
to zero. This effectively collapsesp(W |T ; γ∗) to a rele-
vant low-dimensional subspace ofW -space. This collapse,
and the Gaussian nature of the nonzero portion of the dis-
tribution, allows us to easily evaluate the posterior weight
mass in assessing the relative importance of each basis vec-
tor. Specifically, as we will soon show, if a vector plays an
important role in shapingT , then substantial posterior mass
will be placed in regions where the corresponding weights
are nonzero. In contrast, superfluous basis vectors are ef-
fectively pruned by lumping all posterior mass at the appro-
priate zero-valued weights. Moreover, a common sparsity
profile is ensured sinceγ is the same for each column of
W , i.e., a singleγi for each row.

While the algorithm was derived using real quantities
for simplicity, it is easily extensible to the complex domain
[13]. Additionally, the multiple response SBL framework
naturally allows for learning the dictionaryΦ (of course
now we can no longer assume a common sparsity profile).
As a direction for future study, an especially efficient and ro-
bust algorithm exists when the unknown dictionary is com-
plete and possibly constrained to being orthogonal. The lat-
ter case is useful for learning a sparsity-inducing transform
for wavelet shrinkage.

3. EMPIRICAL COMPARISONS

In [2, 3, 7, 9, 11], several methods are presented for solving
estimation problems based on (1). These algorithms repre-
sent multiple response extensions of more familiar methods
such as Orthogonal Matching Pursuit, Basis Pursuit, and
FOCUSS, hence we will refer to them as M-OMP, M-BP,
and M-FOCUSS respectively. The latter two approaches



can be formulated as MAP estimation using a Gaussian like-
lihood model and an implicit,̀ p-quasi-norm-based prior
that penalizes diversity (i.e., rewards sparsity). In fact, M-
FOCUSS (withp → 0.0) implicitly employs an equivalent
prior to M-SBL when we choosea = b → 0; both are
related to a multiple response version of the Jeffreys nonin-
formative prior. The primary difference is that during opti-
mization, M-SBL is traversing a restricted space of posterior
mass, whereas the others search for the posterior mode.

We would like to quantify the performance of M-SBL
relative to these other methods in recovering sparse sets of
generating weights, which in many applications have physi-
cal significance (e.g., source localization). To accommodate
this objective, we performed a series of simulation trials
where by design we have access to the sparse, underlying
model coefficients. For simplicity, noiseless tests were per-
formed first; this facilitates direct comparisons because dis-
crepancies in results cannot be attributed to poor selection
of trade-off parameters (which balance sparsity and quality
of fit) in the case of most algorithms.

Each trial consisted of the following: First, an overcom-
pleteN×M dictionaryΦ is created with columns draw uni-
formly from the surface of a unit hypersphere as proposed
in [4]. Sparse weight vectorsw·1, . . ., w·L are randomly
generated withD nonzero entries and a common sparsity
profile. Nonzero amplitudes are drawn from a uniform dis-
tribution. Response values are then computed asT = ΦW .
Each algorithm is presented withT andΦ and attempts to
estimateW . With M-OMP, M-BP and M-FOCUSS, this
is accomplished directly. In contrast, M-SBL produces a
tractable posterior distribution onW , which we may then
employ to make a prediction, namely, we choose the pos-
terior meanM∗ as our estimate. For all methods, we can
compareW with Ŵ after each trial to see if the sparse gen-
erating weights have been recovered. Results are shown in
Figure 1 (top) and (middle) asL andM are varied.

We also performed analogous tests with the inclusion of
noise. Specifically, AWGN was added to produce an SNR
of 10dB. When noise is present, we do not expect to repro-
duceT exactly, so we now classify a trial as successful if
the norm of each estimated row associated with a nonzero
row of W is greater than the norms of all other rows. Figure
1 (bottom) displays sparse recovery results as the trade-off
parameter for each algorithm is varied.

Overall, we see that M-SBL outperforms the others. It
is especially salient to compare the M-SBL results with M-
FOCUSS,p = 0.0. Based on equivalent implicit Bayesian
priors, we see that optimizing with respect to mass handily
outperforms mode-finding. Additionally, Figure 1 is repre-
sentative of a larger set of trials based on diverse experi-
mental conditions, e.g., different dictionary types, alternate
weight distributions, use of complex data, etc. In the cases
tested thus far, M-SBL has maintained a higher probability
of recovering the sparse generative weights.
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Fig. 1. Empirical results comparing the probability that
each algorithm fails to find the sparse generating weights
under various testing conditions. Each data point is based
on 1000 independent trials, and in all casesN = 25. Top:
With M = 50 and D = 16, we varyL from 1 to 5 to
examine the benefits of multiple responses.Middle: With
D = 16 andL = 3, M is varied fromN to 4N to explore
the ability of each algorithm to handle increased dictionary
redundancy.Bottom: With 10dB additive Gaussian noise,
M = 100, D = 8, andL = 4, we vary the trade-off param-
eter for each algorithm. Note that M-OMP performance is
flat here since it has no trade-off parameter.



4. ANALYSIS

Several interesting things are worth noting with respect to
the M-SBL framework. First, in the absence of noise, if
γ∗ is a global minimizer ofL(γ), thenM∗ is the maxi-
mally row-sparse solution toT = ΦW under reasonable
conditions [13]. Thus, when the algorithm fails, it is be-
cause of convergence to a local minimum (as can occur
with M-FOCUSS) rather than convergence to a global min-
imum that is not maximally sparse (as can occur with M-
BP). However, it appears that avoidance of direct mode-
seeking reduces the number of problematic local minima
that exist. For example, we offer the following result [13]:

Result: Given a dictionaryΦ with spark(Φ) = N +1 and
a set of responsesT , let W0 be the maximally row-sparse
solution toT = ΦW , with D0 < N nonzero rows. Then
L(γ) has no (non-global) local minima if the nonzero rows
of W0 are orthogonal andσ2 = 0.

Consequently, in this restricted setting, M-SBL will al-
ways findW0 unlike M-OMP, M-BP, or M-FOCUSS, all of
which may fail under the stipulated conditions (facts that
we have verified experimentally). When noise is present, it
becomes significantly more difficult to provide any guaran-
tees with regard to local minima avoidance. However, in the
special case whereΦT Φ = I, it is not difficult to show that
no M-SBL local minima exist, unlike M-FOCUSS which
can have up to2M local minima asp → 0. Moreover, the
unique, globally minimizing stationary pointγ∗ produces a
posterior mean of which each row satisfies,

µ∗i· = wMN
i·

(
1− Lσ2

‖wMN
i· ‖22

)+

, (10)

whereW MN , Φ†T and(·)+ zeroes negative values. As it
turns out, these weight estimates represent a direct, multiple-
response extension of those obtained for this problem using
the nonnegative garrote estimator [1, 5]. Moreover, we ob-
tain added robustness to noise because the threshold oper-
ator is moderated by an average across responses. Conse-
quently, in this setting M-SBL can be interpreted as a form
of generalized shrinkage method, truncating small values to
zero and shrinking others by a factor that decreases as the
magnitude grows (likewise, with an orthonormal dictionary
M-BP becomes a generalized soft-threshold estimator).

With regard to computational comparisons, each M-SBL
and M-FOCUSS iteration isO(MN2 + NML) for real or
complex data (assumingN ≤ M ). In contrast, the second-
order cone (SOC) implementation of M-BP [7] isO(L3M3).
This could be prohibitively large forM À N , although
fewer total iterations are usually possible. Of course M-
OMP is decidedly less costly than all of these methods.

In conclusion, empirical evidence offers some of the
strongest support for M-SBL as a viable candidate for sparse
recovery tasks in multiple response models. Preliminary

results in various source localization applications are very
promising.
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