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Abstract

Recently, relevance vector machines (RVM) have been fashifrom a
sparse Bayesian learning (SBL) framework to perform supedviearn-
ing using a weight prior that encourages sparsity of repitasien. The
methodology incorporates an additional set of hyperpataragovern-
ing the prior, one for each weight, and then adopts a spegficoi-
mation to the full marginalization over all weights and hygarameters.
Despite its empirical success however, no rigorous madimaor this
particular approximation is currently available. To addréhis issue, we
demonstrate that SBL can be recast as the application obeorig vari-
ational approximation to the full model by expressing themin a dual
form. This formulation obviates the necessity of assumimglay/perpri-
ors and leads to natural, intuitive explanations of why sipais achieved
in practice.

1 Introduction

In an archetypical regression situation, we are presentttdancollection of N regres-
sor/target pair§¢; € RM . t; € R}Y, and the goal is to find a vector of weighissuch
that, in some sense,

i~ olw, Vi or  tx dw, (1)
wheret £ [ty,...,tx]T and® 2 [¢y,...,0x]T € RV*M | |deally, we would like to
learn this relationship such that, given a new training @e¢t., we can make accurate
predictions oft,, i.e., we would like to avoid overfitting. In practice, thisquires some
form of regularization, or a penalty on overly complex madel

Recently, a sparse Bayesian learning (SBL) framework hes derived to find robust solu-
tionsto (1) [3, 7]. The key feature of this development isitttorporation of a prior on the
weights that encourages sparsity in representationféw@.non-zero weights. Whed is
square and formed from a positive-definite kernel functiea obtain the relevance vector
machine (RVM), a Bayesian competitor of SVMs with severghgicant advantages.

1.1 SparseBayesian Learning

Given a new regressor vectar,, the full Bayesian treatment of (1) involves finding the
predictive distributionp(t.|t).> We typically compute this distribution by marginalizing

For simplicity, we omit explicit conditioning o ande*, i.e.,p(t*|t) = p(t*|t, ®, ¢™).



over the model weights, i.e.,
1
telt) = — t.|w)p(w, t)dw, 2
pl0.1t) = o [ ottt @

where the joint density(w, t) = p(t|w)p(w) combines all relevant information from the
training data (likelihood principle) with our prior belefaibout the model weights. The
likelihood termp(t|w) is assumed to be Gaussian,

pltw) = (2r0?) V2 exp (5ot - dwl?) @

where for now we assume that the noise variaméés known. For sparse prions(w)
(possibly improper), the required integrations, inclygdihe computation of the normaliz-
ing termp(t), are typically intractable, and we are forced to accept sfomme of approxi-
mation top(w, t).

Sparse Bayesian learning addresses this issue by intragaaet of hyperparameters into
the specification of the problematic weight prigrw) before adopting a particular approx-
imation. The key assumption is thatw) can be expressed as

M M
= [Lptwd =] [ ptwhptin (4)
1=1 =1
wherey = [y1,...,vu]|T represents a vector of hyperparameters, (one for each tyeigh
The implicit SBL derivation presented in [7] can then be rafolated as follows,
1
tt) = — te|w)p(t|w)p(w)dw
pult) = o [ plt ()
1
= o | [t pedody ©)

Proceeding further, by applying Bayes’ rule to this expimgswe can exploit the plugin

rule [2] via,
sl = [ oot >§E |t§dwdv

~ // (ts]w)p(t|w)p(w 7)5(’>&A1|7A;3)dwd'y

- m/ (te|w)p(w, t;ypmap)dw. (6)

The essential difference from (2) is that we have replaged, t) with the approximate
distributionp(w, t; vy ap) = p(tjw)p(w; vy ap). Also, the normalizing term becomes
[ p(w, t;vmap)dw and we assume that all required integrations can now be égiiall
closed form. Of course the question remains, how do we streithis new set of param-
eters~ to accomplish this goal? The answer is that the hyperpasamenter as weight
prior variances of the form,

p(wilvi) = N(0,7). (7)

The hyperpriors are given by,

POy ) o< v exp(=b/), ®)
wherea,b > 0 are constants. The crux of the actual learning procedurgepted in [7]
is to find some MAP estimate ef (or more accurately, a function ef). In practice, we
find that many of the estimategl’s converge to zero, leading to sparse solutions since
the corresponding weights, and therefore column® p€an effectively be pruned from
the model. The Gaussian assumptions, both(@hw) andp(w; ), then facilitate direct,
analytic computation of (6).




1.2 Ambiguitiesin Current SBL Derivation

Modern Bayesian analysis is primarily concerned with figdirstributions and locations of
significant probability mass, not just modes of distribngipwhich can be very misleading
in many cases [6]. With SBL, the justification for the additib level of sophistication
(i.e., the inclusion of hyperparameters) is that the adoptf the plugin rule (i.e., the
approximatiorp(w, t) ~ p(w, t;va ap)) is reflective of the true mass, at least sufficiently
so for predictive purposes. However, no rigorous motivafior this particular claim is
currently available nor is it immediately obvious exactiyhthe mass of this approximate
distribution relates to the true mass.

A more subtle difficulty arises because MAP estimation, amack the plugin rule, is not
invariant under a change in parameterization. Specifidaihyan invertible functionf(-),

[f(M]arap # f(varap)- )

Different transformations lead to different modes andudiiely, different approximations

to p(w, t) and thereforen(¢.|t). So how do we decide which one to use? The canonical
form of SBL, and the one that has displayed remarkable sadndbe literature, does not

in fact find a mode op(~|t), but a mode op(— log~|t). But again, why should this mode
necessarily be more reflective of the desired mass than eyt

As already mentioned, SBL often leads to sparse resultsactipe, namely, the approxi-
mationp(w, t; v ap) IS typically nonzero only on a small subspaceléfdimensionaky
space. The question remains, however, why should an appation to the full Bayesian
treatment necessarily lead to sparse results in practice?

To address all of these ambiguities, we will herein demastthat the sparse Bayesian
learning procedure outlined above can be recast as thecafiphi of a rigorous variational
approximation to the distributiop(w, t).?> This will allow us to quantify the exact rela-
tionship between the true mass and the approximate masis afigtribution. In effect, we
will demonstrate that SBL is attempting to directly captsignificant portions of the prob-
ability mass ofp(w, t), while still allowing us to perform the required integratfo This
framework also obviates the necessity of assuming any pyipep(+) and is independent
of the (subjective) parameterization (e.g.or —log~, etc.). Moreover, this perspective
leads to natural, intuitive explanations of why sparsitgliserved in practice and why, in
general, this need not be the case.

2 A Variational Interpretation of Sparse Bayesian Learning

To begin, we review that the ultimate goal of this analysi®ifind a well-motivated ap-
proximation to the distribution

Pt 8 H) ox / p(t. [w)p(w, t; H)dw = / Pt [w)p(tw)p(w; H)dw,  (10)

where we have explicitly noted the hypothesis of a model eiparsity inducing (possibly
improper) weight prior by{. As already mentioned, the integration required by thisfar
analytically intractable and we must resort to some formpgiraximation. To accomplish
this, we appeal to variational methods to find a viable appnetion top(w,t; H) [5].
We may then substitute this approximation into (10), legdmtractable integrations and
analytic posterior distributions. To find a class of suigadpproximations, we first express
p(w; H) in its dual form by introducing a set of variational parametd his is similar to a
procedure outlined in [4] in the context of independent congnt analysis.

2\We note that the analysis in this paper is different from [1], which deras alternative SBL
algorithm based on variational methods.



2.1 Dual Form Representation of p(w; H)

At the heart of this methodology is the ability to represembavex function in its dual
form. For example, given a convex functigify) : & — R, the dual form is given by

fly) = sup Ay — f*(N)], (11)

where f*(\) denotes the conjugate function. Geometrically, this carinberpreted as
representing’(y) as the upper envelope or supremum of a set of lines parazeddiy\.
The selection of *(\) as the intercept term ensures that each line is tangefitto If we
drop the maximization in (11), we obtain the bound

fly) = y— (). (12)

Thus, for any given\, we have a lower bound ofi(y); we may then optimize ovex to
find the optimal or tightest bound in a region of interest.

To apply this theory to the problem at hand, we specify thenféor our sparse prior
p(w;H) = Hf\il p(w;; H). Using (7) and (8), we obtain the prior

w? —(a+1/2)
p(wis H) = /p(wilw)p(%)d% =C (b + 7) :

which fora,b > 0 is proportional to a Studerttdensity. The constarit' is not chosen to
enforce proper normalization; rather, it is chosen to f@té the variational analysis below.
Also, this density function can be seen to encourage spaisite it has heavy tails and a
sharp peak at zero. Clearhfw;; H) is not convex inw;; however, if we lety; = w? as
suggested in [5] and define

Fyi) 2 log p(wi; H) = —(a + 1/2) log (b n %) FlogC, (14)

(13)

we see that we now have a convex functionyjnramenable to dual representation. By
computing the conjugate functiofi*(y;), constructing the dual, and then transforming
back top(w;; H), we obtain the representation (see Appendix for details)

2 b
pln?) e [l e (<35 oo (<)o
Asa,b — 0, itis readily apparent from (15) that what were straigh¢$irin they; domain
are now Gaussian functions with variangein the w; domain. Figure 1 illustrates this
connection. When we drop the maximization, we obtain a loween onp(w;; H) of the
form

N _ wf b —a
p(wi; M) > p(wi; H) £ (2my;) ™2 exp (— 27_) exp <—;) v (16)

K3 3

which serves as our approximate priorgttw; H). From this relationship, we see that

p(w;; H) does not integrate to one, except in the special case when> 0. We will now

incorporate these results into an algorithm for finding ady&o or more accuratelﬁ('y),
since each candidate hypothesis is characterized by addiffset of variational parameters.

2.2 Variational Approximation to p(w,t; H)

So now that we have a variational approximation to the proaté weight prior, we must
return to our original problem of estimatingt..|t; 7). Since the integration is intractable

under model hypothesig/, we will instead computey(t,|t; H) using p(w,t;H) =
p(t|w)p(w; H), with p(w; H) defined as in (16). How do we choose this approximate
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Figure 1: Variational approximation example in bgthspace andv; space fom, b — 0.
Left Dual forms iny; space. The solid line represents the plotf¢f;) while the dotted
lines represent variational lower bounds in the dual reprigion for three different values
of \;. Right Dual forms inw; space. The solid line represents the plop@ab;; ) while
the dotted lines represent Gaussian distributions witketldiifferent variances.

model? In other words, given that differektare distinguished by a different set of vari-
ational parameters, how do we choose the most appropriate Consistent with modern
Bayesian analysis, we concern ourselves not with matchiodes of distributions, but
with aligning regions of significant probability mass. Inocisingp(w, t; H), we would
therefore like to match, where possible, significant regiohprobability mass in the true
modelp(w, t; H). For a givent, an obvious way to do this is to selek}:tby minimizing
the sum of the misaligned mass, i.e.,

H = argmin /‘p(w,t;H) — p(w, t;H)| dw
H

= argmax /p(t|w)p(w;ﬂ)dw, a7
H

where the variational assumptions have allowed us to rentewveabsolute value (since
the argument must always be positive). Also, we note thati€lantamount to selecting
the variational approximation with maximal Bayesian ewicke [6]. In other words, we
are selecting thé{, out of a class of variational approximations#g that most probably
explains the training datg marginalized over the weights.

From an implementational standpoint, (17) can be reexpdegsing (16) as,

M
N argmvax log/p(t\w)Hp<wi;7:((’Yi)> dw
i=1

M
1 __— b
= argmex —j [log %] + 75, '] + E (—7— —alog%-> ) (18)

i=1 v

whereX; £ o2+ ®diag(~)®7. This is the same cost function as in [7] only without terms
resulting from a prior o2, which we will address later. Thus, the end result of thid-ana
ysis is an evidence maximization procedure equivalentaatie in [7]. The difference is
that, where before we were optimizing over a somewhat aryitmodel parameterization,
now we see that it is actually optimization over the spaceaniftional approximations to
a model with a sparse, regularizing prior. Also, we know frdid) that this procedure is

effectively matching, as much as possible, the mass of thenfwdel p(w, ¢; 7%).



3 Analysis

While the variational perspective is interesting, two petit questions still remain:

1. Why should it be that approximating a sparse ppiap; ) leads to sparse repre-
sentations in practice?

2. How do we extend these results to handle an unknown, randdances2?

We first treaQuestion (1) In Figure 2 below, we have illustrate®® example of evidence
maximization within the context of variational approxiriees to the sparse prigiw; H).
For now, we will assume, b — 0, which from (13), implies thap(w;; H) o 1/|w;| for
eachi. On the left, the shaded area represents the regian gface where both(w; H)
andp(t|w) (and therefore(w, t; H)) have significant probability mass. Maximization of
(17) involves finding an approximate distributiptw, ¢; /) with a substantial percentage
of its mass in this region.

variational
constraint

L L L L
2 4 6 8

Figure 2: Comparison between full model and approximateeisoditha, b — 0. Left:
Contours of equiprobability density fpfw; 7) and constant likelihoog(t|w); the promi-
nent density and likelihood lie within each region respetyi. The shaded region repre-
sents the area where both have significant mBRgght: Here we have added the contours
of p(w; H) for two different values ofy, i.e., two approximate hypotheses dendtgdand
H,. The shaded region represents the area where both thédikeliand theapproxmate

prior H,, have significant mass. Note that by the variational bounch géw; #) must lie
within the contours op(w; H).

In the plot on the right, we have graphed two approximatergtiaat satisfy the variational
bounds, i.e., they must lie within the contourg6iv; 7). We see that the narrow prior that
aligns with the horizontal spine @fw; H) places the largest percentage of its mass (and

therefore the mass gfw, t; H,)) in the shaded region. This corresponds with a prior of
p(w; Ha) = p(wy, wa;m 3> 0,72 & 0). (19)

This creates a long narrow prior since there is minimal vaxgsalong thev, axis. In fact,

it can be shown that owing to the infinite density of the véoial constraint along each

axis (which is allowed as andb go to zero), the maximum evidence is obtained when

~s is strictly equal to zero, giving the approximate prior iitendensity along this axis as

well. This implies thatv, also equals zero and can be pruned from the model. In contrast

a model with significant prior variance along both axs, is hampered because it cannot

extend directly out (due to the dotted variational bounilakyng the spine to penetrate the
likelihood.



Similar effective weight pruning occurs in higher dimems&bproblems as evidenced by
simulation studies and the analysis in [3]. In higher diniems, the algorithm only retains
those weights associated with the prior spines that spabspaue penetrating the most
prominent portion of the likelihood mass (i.e., a highendnsional analog to the shaded
region already mentioned). The prigfw; 7—?) navigates the variational constraints, placing
as much as possible of its mass in this region, driving martkief;’s to zero.

In contrast, wher, b > 0, the situation is somewhat different. It is not difficult toosv
that, assuming a noise varianeé > 0, the variational approximation to(w, t; H) with
maximal evidence cannot have apy= w; = 0. Intuitively, this occurs because the now
finite spines of the priop(w; H), which bound the variational approximation, do not allow
us to place infinite prior density in any region of weight spdas occurred previously
when anyy; — 0). Consequently, if any; goes to zero withu, b > 0, the associated
approximate prior mass, and therefore the approximateeae] must also fall to zero by
(16). As suchmodels with all non-zero weights will be now be favored wherfosm the
variational approximationWe therefore cannot assume an approximation to a spawse pri
will necessarily give us sparse results in practice.

We now addresQuestion (2) Thus far, we have considered a known, fixed noise variance
o2, however, what if>2 is unknown? SBL assumes it is unknown and random with prior
distribution p(1/02) o (02)'~¢exp(—d/o?), andc,d > 0. After integrating out the
unknowng?2, we arrive at the implicit likelihood equation,

1 —(c+1/2)
p(tjw) = /p(t\w,02)p(02)da2 o (d—i— §||t — <I>w2) , (20)

whereé £ ¢+ (N —1)/2. We may then form a variational approximation to the liketid
in a similar manner as before (with; being replaced bjjt — ®dw||) giving us,

pithe) = (2m) 202 o (<51 - wul e (< 5 ) ()
= () o (< glie- vwl)ew (5 ) 037 (@)

where the second step follows by substituting back ircfdBy replacingp(t|w) with the
lower bound from (21), we then maximize over the variatigrealametersy ando? via

M
1 b d
~,02 = arg$§§_§ [log |24 + tTE;lt]—&—i_E 1 <_¥ — alogm)—;—cloga% (22)

the exact SBL optimization procedure. Thus, we see thattieeeSBL framework, in-
cluding noise variance estimation, can be seen in varialtignms.

4 Conclusions

The end result of this analysis is an evidence maximizatroegdure that is equivalent to
the one originally formulated in [7]. The difference is thahere before we were optimiz-
ing over a somewhat arbitrary model parameterization, we s@e that SBL is actually
searching a space of variational approximations to find temredtive distribution that cap-
tures the significant mass of the full model. Moreover, frdra vantage point afforded
by this new perspective, we can better understand the gparsiperties of SBL and the
relationship between sparse priors and approximationgérse priors.



Appendix: Derivation of the Dual Form of p(w;; H)

To accommodate the variational analysis of Sec. 2.1, wenethe dual representation of

p(w;; H). As an intermediate step, we must find the dual representafig(y;), where
a2

yi = w; and R i\ —(a+1/2)

f() 2 logp(wis ) =log |C (b+ %) . (23)

To accomplish this, we find the conjugate functifir(\;) using the duality relation
1 i
£7(\) = max [Ny — f(y:)] = max [)\iy,- —logC + (a + —) log (b + y_)] . (24)

To find the maximizingy;, we take the gradient of the left side and set it to zero, givs,
a 1

Substituting this value into the expression Jor(\;) and selecting
1 1 (a+1/2)
C= (271’)71/26}(}) |: <(l+ §>:| <a+ 5) 5 (26)
we arrive at ) . .
ffg) = (a + 5) log (2_)\> + 5 log 27 — 2b;. 27)

We are now ready to represefity;) in its dual form, observing first that we only need
consider maximization ovek; < 0 since f(y;) is a monaotonically decreasing function
(i.e., all tangent lines will have negative slope). Progegdorward, we have

i) = i — N — =1 i — = log2m — — 2
fyi) g}g{g[&yz ()] 37}%[2% (a+ 2) 07 — 5 log 2w 7] (28)
where we have used the monotonically increasing transfiloma; = —1/(2v;),~; > 0.

The attendant dual representatiorp6fv;; H) can then be obtained by exponentiating both
sides of (28) and substituting = w?,

(wi; H) = ma ! e wi e b e (29)
w;;H) = max | ——=exp | — xp ( —— | v ] -
p P 27 p 2 1% o Vi
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