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Abstract

Many practical methods for finding maximally sparse coedfitiexpansions involve solving a regres-
sion problem using a particular class of concave penaltgtfans. From a Bayesian perspective, this pro-
cess is equivalent to maximum a posteriori (MAP) estimatisimg a sparsity-inducing prior distribution
(Type | estimation). Using variational techniques, thistdbution can always be conveniently expressed
as a maximization over scaled Gaussian distributions nadeldlby a set of latent variables. Alternative
Bayesian algorithms, which operate in latent variable speeeraging this variational representation, lead
to sparse estimators reflecting posterior information beythe mode (Type Il estimation). Currently, it
is unclear how the underlying cost functions of Type | and éyprelate, nor what relevant theoretical
properties exist, especially with regard to Type Il. Herainommon set of auxiliary functions is used to
conveniently express both Type | and Type Il cost functionsither coefficient or latent variable space
facilitating direct comparisons. In coefficient space, dmalysis reveals that Type Il is exactly equivalent
to performing standard MAP estimation using a particulasslof dictionary- and noise-dependeran-
factorial coefficient priors. One prior (at least) from this class ni@ims several desirable advantages
over all possible Type | methods and utilizes a novel, nhomver approximation to thé, norm with
most, and in certain quantifiable conditions all, local miai smoothed away. Importantly, the global
minimum is always left unaltered unlike standdidnorm relaxations. This ensures that any appropriate

descent method is guaranteed to locate the maximally spatagon.
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Index Terms

sparse representations, sparse priors, latent variabdelsyainderdetermined inverse problems, Bayesian

learning, compressive sensing, source localization

I. INTRODUCTION

Here we will be concerned with the generative model
y=qx + ¢, Q)

where ® € R™™™ is a dictionary of unit/s-norm basis vectors or features,is a vector of unknown
coefficients we would like to estimatg,is the observed signal, ardrepresents noise or modeling errors
often assumed to be Gaussian. In many practical situatidtveseMarge numbers of features are present
relative to the signal dimension, implying > n, the problem of estimating is fundamentally ill-posed
or underdetermined.

A typical remedy for this indeterminacy is to apply a pendkym into the estimation process that
reflects prior, disambiguating assumptions absutThis leads to the canonical regularized regression

problem
() = argmin|ly — Sz + 1Y g(as), 2)

(2

which produces what is often calledTgpe | estimator denoted: ;). The first term in (2) enforces data
fit (consistent with a Gaussian noise model), while:;) is a fixed penalty on individual coefficients
and )\ is a trade-off parameter. For example, if we would like to gere the/, norm of x, favoring
minimum energy solutions, then we can chogse) = 2.

Recently, there has been a growing interest in finding sanwharacterized by a bi-partitioning of
coefficients, meaning most elements equal zero (or are veafl)srand a few large unrestricted values,

i.e., we are assuming the generativds a sparse vector. Such solutions can be obtained by using
9(2) = h (%), 3)

with h concave and non-decreasing [noo) [26], [27]. Roughly speaking, the ‘more concave' the

more sparse we expect global solutions of (2) to be. For el@ampth h(z) = z, we recover the
¢, norm penalty, which is not sparse at all, whit¢z) = /2 gives an¢; norm penalty, which is
well-known to produce ar with many elements (at least — n) equal to exactly zero [8], [29]. In

arguably the most extreme caseaximally sparsesolutions are said to occur usifgz) = Z(,) [2],
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which penalizes any deviation from zero uniformly, so onog deviation from zero exists, no additional
penalty is incurred (Section I-B will discuss this penaltymiore detail). Other common selections include
9(z) = |2[P,p € (0,2] [7], [21], [27] and g(2) = log(|z| + €),€ > 0 [6], [14], [15], [19].

If we define the distributions
p(x) oc exp [—2 Zijgm)] and p(y|z) o exp [—%Hy - @wuz] : (4)

then from a Bayesian perspective (2) is equivalent (via Bayke [1]) to solving thenaximum a posteriori

(MAP) estimation problem
(1) = argmaxp(|y) = arg max p(y|z)p(z). 5)

At this point, the Bayesian viewpoint has essentially @enothing new, since the posterior mode (or
maximum) equals the same estimatof;) we had before. However, what if we consider alternative
estimators based op(x|y) but sensitive to posterior information beyond the mode™ysiariational
methods [20], we will demonstrate that it is possible to d@yea broader class ofype Il estimators
that is particularly well-suited to finding maximally sparseefficients and includes (2), and therefore
(5), as a special case. We should stress at the outset thi, Bayesian methodology forms the starting
point and inspiration for many of the ideas forthcoming ifstpaper, ultimate justification of Type I
estimation techniques will be completely independent ¢f Bayesian formalism. Instead, our strategy is
to extract the underlying cost functions that emerge froim fibrmalism, and then analyze them abstractly
in the same manner that many others have analyzed (2). Thistisinlike the situation surrounding
the widespread use of thg norm for solving ill-posed inverse problems where spardetems are
desired. While the associated Type | algorithm can be in¢ep as performing MAP estimation using
a Laplacian prior, the rich theory quantifying performanceaantees is completely independent of any
putative association with the Laplacian distribution. Wdl végiturn to this topic in more detail in Section

VI.

A. Type Il Bayesian Estimation

The starting point for creating the Type |l estimator invawe-expressing the prigr(x) in terms of
a collection of non-negative latent variablgs2 [y, ...,V € R™. The latent variables dictate the

structure of the prior via

p(-’ﬂ)ZHp(%% p(s) = max N (233 0,7:) (), (6)

v
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where ¢(;) is a non-negative function and/(z; i, ) henceforth denotes a Gaussian owefvith
meanu and covarianc&.! In a machine learning context, (6) is commonly referred t@agriational
representation whose form is rooted in convex analysis aatitgl theory [20], and when the maximization
is dropped, provides a family of rigorous lower boundspd®) parameterized by [26], [33]. Note that
any priorp(z), constructed vigy(z;) = h (z?) as in (4), withh concave and non-decreasing [6nco),

is expressable using (6) given the appropriatf26]. Consequently, virtually all sparse priors (based on
sparse penalties) of interest can be decomposed in thisenadnaluding the popular Laplacian, Jeffreys,
Student’st, and generalized Gaussian priérs.

The utility of (6) comes in forming approximations to the pagtr p(x|y), or for practical reasons the
joint distributionp(x, y) = p(x|y), which in turn can lead to alternative sparse estimatorsekample,
while computing the posterior mean pfxz|y) is intractable, given an appropriate approximation, the
required integrals lead to analytic solutions. One prattaption is to form a Gaussian approximation
using (6) as follows.

For a fixed~, we obtain the approximate (unnormalized) prior
py(@) = [V (@50, %) (), 7

which leads to the approximate (normalized) posterior

e
P(@lY) = T el (@)dw

=N (@; pz, Xz (8)
with

p, = ToT (AT+ara”) 'y

S, = D—T&" (A +oT3") " &, ©)

whereT" £ diag[vy]. The key task then is to choose values for the latent variaplesich that, to the

extent possiblep(z|y) ~ N (z; u., X.). One useful criterion that leverages the variational repnéion

Here we are assuming continuity for simplicity, and so (6) will have a mamipmtherwise we require a supremum operator
instead.

2The functiony(~y;) can either be chosen constructively to produce some pfiey), or alternatively, for a given sparggz;),
the associated value gf(-y;) can be computed using convexity results [26]. However, technicallg ifesome ambiguity involved
here in thaty(v:) need not be unique. For example, consider a piar;) composed as a maximization over two zero-mean
Gaussian kernels with varianceg ando2. In this situation, the value ap(v;) need only be rigidly specificed ai(s7) and
©(03); at all other points its value is constrained but need not be unique. Megsr a natural, unique selection fipf-y;)
does exist based on the concave conjugaté fbm (3). We will accept this convention fas(+;) and discuss how it may be

computed below.
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involves solving
Yy 2 arguin [ plyle) () -, (@)] de
= argmgx/p(y@)HN(a:i;O,%)go(%)dm, (10)

where the absolute value can be conveniently removed byeviof the variational lower boundy{
independent terms are omitted). The idea behind (10) is teatvauld like to minimize the sum of the
misaligned mass between the true pige) with the approximate ong, (x), but only in regions where
the likelihoodp(y|x) is significant. Ifp(y|x) ~ 0, then we do not really care if the prior approximation
is poor, since the ultimate contribution of this error to thasterior distribution will be minimal (see [33,
Chapter 1V] for more details).

Once v(;y) is obtained, a commonly-accepted point estimateafois the posterior meam, with
Y =Yun-

2y = Tan®” (M + 0T ;@) ' y. (11)

Note that ifv(;;) is sparse, the corresponding coefficient estimatg) will be sparse as well, consistent
with our modeling assumptions. Type Il is sometimes refkrre asempirical Bayes since we are
(somewhat counterintuitively) using the data to empiticdearn’ a prior on x [1]. Relevant Type Il
examples include sparse Bayesian learning (SBL) [30], [33praatic relevance determination (ARD)

[25], [34], evidence maximization [28], and methods forrféag overcomplete dictionaries [17].

B. Preliminary Definitions and Problem Statement

To begin, the/y norm is defined as
lzllo £ " Zia, 20y [l (12)
=1

where the indicator functio,,.) takes a value of if x; = 0 and 1 otherwise® With regard to the
dictionary @, the sparkrepresents the smallest number of linearly dependent cdydB]. By definition
then,2 < sparK®) < n+1. As a special case, the condition sp@rk = n+ 1 is equivalent to the unique
representation property from [19], which states that ewarigset ofn columns is linearly independent.
Finally, we say thatb is overcompletef m > n.

Turning to the problem of obtaining sparse point estimaigsve start with the most straightforward

case where — 0. If ® is overcomplete, then we are presented with an underdetethinverse problem

3Note that||z||o, because it does not satisfy the required axioms, is not technicallyra. nor
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unless further assumptions are made. For example, if a ve€tonknown, generating coefficients,,
satisfies
[Zgenll0 < sparK®)/2, (13)

then no other solutiom: can exist such thay = ®x and||x|jo < ||@g|o [13], [18]. Furthermore, if
we assume suitable randomness on the nonzero entrigg.pthen this result also holds almost surely
under the alternative inequality

[@genf]0 < SPArK®) —1, (14)

which follows from [33, Lemma 2]. Given that (13) and/or (14)Idh, then recovering,., is tantamount

to solving
Tgen = To = argmin ||x|o, sty=ox. (15)
xT

This cost function encourages feasible solutiensith the largest possible number of elements identically
equal to zero and a few unrestricted coefficients; such swmisitare often referred to asaximally sparse
While ideal in spirit for many applications that require ekaparsity, finding the global minimum is
combinatorial (NP-hard [24]) and therefore often difficudt abtain in practice. Fortunately, many Type
| and Type Il methods represent viable surrogates that @eotriactable approximations that solve (15)
with high probability. In Sections 11l and IV we will examinée solution of (15) in much further detail.
For the remainder of this paper, wheneeet 0, we will assume that,, satisfies (13) or (14), and so
xo and x4, can be used interchangeably.

Although not the primary focus of our analysis herein, when# 0, things are decidedly more
nebulous. Because noise is present, we typically do notatxperepresenty exactly, suggesting the

relaxed optimization problem
2o(A) £ argmin [|ly — dz[|3 + Ao, (16)

where \ is a non-negative trade-off parameter balancing estimajiaality with sparsity, noting that in
the limit asA — 0, the problems (15) and (16) are equivalent (the limit mustdlen outside of the
minimization). Unfortunately, solving (16) is also NP-tanor is it clear how to select so as to best
approximater .

In this paper, we will consider the application of genergb@y and Type || methods to the solution of
(15) and/or (16) for the purpose of estimatimg.,. On the surface, the above developments suggest that
Type | methods are much more closely related to canonicakspacovery problems; however, we will

demonstrate that Type Il is quite suitable, if not advanbage as well. In general, most of the analytical
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results will address solutions to (15), which lends itsetfrendirectly to theoretical inquiries. Regardless,

the underlying ideas still carry over to the case where ni@ggesent.

C. Overview

In applying the many existing variants of Type | and Type llpiractice, the performance recovering
sparse generative coefficients can be highly varied becaliswnvergence issues and properties of
global and local minima. Moreover, the relationship betw&gpe | methods, which involve transparently
optimizing a cost function directly imc-space, and Type Il approaches, which effectively operase |
intuitively in ~-space, is very ambiguous. Additionally, it is not cleartwiype Il how to implement
extensions for handling alternative noise models or cairgs such as non-negativity, etc., because the
required integrals, e.g., (9) and (10), become intractabbeaddress all of these issues, this paper will
investigate the cost functions that emerge from latentatdei characterizations of sparse priors, with
a particular emphasis on special cases of Type Il that parfexceedingly well on sparse estimation
problems.

Starting in Section Il we will demonstrate a fundamental dyddetween Type | and Type |l sparse
estimation methods, showing that both can be expresseidthirr x-space ory-space with a common
underlying set of objective functions uniting all possibtethods. This perspective facilitates direct com-
parisons and demonstrates that, for all methods, optiiizat additional/alternative solution constraints
can be implemented in either space depending on the applic®&erhaps surprisingly, the analysis also
reveals that Type | is a special limiting case of Type Il, g that the broader Type Il may offer
an avenue for improvement.

Because Type | has been thoroughly analyzed by others iniatywanf contexts, we focus the next
two sections on properties of Type Il with respect to findingximeally sparse solutions. Working in
coefficient space, Type Il is shown to be exactly equivalenstemdard MAP estimation using a large
class of potentially feature- and noise-dependeat-factorial coefficient priors (meaning a prior which
cannot be expressed in the factored foptx) = [, p(x;)). This is unlike Type I, which is always
restricted to factorial priors independent afand ®. In Section Ill we demonstrate that one prior (at
least) from this class maintains several desirable adgastaver all possible Type | methods in finding
maximally sparse solutions. In particular, it utilizes avalp non-convex approximation to thig norm
with most local minima smoothed away; importantly, the gllolminimum is left unaltered. This prior can
be viewed in some sense as a dual form of sparse Bayesiaing48BL) [30] or automatic relevance
determination (ARD) [25].
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Necessary conditions for local minima are derived and degdigeometrically in Section IV providing
insight into the best- and worst-case performance. Aduktlig, we describe how the distribution of non-
zero generating coefficients affects the sparse recovetylgrg defining a limited regime whereby Type
Il is unequivocally superior to any possible Type | approactd guaranteed to find maximally sparse
solutions using a simple iterative algorithm.

Section V contains empirical experiments comparing an tieraeweighted/s-norm implementation
of SBL (Type 1) with basis pursuit (BP) and orthogonal matghipursuit (OMP) (Type ) recovering
sparse coefficients as the dictionary size, sparsity lewel caefficient distribution are varied. In all cases,
Type Il is significantly more successful than Type |, even ia torst-case regime for Type Il. Finally,
Section VI has concluding remarks and provides an abstraspeetive on the success of Type Il that
deviates somewhat from the underlying Bayesian model. Albfs are contained in the Appendix so as
not to disrupt the flow of the main text.

Overall, Type | methods, especially when viewed as formspafrse penalized regression, are much
more prevalent in the statistics and signal processing aamitgnin the context of sparse linear inverse
problems. By demonstrating a fundamental duality with Tipeethods as well as some of the advantages
of the associated broader class of underlying cost funstiore hope to inspire alternative means of
estimating sparse solutions. Portions of this work havevipusly appeared in conference proceedings
[34], [37], [38].

II. DUALITY AND UNIFICATION

Previously we have described how Type | methods minimizest ftmction inxz-space while Type I
approaches operate fp-space. This distinction presently makes direct compasigtifiicult. However,
this section will demonstrate a fundamental duality betw&gpe | and Type Il. In particular, we will
show how the cost functions associated with both approaciiede expressed eitheranspace or iny-
space. This duality has several important consequences.iFfeilitates straightforward comparisons of
the underlying cost functions and elucidates actual difiees with respect to sparse estimation problems.
Ultimately it will contribute substantial clarity regarti exactly how the less transparent Type |l operates,
leading to a variety of theoretical results linking Type Idafype II.

Secondly, it naturally allows us to impose constraints ihexity-space orc-space, depending on the
application. For example, in hon-negative sparse codirmgicaiions, we require the:-space constraint
x > 0 [4]. In contrast, to implement certain iterative reweigigtioptimization schemes designed to avoid

local minima or allow for soft bounds om, we can include minimum variance constraintsirspace,
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i.e.,v > ¢, as described in [7], [35]. Finally, this duality suggest®iative means of constructing cost
functions and algorithms for promoting sparsity. Otherddfén, such as learning trade-off parameters and
quantifying sparsity with alternative data-fit terms, arsatissed in [36].

To begin, we will first re-express the Type | objective from {Byan equivalenty-space representation
in Section 1I-A. A byproduct of this analysis will be the denstration that the Type | cost function is

a special limiting case of Type Il. Later, Section II-B will gt Type Il cost from (10) irc-space.

A. Cost Functions iny-Space

Computing the integral from (10), which is a standard coutioh of Gaussians for which analytic

solutions exist, and then applying-e2 log(-) transformation gives the Type Il cost function4aspace

L) = —210g/p(y\w)/\f(w; 0,T)p(v)dz = y" S, 'y +log [Sy + > F(7), (17)
=1
where
f(vi) 2 —2log (7). (18)
and
¥, 2 A+ oTo”. (19)

HereX, represents the covariance of the dateonditioned on the latent variablgs(sometimes referred
to as hyperparameters) after the unknown coefficiantaave been integrated out. The function is then
minimized to find somey(;;) and the point estimate far ;) is subsequently obtained via (11). Note
that the data-dependent term in (17) can be shown to be canvexwhile the log-det term is concave
in v, and so in generad:?m () may be multi-modal.

In contrast, Type | coefficient estimates;, are obtained by minimizing
Ly (x) £ —2logp(ylz)p(e) = |y — D3+ 1) gla:), (20)
with ¢ defined via (3). These estimates can be obtained from an anslagaiimization procedure in

~-space as follows:

Theorem 1:Given the~-space cost function

L) = y'Sly + Z faoy (i) (21)

=1
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10

with iy (i) £ logvi + f(7), let () £ argminysg E?I)('y). Then the global minimum of (20},
satisfies

—1 .
x() =T @" (A + L' d") "y, Ty = diag[y(p] - (22)

The correspondence extends to local minima as wellis a local minimum of (20) iffy, is a local

minimum of (21).

So Type | methods can always be interpreted as minimizing ttpe Ti-like cost functionﬁ?l)(fy) in

~v-space, albeit without the log-det term in (17), and with #ipalar selection forf, i.e., f(y 4
Several points are worth mentioning with respect to this lte§irst, if g is known, as opposed tH

directly, thenf;) can be computed using the concave conjugate [2, Section B@]:Og(\m). When

composed with the reciprocal functiop -, ! this gives

faoy(vi) = mzlgvi — p(2). (23)

For example, using(z) = |z|P gives the/,-quasi-norm penalized minimization problem

The analogous problem iy-space, using (23) to compuf@l (vi), becomes
Y1) = arg mp}%n yTXlzjly + Z (25)

Secondly, when viewed in-space, it is straightforward to add variance constraiot@arny Type |
objective where appropriate, e.g., minimiz’%) (7) with ~; € [e,00) for all 4. If € is gradually reduced
during optimization, we have observed that local minimaq%l)> () can often be avoided. This notion
is very similar in spirit to the algorithm from [7] yet moreraightforward when viewed iny-space. In
general, convergence proofs, complementary analysesltrdative optimization strategies are possible
using this perspective. It also provides a particularlyfulseoute for estimating the trade-off parameter
A, which as a noise variance, is more naturally handled imttgpace of variances [36].

Finally, the~-space cost functionﬁ?]) () can be interpreted as a special (limiting) case of the Type

Il cost function (17), which leads to the following:

“Alternatively, it can equivalently be viewed as minimizing a Type Il-like tchction with log |T'| = >, log~; replacing
log |2y].
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11

Corollary 1: Let x(;) denote Type | coefficients obtained by minimizing (20) or (2dh A and f
set to some arbitran and f. Additionally, let :c(O‘H) denote the coefficients obtained by implementing
the Type Il procedure with := o~'X and f(-) := alog[a(:)] + af [a(-)]. Thenz(;) = limq—.c (i)

In conclusion then, by choosing the appropriate sparse, @il therefore the functiofi, any Type |
solution can be viewed as a limiting case of Type II. This ataplies that the less commonly adopted
Type Il framework offers a wider variety of potential cosnfitions, relative to Type |, for tackling sparse
estimation problems. Consequently, as we will argue inrlagetions, a selection from this larger set

may possibly lead to improved performance.

B. Cost Functions inc-Space

Borrowing ideas from the previous section, we now demoteteasimple means of computing

directly in x-space.

Theorem 2:Define thex-space cost function

L (x) 2 |y —ox|5 + g (), (26)
with penalty
2
N . €x;
gun(@) £ min > 7t +log || + Zf(%-). (27)

The Type Il coefficients computed via (11) then satisfy;) = arg ming EfH)(a:). The correspondence
extends to local minima as well given additional assumjstiaee Appendix)x., is a local minimum of

(26) iff v, is a local minimum of (17).

Consequently, Type Il solutions can be obtained by miningiza penalized regression problem similar
in form to Type I. Additionally, a natural noiseless redoctiexists leading to a constrained optimization

problem, analogous to Type | methods. When- 0, then Type Il equivalently solves
x(rr) = /1\11}1(1) arg main gun(xz), sty=ox. (28)

The only reason we retain the limit, as opposed to merelyrggiti= 0 in g(;7)(x), is because solutions
with ||z||o < n will effectively involve taking the log of zero when minimig over~, which is undefined.
Using the limit in this manner (outside of the minimizatianjoids this complication, although practical

implementations for solving (28) are well-behaved and Istalith A = 0 [35].
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12

From an optimization standpoint, both (26) and (28) can gdsil supplemented with additional
constraints, e.g.x > 0, facilitating the extension of Type II-like methods to a rhuwider range of
applications (e.g., see [35]). Additionally, when viewedai-space, it is very natural to consider using
different values for), e.g., A\; and \q, given the two instances that appear in (26) and implicitly i
(28). In other words, the value of multiplying g;; () could be set to some arbitraty; while the
value embedded ix, could be set ta\,. For example, in (28) where it is assumed that— 0, we
could easily allow a nonzera, (replacingA — 0 with X, inside of ¥,). While beyond the scope of
this paper, when using iterative reweightédminimization algorithms to solve (26) or (28), adjusting
this Ao can potentially improve performance substantially [3%}ikar to thee factor in the reweighting
method of Cands et al. [6]. Note that it is only when we analyze Type lldrspace (as a standard form
of penalized regression) that manipulatingn this way makes any sense; in the original hierarchical
Bayesian model it is counterintuitive to maintain two vaue A\. This also opens the door to using a

different dictionary for constructing; (). This issue will be taken up again in Section VI.

[11. ANALYSIS OF THETYPE Il COSTFUNCTION IN x-SPACE

The distinguishing factor of Type Il methods is the log-detrtén (17) and (27); the other regularization
term based ory(y;) is effectively present in Type | as well (see Section II-A) anthen mapped into
x-space, has been analyzed extensively in this context Th][10], [13], [27], [32]. Consequently, we
will concentrate our attention here on the simple case wif¢sg) = 0 and flesh out the corresponding
characteristics of the underlying Type Il cost function anspace and examine the relationship with
popular Type | methods. Additionally, local minimum anagsin Section IV suggest that the choice
f(vi) = 0 is particularly useful when maximal sparsity is concernglternative choices forf(y;) in the

context of sparse recovery are examined in [37], furthetifjing the selectionf(;) = 0.

A. General Properties of the Type Il Penalfy;(x)

It is well-know that concave, non-decreasing functions i toefficient magnitudes favor sparse
solutions [27]. We now demonstrate th@t(x) is such a penalty, meaning;;)(x) = h(|x|), where

|| £ [|z1], ..., ||| andb is a concave, non-decreasing function|f.

Theorem 3:Whenf(v;) = 0, g(;)(z) is a concave, non-decreasing functiorzef (sparsity-inducing).
Additionally, every local minimum of (26) or (28) is achieveat a solution with at most. nonzero

elements, regardless of
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In the noiseless case, such solutiansvith ||z||o < n are referred to abasic feasible solutionBFS).
The second point in Theorem 3 has also been shown for the analdype 11 cost function directly in
~-space [33], meaning local minima can be achieved with at mo®nzero elements of, but the result

is much less transparent. Theorem 3 also holds for Apy) that is concave and non-decreasing. As
an aside, it also implies that globally convergent, rewtsdl; minimization is possible for optimizing
L‘fn)(m) [35], assuming again that(+;) that is concave and non-decreasing.

Regarding global minima we have the following result:

Theorem 4:Given spark®) = n+ 1, assume that there exists at least one feasible solutign=tcbx
with [|x||o < n. Then the set of coefficient vectors that globally minimize)(@&uals the set of coefficient

vectors that globally minimize (28) witlf(~;) = 0, Vi.

Consequently the global minimum of (28) will always corresg with the global minimum of (15).
(Theorem 4 actually holds for any that is bounded.)

Thus far we have not provided any reason why the Type Il pengfty(x) has any direct advantage
over Type . In fact, both Theorems 3 and 4 are also triviallistiad by replacingg ;) (z) with the
canonical sparse penaltyr|o, which is a special case of Type |I. However, several factisgngjuish
g(r)(x) in the context of sparse approximation.

First, g(;7)(x) is non-separable meaningg () # >_; g (xi). Equivalently, the implicit prior
distribution onz given byp;p(x) o exp[—%g(n)(m)], is non-factorial Additionally, unlike traditional
Type | procedures (e.g., Lasso, ridge regression, etcg,ghbnalty is explicitly dependent on both the
dictionary® and potentially the regularization paramekefassuming we only use a singleas discussed
above). The only exception occurs whéh® = I; hereg ;) (z) factors and can be expressed in closed
form independently ofp, althoughX-dependency remains.

In general, the/; norm is the optimal or tightestonvexrelaxation of thefy norm, and therefore it
is commonly used leading to the Lasso and relateghenalty algorithms [29]. However, thg norm
need not be the best relaxation in general. In Sections IIkB BI-C we will demonstrate that the
non-separable)-dependenty ;) (x) provides a tighter, albeiton-convexapproximation that promotes
greater sparsity thafjz||; while conveniently producing many fewer local minima thahen using
lz||o directly. We also show that, in certain settings, no segarabindependent regularization term can

achieve similar results. Consequently, the widely usedilfaof ¢, quasi-norms, i.e.|z|} = Y, |zi[?,
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p < 1[9], or the Gaussian entropy measuy¢ log |x;| based on the Jeffreys prior [15] provably fail in
this regard.

Finally, at a superficial level, thé-dependency ofy;)(z) leads to scale-invariant solutions in the
following sense. If we rescal® with a diagonal matrixD, i.e., ® — ®D, then the optimal solution
becomesz;;) — Dz ). In contrast, when minimizing thé; norm, such a rescaling leads to a
completely different solution which requires solving artiesly new convex program; there is no simple

linear relationship between the solutions.

B. Benefits of a Non-Separable Penalty

The benefits of the non-separable naturegygf)(x) are most pronounced in the overcomplete case,
meaning there are more dictionary columns than dimensibiiseosignaly. In a noiseless setting (with
A — 0), we can explicitly quantify the potential of this propeny g ;1) (x). As discussed previously,
the global minimum of (28) will equat,, the maximally sparse solution to (15), assuming the lagter
unique. The real distinction then is regarding the numbeooél minimum. In this capacity;(x) is

superior to any possible separable variant:

Theorem 5:In the limit asA — 0 and assuming spaf®) = n + 1, no separablepenalty g(x) =

> 9(x;) exists such that corresponding Type | optimization problem
ménZg(xi) sty=ox (29)

is: (i) Always globally minimized by a maximally sparse sidun xo and, (i) Has fewer local minima

than when solving (28).

Note that the spark condition is merely included to simptifie proof (see the Appendix); Theorem
5 can be extended with additional effort to include otherrlspalues® In general, Theorem 5 speaks
directly to the potential limitations of restricting ondise factorial priors (or equivalently separable
penalties) when maximal sparsity is paramount. As statedligusly, use of the separable norm has
traditionally been advocated because it represents theetfy convex approximation to thg norm.
However, a viable alternative relaxation is to replace thevexity requirement with condition (i) from

above (i.e., matching global minimum) and then ask whatéssthoothest approximation to tig norm,

5We can also always add an arbitrarily small amount of randomnessytdietionary to satisfy the spark constraint.
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separable or not, consistent with this assumption. The Typaethod discussed above provides very
substantial smoothing at the expense of convexity, yet tirbe implemented with tractable, provably
convergent updates [35].

While generally difficult to visualize, in restricted siti@is it is possible to explicitly illustrate the type
of smoothing over local minima that is possible using nopesable penalties. For example, consider
the case wheren = n + 1 and spark®) = m, implying that ® has a null-space dimension of one.
Consequently, any feasible solutiongo= ®x can be expressed as= x( + av, wherev € null(®), «
is any real-valued scalar, ang is the maximally sparse solution. We can now plot any peraltgtion
g(x) over the 1D feasible region af-space as a function af to view the local minima profile.

In this simplified situation, the maximum number of local mi@i equals: + 1, since removing any
column from® produces a BFS. However, fitey||o < n, then not all of these BFS can be unique. For
example, if||zo||o = 1, then only two BFS will be unique: one solution that includéscalumns of ®
not used byr,, and then the solutiom, itself. In contrast, if||z¢|lo = n— 1, then there will ben unique
BFS (because: will have two zero-valued elements and removing either @ased dictionary column
will lead to the same BFS). Therefore, the local minima problemxacerbated dge||o becomes larger,
consistent with expectations. Ideally then, a non-sepanabnalty will provide additional smoothing in
this regime.

We demonstrate these ideas with two test cases, both of vilidive the same(0 x 11 dictionary
® generated with iid unit Gaussian entries. In the first case aveputey = dx(, wherex is a sparse
vector with||zy||o = 1; the single nonzero element is drawn from a unit Gaussiamur€ify (eft) displays
the plots of two example penalties in the feasible regiog ef ®x: (i) the non-separable Type Il penalty
g (x), and (i) the conventional penalty(z) = >, |z;|’, p = 0.01. The later is a separable penalty
that converges to the canonic& norm whenp — 0. From the figure, we observe that, while both
penalties peak at the maximally sparse solutignthe Type | penalty has a second, small local minima
as well located atx =~ 2. While the Type Il penalty is unimodal, its smoothing benefite not very
pronounced in this situation.

In the second case, we repeat the above With||o = 9. This is the largest number of nonzeros such
that a unique, maximally sparse solution still exists (wiigh probability by virtue of (14)). Hence it
is the most difficult sparse recovery problem to solve, withubtque local minima per the discussion
above. Figure 1r{ght) shows the results. Now the Type | penalty reflects all 10 lonadima (9 are
shown), while Type Il demonstrates dramatic smoothing. [@vtiie ¢, norm (which is equivalent to the

assumptiorp = 1) also smooths out local minima, the global minimum may besdilaaway from the
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maximally sparse solution in many situations, unlike Tyb@hich provides a non-convex approximation

with its global minimum anchored at;. We will revisit this issue in much more detail in Section V.

0.9
0.8r
0.7
0.6
0.5
0.4r

penalty value
penalty value

0.3r

0.2k —Type Il

ol ""Zi IIHO.O]

Fig. 1. Plots of the Type Il penalty (normalized) across the feasible megggarameterized hy. A separable penalty given by
g(x) o< Y, |7i|”%" = ||z||o is included for comparison. Both approximations to therorm retain the correct global minimum,

but only the Type Il penalty smooths out local minini&ft ||zo|lo = 1 (simple case)Right ||zo|lo = 9 (hard case).

In general, the Achilles heel of standard, separable pgesaType |) is that if we want to retain the
global minimum of (15), we require a highly concave penaltyeachz;. However, this implies thall
BFS will form local minima of the penalty function constrath&o the feasible region (see the proof of
Theorem 5 in the Appendix). This is a very undesirable propsitige there are on the order ¢f')
unique BFS with||x||p = n (assuming spafk) = n+ 1), which is not very sparse. In the example from
Figure 1 fight) there are 10 such solutions and hence 10 local minima to yipe T cost. We would
really like to find degenerateBFS, where||z||o is strictly less tham. Such solutions are exceedingly
rare and difficult to find, yet it is these very solutions that t@nfavored by the proper construction of
highly concave, non-separable penalties.

A simple example serves to illustrate how a non-separabialpecan remove non-degenerate BFS that
act as local minima. Consider the penalty functigiiz) = min(| (|0, n), whereho(z) is equivalent to

taking thefy norm of the largest (in magnitude) elements ofr; this leads to the optimization problem
min ho(x), S.t.y= dx. (30)
T

While the global minimum remains aty, all local minima occurring at non-degenerate BFS have been
effectively removed. In other words, at any feasible solutc, with n nonzero entries, we can always

add a small componentv € null(®) and maintain feasibility without increasirtg(x), sinceho(x) can
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never be greater tham Therefore, we are free to move from BFS to BFS without increasifz). Also,
the rare degenerate BFS that do remain, even if suboptimak@arser by definition. Therefore, locally
minimizing the new problem (30) is clearly superior to Idgahinimizing (15). This is possible because
we have replaced the troublesome separable pefalty with the non-separable surrogdjg(x).

This notion is illustrated with a simple graphic in Figure I2f{), which compares thé, norm with
ho(x) in a 1D feasible region parameterized bywith the same setup as in Figure fdgft). In this
situation, all local minima are removed by the simple, nepasable ‘truncated?, norm ho(x).

To create effective sparsity penalties in general, it may b optimal to apply concave, sparsity-
inducing functions directly to the individual coefficientsr (latent variables) in an elementwise fashion
(separable), which is characteristic of all Type | methdrksther, it can be useful to map the coefficients to
a lower-dimensional space first. The latter operation, wisobffiectively what Type 1l accomplishes, then
necessitates that the resulting penalty be non-separatiie original full-dimensional space. For example,
ho(x) first maps to am-dimensional space (the largest coefficients of), before applying thé, norm.

Of coursehy(x) is not viable practically since there is no gradient infotima or curvature, rendering
minimization intractable. However, a simple alternatiséj(x), which applies the, quasi-norm (with

0 < p < 1) to then largest elements of. Figure 2 (ight) comparesh,(x) with direct application of
|lz|b, usingp = 0.01 and the same experimental setup as before. Notice that thetsimg of local
minima closely mimics that of Type II. While this may on therfage be a surprising result, analysis
of Type Il in «-space provides strong intuitive evidence for why this $ticae the case; however, for

space considerations we defer this analysis to a futureiqaiian.

C. Benefits of\ dependency

To briefly explore the potential benefits afdependency in the Type Il penalty;;)(x), we adopt the
simplifying assumptionb” ® = I. In this special caseyr)(x) actually becomes separable and can be

computed in closed form via

2 xX;
g () = ZQ(II) () o Z i + log <2/\ + 2} + |wi|y /22 + 4/\> : (31)
i T |z /2?4 AN

which is independent ob. A plot of g1 (x;) is shown in Figure 3 below. Th& dependency of (31)

contributes some desirable properties to the Type Il casttfan. Before giving the main result, we state
thatg(x) is astrictly concaveunction of |x| if g(z) = h(|z|) andhlaz+(1—a)y] > ah(xz)+(1—a)h(y)
for all « € (0,1) andz,y € [0,00), = # y. This leads to the following:
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Fig. 2. Example smoothing of two hypothetical non-separable penaltis.ho(x) and thel, norm vs.«. 10 distinct local
minima are present with th& norm (9 are shown), but only a single degenerate BFS. Howeverrthcation’ of thelp norm
that characterize§o(x) has removed all local minima; the global minimum remains unalteRéght b, (x) and |||/} vs. ¢,

p = 0.01 (the Type Il plot from Figure 1r{ght) is also included for comparison). This represents a more practicakaparable
approximation that retains slope information pointing towards the globatisolthat could, at least in principle, be used for

optimization purposes.

Theorem 6:Assuming®” ® = I, then the following hold:

1) The cost function (26) has no (non-global) local minima.

2) g(rry(z:) is a non-decreasing and strictly concave function|off, and so provides a tighter
approximation to||x||o than ||z||; (see Appendix for more details).

3) No fixed, A-independent penalty can satisfy both of the above praserti

4) Direct minimization of (15) ha8™ local minima; any other strictly concavg;independent penalty

function can potentially have this many local minima as wedpending onb andy.

Intuitively, when X is small, the Gaussian likelihood term (or quadratic datgefitn) is highly restric-
tive, constraining most of its relative mass to a very lagadi region ofx-space. Therefore, a tighter
prior/penalty more closely resembling tlig norm can be used without the risk of local minima, which
occur when the spines of a sparse prior overlap non-neggigibrtions of the likelihood (see Figure 6 in
[30] for a good 2D visual of a sparse prior with charactetisgpines running along the coordinate axes).
In the limit as\ — 0, g(;7)(x) converges to a scaled proxy of thg norm, yet no local minimum exist

because the likelihood in this case only permits a singlsifiéa solution witha = ®”y. To see this,
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consider re-expressing (31) as

2 €Ty
gan(@) = gun () <y 2 +) log <2)\ + 22+ |zl /a2 + 4)\> : (32)
: i | R AN T

With A — 0, the first summation converges fi&||o while the second reduces }0, log |z;|, ignoring an

irrelevant scale factor and a constant. Sometimes refeorad Gaussian entropy, this log-based factor can
then be related to th& norm via||z||o = limp_o >, [z;|? andlim,_ ]19 > (P = 1) =57, log |;].

In contrast, when is large, the likelihood is less constrained and a loosergmeaning a less concave
penalty function) is required to avoid local minima troudlevhich will arise whenever the now relatively
diffuse likelihood intersects the sharp spines of a higipigrse prior. In this situatiog ;) (x) converges
to a scaled version of thg norm. The Type Il penalty naturally handles this transiti@cdming sparser
as A decreases and vice versa.

Of course as we alluded to previously, we can potentialigtttee \ embedded iy ;) () as a separate
parameter; in general there is no guarantee that keepingrthmstances ol equal is necessarily optimal.
But the analysis here does motivate the point that varyiegctincavity of the penalty function to reflect,
for example, differing noise levels can expand the utilifynon-convex approximations.

In summary, use of thé; norm in place ofg ;) () also yields no local minima; however, it is a
much looser approximation of th norm and penalizes coefficients linearly unligg ) (x). As a final
point of comparison, the actual coefficient estimate obthifilem minimizing (26) whend”® = I is
exactly equivalent to the non-negative garrote estimdiat has been advocated for wavelet shrinkage
[16], [33].
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Fig. 3. 1D example of the Type Il penalty (normalized) assun®igb = I. The¢; and/, norms are included for comparison.
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IV. TYPEII LoCAL MINIMA CONDITIONS

From Section IlI-A we know that the global minimum of the Typetist function (whether in:-space
or «-space) coincides with the global solution to (15) wh&n,;) = 0 and A — 0. Additionally, we
have shown that Type Il provides a way to smooth local minimeated by direct use of th& norm
(or any close, separable approximation). However, it resainclear what determines when and where
local minima will occur or conditions whereby they are alhmeved. From Theorem 3 we know that
every local minimum is achieved with at mastnonzero elements, i.e., a basic feasible solution (BFS).
Assuming\ — 0 (noiseless case) and sp&b = n + 1, this provides an easy way to bound the possible

number of local minima:

. #ofTypell _ #0fBFSto _ {(m—l)le’(m)}. (33)
n n

Local Minima y=dx

N

Any Type | (separable) method whose global solution alwadpbajly minimizes (15) necessarily will
achieve the upper bound (see the proof of Theorem 5 in the Afipermowever, with Type Il this need
not be the case. In fact, most BFS will not end up being localiman(e.g., see Figure Ti¢ht)). As
we will show below, in some cases it is even possible to aehtee ideal lower bound, i.e., a single
minima that is globally optimal. As before, we will focus oattention to the case whergy;) = 0.

Local minima analyses for arbitrarf(~;) are considered in [33].

A. Necessary Conditions for Local Minima

Although we cannot remove all non-degenerate local minimalli situations and still retain compu-
tational tractability, it is possible to remove many of thegonoviding some measure of approximation to
(30). This is effectively what is accomplished using Typedlveill be subsequently argued. Specifically,
we will derive necessary conditions required for a non-degate BFS to represent a local minimum to
L‘fn)(m) (assuming\ — 0). We will then show that these conditions are oftest satisfied, implying
that there are potentially many fewer local minima. Thusallycminimizing LfH)(m) comes closer to
(locally) minimizing (30) than traditional Type | methodshich in turn, is closer to globally minimizing
lllo-

Suppose that we have found a (nhon-degenerate) BF&d we would like to assess whether or not it
is a local minimum to the Type Il cost function with— 0. For convenience, let denote the: nonzero
elements ofz, and ® the associated columns @f (therefore,y = &z andz = ®~ly). Intuitively, it
would seem likely that if we are not at a true local minimurrerttthere must exist at least one additional

column of ® not in @, e.g., someu, that is appropriately aligned with or in some respect simtb
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y. Moreover, the significance of this potential alignment mostassessed relative fo. For example,

it seems plausible (desirable) thatuf ~ y and all columns of® are not close tay, then possibly
(hopefully) we are not at a local minimum and a sparser smutan be descended upon by including
u.

A useful metric for comparison is realized when we decompesgith respect to®, which forms a
basis inR™ under the assumption that sp&® = n + 1. For example, we may form the decomposition
u = v, whered is a vector of coefficients analogous # As will be shown below, the similarity
required betweeru and y (needed for establishing the existence of a local minimuray rthen be
realized by comparing the respective coefficieitandv. In more familiar terms, this is analogous to
suggesting that similar signals have similar Fourier esjars. Loosely, we may expect thatifis ‘close
enough’ toz, thenw is sufficiently close tay (relative to all other columns ifﬁ) such that we are not

at a local minimum. We formalize this idea via the followingsult:

Theorem 7:Let ¢ satisfy spark®) = n + 1 and letx, represent a solution vector withe. || = n
entries such that = Efly. Let &/ denote the set ofn — n columns of® not included in® andV the

set of coefficients given b){% o= lu,uc u}. Thenx, is not a local minimum of (28) if

i

1 >0 (34)

for somev € V.

This theorem provides a useful picture of what is requireddoal minima to exist and more importantly,
why many (possibly most) BFS are not local minima. Moreovieeré are several convenient ways in
which we can interpret this result to accommodate a morativeuperspective.

In general, if the sign patterns @f andx tend to align, then the left-hand-side of (34) will likely be
positive and we cannot be at a local minimum. For illustratmrposes, in the extreme instance where
the sign patterns match exactly, this will necessarily lgedase. This special situation can be understood
geometrically as follows. Consider the convex cone corgtidivia the columns of the matrikS, where
S £ diag(sign(z)). This cone is equivalent to the set vectors which can be foragegositive linear
combinations of the columns absS, i.e., the set{z 1z =®Sw,w € R", w > 0}. By definition, this
cone will necessarily contain the sigrgal However, if this cone contains any other basis veeiar U,
then the sign pattern of the correspondingyill match  and we cannot be at a local minimum via (34).

By symmetry arguments, the same is true for anin the convex cone formed by<T>S. The simple 2D
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example shown in Figure 4 helps to illustrate this point.

Z2

T

Fig. 4. 2D example with & x 3 dictionary ® (i.e.,» = 2 andm = 3) and a basic feasible solution using the columns
¢ = [#1 ¢2]. The shaded areas represent the cone (and its reflection aboutighg described above. In this simple case,
¢1 and ¢ divide x-space into four quadrants. The shaded regions include the quaniratainingy and its reflection about
zero. Left In this caseju = ¢3 penetrates the shaded region, and so we satisfy the conditions of Wh&orensuring that
this configuration doesot represent a local minima of Type II. But doesrepresent a local minimum of any Type | method
constrained to match the global minimum of thenorm. Right Now u is outside of the cone (and cannot be used to form a

tighter cone abouyy), so this situation does represent a minimizing basic feasible solution fue My

Alternatively, we can cast this geometric perspective imieof relative cone sizes. For example, let
C represent the convex cone, and its reflection, forme(ﬁ)lsy Then we are not at a local minimum
to L{;; () if there exists a second convex coge formed from a subset of columns df such that
ye C' cC,ie.,C is atighter cone containing. In Figure 4 (eft), we obtain a tighter cone aboyt
by replacing¢; with w.

Of course we must emphasize that these geometric condidiensuchweaker than (34), e.g., if all
u € Y arenotin C, we still may not be at a local minimum. In fact, for a local mimm to occur, all

u must be reasonably far from this cone such that, , “f%’ <0,YveV.

z

B. Conditions for Removing All Local Minima

This section describes conditions, based on the relativeninatgs of the nonzero elements din,
such that all (non-global) local minima of (28) are removedving a unique global solution that equals
xo. The core idea is that as these nonzero magnitudes becomnlg sigted, there are increasingly fewer
local minima until eventually all are smoothed away. In cast, we argue in Section IV-C that when

all the nonzero coefficients have equal magnitudes, ob@ininis more difficult because of more local
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minima. However, even in this worst-case scenario we detretesempirically in Section V that Type

Il still outperforms widely used Type | algorithms.

Theorem 8:Let z(;) denote the-th largest coefficient magnitude af and assume spafk) = n + 1.
Then there exists a set af — 2 scaling constants; € (0, 1] (i.e., strictly greater than zero) such that,

for any y = ®z’ generated with|z'|lo < n and
x/(i+1) < l/Z'J:‘/(i) i=1,...,n—2, (35)

the problem (28) has a unique minimum;; such thate;;y = z’. Moreover,z’ will equal x,, the

unique maximally sparse solution.

This result is obviously restrictive in the sense that thdial@ary-dependent constants significantly
confine the class of signalg that we may represent. Moreover, we have not provided anyervent
means of computing what the different scaling constantdtridg. But Theorem 8 nonetheless solidifies
the notion that the Type Il cost function is especially cdpaif recovering coefficients of different scales
(and it must still find all nonzero elements no matter how smathe of them may be). Additionally,
we have specified conditions whereby we will find the unigigeeven when the sparsity is as large as
|lzo|| = n—1, provided we use an appropriate, globally-convergentréttyo such as iterative reweighted
£1 minimization [35].

It is important to stress that this result specifies sufficiemtditions for removing all suboptimal local
minima from the Type Il cost function, but these conditiome Ay no means necessary for removing
most/all influential local minima. In practice, locally mmizing (28) performs quite well even when the
coefficients are not highly scaled (see Section V). Moreover,can always initialize at the minimum
£1-norm solution (best convex approximation), and then pmsgrfrom there. In fact, when optimized
via an iterative reweighted, minimization technique, Theorem 8 can be leveraged to shatviditally
minimizing (28) can never do worse than the miniméysolution and that, for any dictionary and sparsity
profile, there will always be cases where it does better (itiqdar, when highly scaled coefficients are
present) [35]. This is true even for dictionaries with arditiy bad coherence properties, e.¢. ¢; ~ 1
for all i # j, where¢; and ¢, are thei-th andj-th columns of® respectively [36].

In contrast, no possible Type | method satisfies a result coabfgto Theorem 8:

Theorem 9:For any set ofn — 2 nonzero scaling constants there will always exist a dietigr® and
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a set of ordered coefficients’, consistent with the stipulations of Theorem 8, such that possible
Type | cost function, giverd and the signaly = ®’, will have multiple local minima and/or a global

minimum that is not maximally sparse.

Because this again holds regardless of coherence betwegondry columns, it can then be used to
show that, for any signa}, there will always be poorly structured dictionaries suchttType Il succeeds
but any Type | method fails [36].

At this point, it may be unclear what probability distribotis are likely to produce coefficient magni-
tudes that satisfy the conditions of Theorem 8. It turns oat the Jeffreys prior, given by(x) « 1/x,
is appropriate for this task. This distribution has the umiguoperty that the probability mass assigned

to any given scaling is equal. More explicitly, for ary> 1,
Prob(x € [si, 5“‘1]) x log(s) VieZ. (36)

For example, the probability that is betweenl and 10 equals the probability that it lies betweén
and 100 or betweer0.01 and0.1. Because this is an improper density, we define an approxidedfecys

prior with range parametet € (0, 1). Specifically, we say that ~ J(a) if

= og(a)r for z € [a,1/a]. (37)

p(x)

With this definition in mind, we present the following result.

Theorem 10:For a given® that satisfies spaf®) = n + 1, let y be generated by = ®’, where
|2’|lo < n with nonzero magnitudes drawn iid froth(a). Then asa approaches zero, the probability

that we obtain anc’ such that the conditions of Theorem 8 are satisfied approaatigs u

While the proof is deferred to [33], on a conceptual levektrésult can be understood by considering
the distribution of order statistics. For example, giver 1 samples from a uniform distribution between
zero and somé, with probability approaching one, the distance betweenktth and(k + 1)-th order
statistic can be made arbitrarily large @snoves towards infinity. Likewise, with thé(a) distribution,
the relative scaling between order statistics can be isegavithout bound as decreases towards zero,
leading to the stated result.

In conclusion, we have shown that a simple, (approximatejiniormative Jeffreys prior leads to

sparse inverse problems that are optimally solved via Typeith high probability. Interestingly, it is
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this same Jeffreys prior that forms the generating coeffigieior of Type Il whenf(v;) = 0, e.g., the
prior obtained by maximizing ouf in (6). However, it is worth mentioning that other Jeffreysop-based
techniques, e.g., direct minimization eflogp(x) o [[, log|z;| subject toy = ®x, do not provide any
Type ll-like guarantees. Although several algorithms distethat can perform such a minimization task
(e.g., [15], [19]), they perform poorly with respect to (1) our experience because of convergence to
bad local minimum as shown in [33]. This is especially truendé toefficients are highly scaled. Section

VI will analyze this issue in more detail.

C. Worst-Case Scenario

If the best-case scenario (no local minima) occurs when dmeero generating coefficients are all of
very different scales, it is reasonable to conjecture thatmost difficult sparse inverse problem may
involve nonzero coefficients of the same or even identicdest¢hwe definex € R? to be the vector of
d nonzero magnitudes in some generatiagthen this implies that; = 7o = ... Z4. This notion can
be formalized somewhat by considering taedistribution that is furthest from the Jeffreys prior. Fjrst
we note that the Type Il cost function is effectively indegent of the overall scaling of the generating
coefficients, meaningz is functionally equivalent tee provideda is nonzero. This invariance must be
taken into account in our analysis. Therefore, we assumedibificients are rescaled such tha} z; = 1.

Given this restriction, we can easily determine the distitn of nonzero coefficient magnitudes that
is most different from the Jeffreys prior. Using the stamdprocedure for changing the parameterization

of a probability density, the joint density of the constexdnvariables can be computed simply as
d

1
[Ticy @i i=1
From this expression, it is easily shown thetf = z, = ... = Z,; achieves the global minimum.

Consequently, equal coefficient magnitudes are the abslalastlikely to occur from the Jeffreys prior.
Hence, we may argue that the distribution that assigns 1/d with probability one is, in some sense,
furthest from the constrained Jeffreys prior.

Nevertheless, because of the complexity of the Type Il ggniais difficult to prove axiomatically that
x ~ 1 is overall the most problematic distribution with respeztsparse recovery. However geometric
considerations from [38] (omitted here for brevity), as & illustrations from Section 1V-D, support
this conclusion. Regardless, it will be demonstrated iniBedf that the worst-case performance of Type

Il is still better than common Type | approaches.
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D. lllustration of Best- and Worse-Case Scenarios

Before proceeding to empirical results, it is insightfuldioserve directly the smoothing of local minima
that leads to the best- and worst-case scenarios detailddtions 1V-B and IV-C. To accomplish this,
we repeat the exact same toy experiment from Section IlI-Berestwe plotted penalty functions over a
1D feasible region parameterized by Using ||z||o = 9, we recreate Figure Iright) with two minor
alterations. First, in Figure 3€ft), we take the square root of each nonzero coefficient magwitréating
magnitudes with very similar scales (a more difficult sitaa)i Secondly, in Figure ight), we square
each nonzero magnitude, creating highly scaled coeffici@ntaore favorable situation). The effect then

becomes very clear.
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Fig. 5. Plots of the Type Il penalty (normalized) across the feasible megoparameterized byy. A separable penalty given
by g(z) oc 3, |2:|*%" ~ ||lz||o is included for comparisorieft Similar nonzero magnitudes (hard case). The Type Il cost has
3 distinct local minimaRight Highly scaled nonzero magnitudes (easy case). Type Il now hasaosilygle minima atco; the

Type | example still has 10 minima (not all are shown).

V. EMPIRICAL RESULTS

The central purpose of this section is to present empiricidemce that supports our theoretical
analysis and illustrates the improved performance affifole Type Il in solving (15) as various problem
parameters are varied. We will focus our attention on thegims provided by Sections Il and IV,
comparing Type Il (assuming(y;) = 0 and A = 0) with two standard Type | approaches, basis pursuit
(BP) [8] and orthogonal matching pursuit (OMP) [31]. (Emgai comparisons with other Type | methods
are included in [35].) BP is the optimal convex approximatio (15) obtained by minimizingx||;

subject to the constrainy = ®x; this can be solved using standard linear programming. ntraset,
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OMP is a greedy strategy for locally minimizing (15) thatétvely selects the basis vector most aligned
with the current signal residual. At each step, a new appmaxi is formed by projectingy onto the
range of all the selected dictionary columns. For the Typamplementation, we utilize an iterative
reweighted/, minimization technique based on convex upper bounds [38]¢chwvis equivalent to the
EM implementation of sparse Bayesian learning (SBL) from [38ihg A — 0.

Given a fixed distribution for the nonzero elementsagf, we will assess which algorithm is best
(at least empirically) for most dictionaries relative to aiform measure on the unit sphere, a metric
suggested in [11] and relevant to compressive sensing.iJeftect, a number of monte-carlo simulations
were conducted, each consisting of the following: First, mdan, overcomplete: x m dictionary ® is
created whose columns are each drawn uniformly from theasarbf the unit sphere iR™. Next, sparse
coefficient vectorsey are randomly generated withnonzero entries. Nonzero magnitudesare drawn
iid from an experiment-dependent distribution. Signals then computed ag = ®x,. Each algorithm
is presented withy and® and attempts to estimate). In all cases, we ran 1000 independent trials and
compared the number of times each algorithm failed to recayge Under the specified conditions for
the generation o andy, all other feasible solutions almost surely have more nonzeros tharso our
synthetically generatea; will be maximally sparse in practice. Moreover, will almost surely satisfy
sparK®) =n + 1.

With regard to particulars, there are essentially four alales with which to experiment: (i) the
distribution of g, (ii) the sparsity leveld, (iii) the signal dimensiom, and (iv) the number of dictionary
columnsm. In Figure 6, we display results from an array of testing ctiads. In eachrow of the figure,
elements oft, are drawn iid from a fixed distribution for all the first row uses unit nonzero coefficients,
the second has elements drawn froifu = 0.001), and the third uses a unit Gaussian. In all cases, the
signs of the nonzero coefficients are irrelevant due to thdaamess inherent in the basis vectors.

The columnsof Figure 6 are organized as follows: The first column is basedhenvaluesn = 50,

d = 16, while m is varied fromn to 5n, testing the effects of an increasing level of dictionamuedancy,
m/n. The second fixesa = 50 andm = 100 while d is varied from10 to 30, exploring the ability of
each algorithm to resolve an increasing number of nonzeefficents. Finally, the third column fixes
m/n = 2 andd/n ~ 0.3 while n, m, andd are all increased proportionally. This demonstrates how
performance scales with larger problem sizes.

The first row of plots essentially represents the worst-caseagio for Type Il per our previous analysis,
and yet performance is still consistently better than bokh d@d OMP. In contrast, the second row of

plots approximates the best-case performance for TypehHéravwe see that Type Il is almost infallible.
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Fig. 6. Empirical results comparing the probability that OMP and BP (Typethods), and Type Il fail to fina, under various
testing conditions. Each data point is based on 1000 independent trigldidthibution of the nonzero coefficient magnitudes
is labeled on the far left for each row, while the values figrm, andd are included on the top of each column. Independent

variables are labeled along the bottom of the figure.

The handful of failure events that do occur are because not sufficiently small and thereford,(a)
was not sufficiently close to a true Jeffreys prior to achiéve% success (see center plot). Finally, the
last row of plots, based on Gaussian distributed coefficiemléudes, reflects a balance between these
two extremes. Nonetheless, Type Il still holds a substhati®antage. In general, we observe that Type
Il is capable of handling more redundant dictionaries (ooiluone) and resolving a larger number of

nonzero coefficients (column two). Also, column three iltagts that it is able to recover a number of
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nonzero coefficients that grows linearly in the signal dini@ms

By comparing row one, two and three, we observe that the pagnce of BP is independent of the
coefficient magnitude distribution. This occurs becausevedgmce between the minimudy-norm and
minimum ¢;-norm solutions only depends on the sign pattern and spasifile of xy [23]. This result
suggests a potential limitation of BP, namely, it does ntmvalexploitation of the nonzero magnitudes
(as Type Il does) to increase the probability that we sudolgsecoverxz,. Moreover, BP performance
is slightly below the worst-case Type Il performance.

In contrast, like Type Il, OMP results are highly dependenttioe magnitude distribution. Unfortu-
nately though, when the magnitude distribution is unityp(tow), performance is unsatisfactory. In our
experience, this appears to be a common problem with greezthads designed to locally minimize
(15). With highly scaled coefficients, OMP does considerdigyter than BP (middle row); however,
the scale parameter can never be adjusted such that OMP always succeeds (thisecproven using
a simple toy counter-example [33]), and performance is i@gmtly inferior to Type II. Finally, an
additional weakness of OMP is that, unlike both Type Il and [B#formance can potentially degrade as
the problem size increases (upper right plot). Of coursatiadel study is necessary to fully compare
the relative performance of these methods on large-scalelgms.

In summary, while the relative proficiency between OMP and BRcaontingent on experimental
particulars, Type Il is uniformly superior in the cases wevdhadested (including examples not shown,

e.g., results with other dictionary types).

VI. CONCLUSION

In this paper we have examined sparsity-promoting costtfong that emerge from a simple latent
variable Bayesian model, emphasizing the distinction betwType | (MAP estimation) and Type I
(empirical Bayes) approaches, demonstrating that the doiim actually a special limiting case of the
latter and that both can be equivalently expressed in eitbefficient or latent variable space. This
process allowed us to directly compare underlying costtions and argue that there are many potential
advantages of at least one flavor of Type Il. While Bayesiarsicienations formed the starting point for
these analyses, we should stress that the central undgitieas regarding why Type 1l is so effective can
be understood independently. More concretely, we do natadigtbelieve that the unknown coefficients
x are distributed ap(;7)(x) oc exp [—1/29(11)(@] (exemplified by statistical dependencies between
elements) and that the validity of this assumption is thenpry reason for the success of Type II.

Rather, we would argue that the Bayesian hierarchy uponhwhype Il is based represents a convenient
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fiction that happens to give rise to a useful class of spamsdycing cost functions. A similar point is
raised in [3] regarding the performance @f solutions. Here success follows from desirable properties
of the underlying convex cost function, not from the presdnh@placian distribution of the unknown
coefficients.

This perspective then allows us to consider alternative fuwsitions and manipulations of the implicit
Type 1l sparsity penalty that may lose meaning in the contdéxthe original Bayesian hierarchy but
show promise on sparse estimation tasks. For example, we $taawn that the non-separable Type I
penaltyg ;) (x) is dependent on both the dictionabyand the noise variance While meaningless from
a Bayesian perspective, when we analyze the situationaallyttas a general form of Type | penalized
regression, it becomes apparent that it could be beneficislibbstitute alternative choices faror ® in
gry(x). In other words, if the only goal is to efficiently estimate lggd solutions to canonical sparse
recovery problems, then it is not clear that the optimal&@es are consistent with the original Bayesian
model. Moreover, as we demonstrate in [35], other non-sdyparpenalty functions inspired by Type |l
but deviating from the Bayesian hierarchical derivation te very effective as well.

All of this serves to motivate a wider class of cost functifmrssparse estimation tasks and, in particular,
allows us to exploit the fact that the distribution of norzepefficient magnitudes can drastically affect
the difficulty of computing perfect sparse signal recondtams. The popular minimurd,-norm solution
(Type 1) is completely blind to this distribution, and thimee exhibits performance below the worst-case
regime possible via Type Il. Note that neither method is gigepriori knowledge of this distribution;
rather, it is that Type Il automatically operates more sasfidly when the distribution happens to be
favorable. In general, we would argue that new sparse iavalgorithms should take these and related
issues into account.

In [3] it is suggested that the distribution of nonzero coddfits is not really that important in a
variety of practical situations such as image reconstuctin its simplest form, the argument goes as
follows. In some transform domain (e.g., wavelets) the ficieht distribution of many common images
can be estimated and fit to a generalized Gausgla) « exp [—1/2||z|/}], where the learned value
of p tends to be significantly less than= 1. However, when it comes to actually estimatimgusing
a sparse recovery algorithm based on this learned valye bé., solving a problem akin to (24) with
p < 1 (Type I), performance is no better than when using 1. The authors conclude then that, given
the validity of the assumption that is sparse, the coefficient distribution of the nonzero eldmén
relatively inconsequential.

While this is certainly a very plausible conclusion, ouruiés herein suggest that the effect of coefficient
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distributions on performance can be important but to a degnat is highly algorithm-dependent. Two
important questions are relevant in this regard:

1) Does the distribution of nonzero coefficients affect theggenance of a given algorithm?

2) Assuming the true distribution of the nonzeros (or a clapproximation) is known, what is the

optimal sparse recovery algorithm?

The results of this paper speak directly to 1) as discussedealiRegarding 2), it is presently difficult
to provide a concrete answer. For example, in the image staaition example from [3], it is not
clear that solving the Type | problem (24) is optimal sincéthwp < 1, there can potentially exist a
combinatorial number of local minima, so any tractable mization procedure will often be producing
a local solutiorf. This may explain why performance is no better tharin some cases (although df
is orthogonal, local minima are generally not the probleln)s possible that an alternative procedure,
potentially based on the ideas behind Type II, could do sulbistly better. This is an area of future
research.

To conclude this point then, the coefficient distribution niageed matter even in practical situations,
but only if exploited by an appropriate algorithm. Such anoalpm may or may not actually require

knowledge of this distribution to succeed.

APPENDIX

This appendix contains the proofs of all results presentetiisipaper.

Proof of Theorem 1

Based on (6) and (20) we have

2
Liy(®) = [y—Pzlz+A E [31;% 5 + log i + f(%)]

1 B
min 1lly - @2|3 + 2T 1m+Z[log%+f(%-)]

(2

IN

1 _
XHy —ozll5+ ' T 'z + Z fay(vi)

lI>

Ly, @). (39)

®Note that the true distribution afll coefficients will not be a generalized Gaussian anyway once the aduedscoefficients
are taken into account. A more accurate description of this distribution woald delta-function at zero and a (weighted)

generalized-Gaussian distribution everywhere else. However, spdlorafurther exacerbates the problem of local minima.
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Note that we allowy; = 0 whenx; = 0; for z; # 0, 7; — 0 leads to infinity, so this value can never
represent a minimizing solution. SO?I’;C(')/,:B) is a rigorous upper bound oﬂf(fl)(:c) with Lfl)(w) =
min.>g 5(7;;"(7, x). With ~ fixed, the value ofe that minimizesﬁ?ﬁ(% x) is given byu, from (9), and
from basic linear algebra manipulations we get

1
mmin X |y — (I)ng + 2T e = yTﬁgly. (40)

Using this expression with (39) gives

() & minl(v,@) = ¢'S Y+ finy(n)- (41)
=1

This suggests an alternative means of computing (or angy#ime Type | problem: First compute

Y1) £ arg miny>g L]} (v). Then by construction, it follows that
-1
() =L@ (M +90e") "y (42)

will minimize (20).

Additionally, the correspondence between global solgtitm (20) and (41) extends to locally mini-
mizing solutions as well in the following sense: it can bewshdhat {x.,~.} is a local minimum of
the auxiliary functionﬁ?}f(v,m) iff x, is a local minimum of (20) and, is a local minimum of (41).
This correspondence occurs because, given a fix¢dr ~), optimization overx (or ) is unimodal (it
is actually convex with the proper change of variables). Soltital minima profile is preserved when

we move fromz-space toy-space. [ |

Proof of Corollary 1

This is possible because we can always select a partiguknd A and then reparameterize things
such that théog |3, | term in (17) vanishes. Plugging:= o'\ and f(-) := alogla(-)] + af [a(-)] into

(17), we have

EZH) (v) = y'[a A+ <I>F<I>T]71 y +log |a A + @I'e”| + Z (aloglayi] + af [ayi])

()

_ _ 1 _ _
yT[)\I + a<I>F<I>T] 1y + o log ’)\I + oz<I>F<I>T} + Z (log[ay] + f [avi])

and so asy becomes large

EZU) (v) = y" [M + @ (al') 7] Ty Z (log[ay] + f [eavi]) - (43)

7
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This is equivalent to (21) using := X and f := f with the exception of the scaling factor af on ~.
However, this factor is irrelevant in that the coefficientirstte obtained via (22) will be identical to that

obtained from (11). [ |

Proof of Theorem 2

Using (40), we can create the strict upper bounding auyilfanction on£?, () given by

(11)
Cira) 2 - 9l + 305+ loglsyl + 3 760, (@4
whereﬁ(”m (v) = ming E(Vﬁ) (v, ) for all v > 0. When we minimize ovety, we get
Lhn(@) = win £ (v.2) = lly - 22[; + Agun (@), (45)
with ,
gun(@) 2 min 375 +log[Sy] + 3 (). (46)

By construction, the minimum otfm(a:) will equal thex ;) computed using (11).

While g(;1)(x) cannot generally be computed in closed form, in many (pbsail) cases the optimiza-
tion problem from (46) will have a single basin of attractipneaning all local minima are connected),
and even convex with the appropriate reparameterization. dfor example, iff[exp(-)] is convex and

we defines; £ log;, B 2 [B1,...,5m|", then it can be shown that the minimization problem
gun(z) = mén Ze‘ﬂim? +log |3, | + Zf (e@) 47)

is convex in@3, meaning that no unconnected local minima can exist (athaustill need not be convex
in 7). This implies that there will be a correspondence betweeal lminima of (45) and local minima of
(17), analogous to the duality situation for Type | discasigethe previous section (the global minimum
will of course always correspond regardless fQf The sufficient convexity condition off[exp(-)] is
satisfied in a wide variety of cases. For example, whén = |z|P, meaningp(x) is a generalized
Gaussian, therf[exp(8;)] = [exp(3:)]P/?~P) —loglexp(;)] = exp[pBi/(2 — p)] — B:.7 This expression

is clearly convex ing;. |

"Here we have used (23) to compufg) and thereforef.
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Proof of Theorem 3

Becausdog|Y, | is a concave, non-decreasing functiongfwe can express it as
log |Sy| = min 2"y — h*(2), (48)
whereh*(z) is the concave conjugate [2] dég|%,| given by
h*(z) 2 min 27y — log|%,|. (49)
¥=0
Therefore, we can expregg;)(x) as

g (x) = min T le 4+ 2T~ — h*(2). (50)
~,z>0

Optimizing over~ for fixed x and z, we get
V= 2 Py, Vi (51)

Substituting this expression into (50) gives

m 9 m
 mi z; 1200 Z 12| = mi 12,1 g
9(1)(®) = min [Z <z‘_1/2|$ + 7z, !%\) h (Z)] —921512;221 il = h*(2).  (52)

=1 7 l’
This latter expression represents;)(x) as a minimum over upper-bounding hyperplanegein(meaning
each value ot defines a unique hyperplane with respecfat). From basic convex analysis, any function
expressable in this form is necessary concave and nona@ggesincez > 0 [2].
Finally, the local minima result follows directly from [27, €brem 1], which is derived for general
Type | methods but can be applied to any penalty function sa&h ;) (x) that is a concave and

nondecreasing function of ea¢h|. |

Proof of Theorem 4

In [33], we show an equivalent result using manipulationsC@SlfI)(fy) in v-space. Here we present
a much simpler, high-level proof directly im-space. For this purpose we adopt the notatfgm) =
O(h(x)) to indicate that f(z)| < Ci|h(z)]| for all z < Cs, with C, and Cy constants independent of

To begin, it will be shown that
g (x) = O(1) + (n — min[n, d]) log A, (53)

whered £ ||z||o. In other words g ;) (z) will be O(1) unlessd < n, in which case it will be dominated

by thelog A term when) is small. Given (53), the proof of Theorem 4 is simple. In theilias A — 0,
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given that at least one feasible solution exists witk: n, then minimizingg ;) (x) is tantamount to
minimizing d, and so any global solution to (28) will be a global solution(15).

It only remains then to show that (53) is true. Computingy (x) via (27) involves a minimization
over two terms (sincg(v;) = 0). The first term (convex, non-increasing) encourages eath be large,
the second (concave, non-decreasing) encourageseaalbe small. Whenever a givery = 0, the first
term can be ignored and the associajgeds driven to exactly zero by the second term regardless adroth
v, © # j. In contrast, for anyr; # 0, the minimizing~; can never be zero for any > 0 or the first

term will be driven to infinity. This a manifestation of the fabtat
1
arg m>1161 [ + log(z + e)] > 0, Ve>0. (54)
z> z

Consequently, for any givem, the associated minimizing will necessarily have a matching sparsity
profile, meaning the indices of zero-valuegdwill align with zero-valued elements in.

Wheneverd > n, the above analysis, and the assumption that $@ark= n + 1, ensures that the
minimizing %, will be full rank even forA = 0. This implies thatg;;(z) = O(1) for essentially the
same reason that

rznzlgl [i + log(z + 6):| = 0(1). (55)

In contrast, when! < n, the minimizingX, will become degenerate whex — 0. Let s; denote the
i-th nonzero eigenvalue @I'®” at the minimizingl'. The spark assumption (coupled with the analysis

above) guarantees that there will Besuch eigenvalues. Then we have

d
log [Zy] =Y "log(A+ s;) + (n — d) log A. (56)
=1
This givesgrr)(x) = O(1) + (n — d) log A. [ ]

Proof of Theorem 5

We begin by assuming thatz;) is a concave, non-decreasing function|:ef|.2 With some additional
effort, can be shown that the theorem holds in the genera aaswell, consistent with intuition. We
will also assume, without loss of generality, thgd) = 0 andg(1) = 1 (we can always rescale and add
a constant such that this is the case). A simple 3D example gbeves to show that conditions (i) and

(ii) cannot be satisfied simultaneously.
8Any penalty arising from (6) will be concave, non-decreasing functiba?, but not necessarily dfz;|.
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Assume we have a x 5 dictionary ® where the first two columns are given lay o [1 « 0]7 and
¢ < [-1 a 0T, with a > 0 arbitrarily small (we use a proportionality here to avoic tirelevant,
cumbersome factor required fd column normalization). Now assume a coefficient vectdl =
[11000]7,givingy = @z =[0 2a 0]7, and that the remaining three basis vectps ¢4, ¢s, are
radially symmetric about the signgl, with an arbitrarily small angular distance frogn Then a second
feasible solutionz(® 2 [0 0 € € €]7 exists withe (a function of«) arbitrarily small.

Under these circumstances!!) equalszg, the unique global solution to (15). To satisfy conditio)) (i

it is therefore necessary that

Zg(xgl)) = Zg< (2)> = 3g(e), (57)

or equivalently, thag(e) > 2/3, Ve > 0. We now show that any that satisfies this restriction cannot have
fewer local minimum than when solving (28). So if we satisfyndition (i), we cannot simultaneously
satisfy condition (ii).

A basic feasible solutiom:* is a local minimizer of (29) if for every vectoo € null(®), there is a

0 > 0 such that
2 glay +evi) =Y g(zf) > 0, Vee(0,4]. (58)

feasible solutions with at least — n elements equal to zero. Consequently, we can expiggsas

de) = > lglevi) —g(O)] + > [g(a +evi) — g(a7)]

€2 itz
= Zg 5”1 + Z 33 + 51}1 g(l’j)] ) (59)
IEZ ¢ Z

where Z is the set of all indeces associated with zero-valued el&snemr:*. As a direct consequence of
the assumption spafk) = n+ 1, anyv € null(®) must have a nonzero element corresponding to a zero
element inz*, meaning at least one,: € Z must be nonzero. Therefore, the first term in (59) cannot
be smaller thar2/3 or we violate condition (i) as discussed above. Moreovetabseg is concave on
[0, 00), it must be continuous ofD, c). Consequently, the second term in (59) can be made arhjtrari
small in magnitude for any € (0,0] when¢ is sufficiently small, implying thati(¢) will always be
positive. Thuse* must be a local minimizer of (29).

In conclusion then, any which satisfies condition (i) will have a local minimum at evéasic feasible
solution. Moreover, from Theorem 3, the number of distinatibdeasible solutions forms an upper bound

to the number of local minima to (28). Of course with the exmapof very contrived situations, the
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number of Type Il local minima will be considerably less ascdissed in Sections Il and IV. |

Proof of Theorem 6

The unimodality of (26) is revealed by examining the dual dasiction (17) in~-space, which

conveniently decouples because of the orthogonality agsom This produces the element-wise cost

_%

A+
wherea; £ ¢!y and ¢; is thei-th column of ®. This expression is readily shown to be unimodal in
each~;, implying unimodality overy.

The second property follows by taking the gradient of (31)hwigéspect tox; and noting that it is
strictly positive for allz; € (0,00). We also note that any penaltyfx) that is a non-decreasing and
strictly concave function ofx|, will both promote sparsity [27] and provide a tighter appnoation to
|lz]|o than]|z||; in the following sense: There will always exist some positleastant? < oo such that,

for any sphereS, in R™ centered at zero with radius> R, we have that

/S |||w||o—g<w>\dw</ lello — 1] de. (61)
$e r

.1’657

In words, the approximation error will always be smaller and as we average over a large enough
region. This follows directly from the definition of strict coavity (and the implicit assumption thg(0)
is finite).

The third property can be shown by contradiction. Assumegdhai(x) is a non-decreasing and strictly
concave function ofz|, but is fixed and independent afas in Type | methods. We will show that multiple
minima are always possible for some choice\pfP, andy. Given the orthogonality assumptioﬁ@) (x)

decouples and we can consider each coordinate separatélyheireduced cost function

L

(@) £ 2? — 2x0; + MAg(z;). (62)

For simplicity, we will assume thag is differentiable, but the more general case follows withtiel

additional effort. We will also assume, without loss of geigy that a; > 0, Vi. Now consider
8:5@-

with ¢'(z;) £ 0g(z;)/0z;. If E?;)’(xi) is positive asr; — 0T, then there will necessarily be one local

minimum atz; = 0. A second local minimum will also occur if

L) (x:) & = 22; — 2a; + Ag'(w:), (63)

f;)’(xi) < 0 for somez; > 0. This is

becausecf;)’(:zi) must be greater than zero for somgsufficiently large due to the concavity ¢fz;)
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with respect tdz;|, and so a negative gradient for smaller values;amplies a local minimum must exist

in the middle somewhere. Therefore we only need show that imitima are possible simultaneously.
To have a minimum at; = 0, it is sufficient based on the positive gradient requireméat &; =

Ag'(0)/2 — ¢, whereg’(0) £ lim, o+ ¢'(z;), ande > 0 is a small constant such tha is positive. A

second minimum will occur if
E?})/(xi) = 2x; —2 [)\g'(O)/Z - e] + Mg (z;) < O (64)

for somez; > 0. We can always satisfy this inequality for somesufficiently large since/(0) > ¢'(z;)
by definition of strict concavity. Consequently, two localmma are always possible for ea¢hgiving
2™ total local minima as an upper bound, which is trivially asldd when the€, norm is used (forth

property). |

Proof of Theorem 7
If x, is a non-degenerate locally minimizing solution to (28)rththere is an associateg, with
matching sparsity profile, that locally minimizeﬁ’s(”m () with A = 0. For this to be true, the following

necessary condition must hold for all € i:

L ()
—n > 0, (65)
Mu B
Y=+
where~, denotes the latent variable corresponding to the basi®wvectin words, we cannot reduce

Ll

imply that~, can be increased to further reduﬁ%,]) (7v), meaning a local minima is impossible. Using

() along a positive gradient because this would pgshbelow zero; a negative gradient would

the matrix inversion lemma, a determinant identity, and eatgebraic manipulations, we arrive at the

expression .,
85(11) (7)

e (66)

_ u” Bu y' Bu 2
14+ v,ulBu 1+ vy,ul'Bu
=Y

whereB £ (¢I'd7)~! andT is the diagonal matrix of latent variables associated WittSince we have
assumed that we are at a local minimum, it is straightforwtardhow thatl' = diag(@)? leading to the
expression

B = o Tdiagz) 201 (67)

Substituting this expression into (66) and evaluating atpbiat v, = 0, the above gradient reduces to
8['?]1) (v)

o =7 (diagz 'z ") -z '@ "), (68)

Y=
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wherez=! £ [z71,...,2;Y7. This implies that we will be at a local minimum only if

rrn

U<y Voe, (69)
— L%
7]
which leads directly to the stated theorem. [

Proof of Theorem 8

Every local minimum of (28) is achieved at a basic feasiblaitsoh (BFS) (see Theorem 3). Inter-
estingly, the converse is not true; that is, every BFS needcaotespond with a minimum of (28) as
shown via Theorem 7. In fact, for a suitable selection of scptionstants/;, we will show that this
reduced set of minima naturally leads to a proof of Theorerm&hé most general setting, the constants

v; may all be unique, leading to the largest set of allowabldfioients. However, for simplicity we will

assume thaty = vy = ... = v,_2 = ¢, Wheree is a constant in the intervdD, 1]. The extension is
straightforward.
We begin with an arbitrary coefficient vectaf such thatx’(iﬂ) < ex’(i) and||z'[[p=de{l,...,n—

1}. For convenience, we will also assume thgt = [z;]. In other words, the first element of has the
largest magnitude, the second element has the secondtlanggsitude, and so on. To avoid any loss
of generality, we incorporate am x m permutation matrixP into our generative model, giving us the
signaly = ®Px’ = ®'x’. Becaused’ £ ®P is nothing more tharb with reordered columns, it will
necessarily satisfy the spark constraint for &ligiven that® does.

We now examine the properties of an arbitrary BFS with nonzmrefficients defined ag (so the
length ofz is less than or equal te by definition of a BFS), and associated dictionary colurbns.e.,

y = ®x. There exist two possibilities for a candidate BFS:

« Case t The columns of®’ associated with the nonzew < n nonzero coefficients of’ are
contained in®. By virtue of the spark assumption, no other basis vectolk bei present, so we
may conclude tha® = [¢), ¢}, ..., ¢ = D'

« Case Il At least one of the columns associated with theonzero coefficients is missing frod.
Given this distinction, we would like to determine when adidate BFS, particularly a Case Il BFS of
which there are many, is a local minimum.

To accomplish this, we let € {1,...,d} denote the index of the of the largest coefficient magnitude

for which the respective dictionary columg. is not in ®. Therefore, by assumption the first— 1
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columns of® equal (¢}, @b, ..., d._;]. The remaining columns ob are arbitrary (provided of course

that ¢!. is not included). This allows us to express any Case Il BFS as

r—1 d
=0 ly =010 =Y sjer+ &Y 2, (70)
k=1 k=r
wheree,, is a zero vector with a one in thieth element and we have assumed that every Case Il BFS

utilizes exactlyn columns of®’ (i.e., ® is n x n and therefore invertible via the spark requirement).
This assumption is not restrictive provided we allow for zpemlding of BFS with less than nonzero
coefficients (this implies that some elementscofvill be equal to zero if we have to add dummy columns
to ®).

Without loss of generality, we will assume that = 1 (the overall scaling is irrelevant). We also

definev = ®~1¢/, giving us

r—1 d
=0 ly= Zw;ﬂek +o+0! Z TP} (72)
k=1 k=r+1
By virtue of the stipulated-dependent coefficient scaling, we know that
d d
7Y apdh= Y. Ou(FT) = On(e), (72)
k=r+1 k=r+1

whereO(z) is defined as in the proof of Theorem 4 afid(x) refers to ann-dimensional vector with

all elements of orde®(x). Combining (71) and (72), we can express iHé element ofz as
Ti=al i <r]+0;+ O (e). (73)

Providede is chosen suitably small, we can ensure thatzallare necessarily nonzero (so in fact no
zero-padding is ever necessary). Wheer r, this occurs because all elementsimust be strictly
nonzero or we violate the spark assumption. Foritker case, a sufficiently small means that the,
term (which is of ordeiO (1/¢"~*) by virtue of (35)) will dominate, leading to a nonzezg This allows
us to apply Theorem 7, from which we can conclude that a carelil&S withn nonzero coefficients

will not represent a local minimum if

> (74)
iz T
Substituting (73) into this criterion, we obtain
Uj Uj
= 75
;(%I [i<r]+’z7i+0(e)> (xgl[j<r]+5j+0(e)> (75)
Uj v
0+ (o) (Fom)
itgiiger \UI T O(e) ) \ 7+ O(e)
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Sinced < n, thenr < n by definition and so there will always be at least one set ofcesli and j that
satisfy the above summation constraints (since bBaihd j run from 1 to n). This then implies that
Z;ZJJ% Z 1 > 0, (76)
i#] i#j; 1,527
since eachy; is a nonzero constant independentcoBo (74) holds and we are not at a local minimum.
In summary, we have shown that, provideds small enough, an arbitrary Case Il BFS cannot be a
local minimum to (28). The exact value of thiswill depend on the particular BFS and permutation
matrix P. However, if we choose the smallesacross all possibilities, it follows that no Case |l BFS can
be a local minimum. The unique minimum that remains is the C&#€S which will satisfyd = ||x¢||o,

sox’ = x. [ |

Proof of Theorem 9

We assumey(x;) is a non-decreasing, concave function|ef|; as stated in the proof of Theorem 5,
with other choices it can be shown that the global minimum mdkt generally equak,. For the special
case whergy(z;) = |x;|, Vi, the cost function is unimodal and, given the spark assump#iill have a
unique global minimum. However, regardless of nonzerofement scalings, this global minimum need
not be maximally sparse under the stated conditions. Thectlyr follows from [23, Theorem 6], from
which we can infer that the success of the minimdmnorm solution only depends on the sparsity
profile and sign pattern afy; it is independent of the nonzero magnitudes. Since the nuimr -norm
solution cannot always recovaf, given only the spark and sparsity level assumptions of teergm,
the restriction on the magnitudes will not help, and so thigue global minimum will not always equal
xo.

Now assume thay(z;) is a strictly concave function ofz;

; the more general case (concave and
nonlinear but not necessarily strictly concave) naturédljows. If lim._o [g(e) — g(0)] /e = oo, then
based on the proof of Theorem 5, there will exist a local mimmat every basic feasible solu-
tion; this result is independent of nonzero coefficient magigs. The more ambiguous case is when
lim._.0 [g(€) — g(0)] /e = C < 0. In this situation, a simple 2D counter example suffices tonstiat

local minima are still always possible. Let

1
1 1 1
o= |0 P = Vitet o vitoe? y=dPxy = ; (77)
0 & — = 0
0 V14a? V14«2
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wherea > 0 is a small constant and th¢1 + «? factor is included only for normalization purposes.
Here xy and ® satisfy the conditions of Theorem 8. Now consider the altireasolution ' =

2 2 T . . M . . ..
[0 7“;“ Lga] . For « sufficiently small, this solution will always be a local miniam for any

strictly concave Type | method. To see this, consider thieviohg. The dictionary® has a 1D null-space

spanned by the vectar £ [1 ‘\/1;“7 ‘\/F}T since v = 0, and so any feasible solution can be
expressed ag’ + ev for some constant; to move towardse, requirese > 0. By taking the gradient
of >, g(x;) with respect toe evaluated at — 0", we can evaluate if’ is a local minimum; namely,
a local minima occurs if this gradient is positive when thailiis approached from the right. With

g (z;) & 0g(x;)/0z;, the relevant limit is

.0 .0
lim B Zg(mi +ev;)) = lim 5 (g(e) +2g (78)

e—0t 0 e—0t O€

\/1;a2(1_6)]>

= lim <g’(e)— 1+ a2g

m”_e)D

e—0+t 2
V14 a2
= J@]gr —VItat | T

By definition of strict concavity, this expression will be ftog for somea sufficiently small, implying

that =’ is a local minimum. [ |
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