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Abstract

Many practical methods for finding maximally sparse coefficient expansions involve solving a regres-

sion problem using a particular class of concave penalty functions. From a Bayesian perspective, this pro-

cess is equivalent to maximum a posteriori (MAP) estimationusing a sparsity-inducing prior distribution

(Type I estimation). Using variational techniques, this distribution can always be conveniently expressed

as a maximization over scaled Gaussian distributions modulated by a set of latent variables. Alternative

Bayesian algorithms, which operate in latent variable space leveraging this variational representation, lead

to sparse estimators reflecting posterior information beyond the mode (Type II estimation). Currently, it

is unclear how the underlying cost functions of Type I and Type II relate, nor what relevant theoretical

properties exist, especially with regard to Type II. Hereina common set of auxiliary functions is used to

conveniently express both Type I and Type II cost functions in either coefficient or latent variable space

facilitating direct comparisons. In coefficient space, theanalysis reveals that Type II is exactly equivalent

to performing standard MAP estimation using a particular class of dictionary- and noise-dependent,non-

factorial coefficient priors. One prior (at least) from this class maintains several desirable advantages

over all possible Type I methods and utilizes a novel, non-convex approximation to theℓ0 norm with

most, and in certain quantifiable conditions all, local minima smoothed away. Importantly, the global

minimum is always left unaltered unlike standardℓ1-norm relaxations. This ensures that any appropriate

descent method is guaranteed to locate the maximally sparsesolution.
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Index Terms

sparse representations, sparse priors, latent variable models, underdetermined inverse problems, Bayesian

learning, compressive sensing, source localization

I. I NTRODUCTION

Here we will be concerned with the generative model

y = Φx + ε, (1)

whereΦ ∈ R
n×m is a dictionary of unitℓ2-norm basis vectors or features,x is a vector of unknown

coefficients we would like to estimate,y is the observed signal, andε represents noise or modeling errors

often assumed to be Gaussian. In many practical situations where large numbers of features are present

relative to the signal dimension, implyingm > n, the problem of estimatingx is fundamentally ill-posed

or underdetermined.

A typical remedy for this indeterminacy is to apply a penaltyterm into the estimation process that

reflects prior, disambiguating assumptions aboutx. This leads to the canonical regularized regression

problem

x(I) = arg min
x

‖y − Φx‖2
2 + λ

∑

i

g(xi), (2)

which produces what is often called aType I estimator denotedx(I). The first term in (2) enforces data

fit (consistent with a Gaussian noise model), whileg(xi) is a fixed penalty on individual coefficients

and λ is a trade-off parameter. For example, if we would like to penalize theℓ2 norm of x, favoring

minimum energy solutions, then we can chooseg(z) = z2.

Recently, there has been a growing interest in finding somex̂ characterized by a bi-partitioning of

coefficients, meaning most elements equal zero (or are very small), and a few large unrestricted values,

i.e., we are assuming the generativex is a sparse vector. Such solutions can be obtained by using

g(z) = h
(
z2
)
, (3)

with h concave and non-decreasing on[0,∞) [26], [27]. Roughly speaking, the ‘more concave’h, the

more sparse we expect global solutions of (2) to be. For example, with h(z) = z, we recover the

ℓ2 norm penalty, which is not sparse at all, whileh(z) =
√

z gives anℓ1 norm penalty, which is

well-known to produce âx with many elements (at leastm − n) equal to exactly zero [8], [29]. In

arguably the most extreme case,maximally sparsesolutions are said to occur usingh(z) = I(z 6=0) [z],
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which penalizes any deviation from zero uniformly, so once any deviation from zero exists, no additional

penalty is incurred (Section I-B will discuss this penalty inmore detail). Other common selections include

g(z) = |z|p, p ∈ (0, 2] [7], [21], [27] andg(z) = log(|z| + ǫ), ǫ ≥ 0 [6], [14], [15], [19].

If we define the distributions

p(x) ∝ exp

[
−1

2

∑

i

g(xi)

]
and p(y|x) ∝ exp

[
− 1

2λ
‖y − Φx‖2

2

]
, (4)

then from a Bayesian perspective (2) is equivalent (via Bayes rule [1]) to solving themaximum a posteriori

(MAP) estimation problem

x(I) , arg max
x

p(x|y) = arg max
x

p(y|x)p(x). (5)

At this point, the Bayesian viewpoint has essentially offered nothing new, since the posterior mode (or

maximum) equals the same estimatorx(I) we had before. However, what if we consider alternative

estimators based onp(x|y) but sensitive to posterior information beyond the mode? Using variational

methods [20], we will demonstrate that it is possible to develop a broader class ofType II estimators

that is particularly well-suited to finding maximally sparsecoefficients and includes (2), and therefore

(5), as a special case. We should stress at the outset that, while Bayesian methodology forms the starting

point and inspiration for many of the ideas forthcoming in this paper, ultimate justification of Type II

estimation techniques will be completely independent of any Bayesian formalism. Instead, our strategy is

to extract the underlying cost functions that emerge from this formalism, and then analyze them abstractly

in the same manner that many others have analyzed (2). This is not unlike the situation surrounding

the widespread use of theℓ1 norm for solving ill-posed inverse problems where sparse solutions are

desired. While the associated Type I algorithm can be interpreted as performing MAP estimation using

a Laplacian prior, the rich theory quantifying performance guarantees is completely independent of any

putative association with the Laplacian distribution. We will return to this topic in more detail in Section

VI.

A. Type II Bayesian Estimation

The starting point for creating the Type II estimator involves re-expressing the priorp(x) in terms of

a collection of non-negative latent variablesγ , [γ1, . . . , γm]T ∈ R
m
+ . The latent variables dictate the

structure of the prior via

p(x) =
m∏

i=1

p(xi), p(xi) = max
γi≥0

N (xi; 0, γi)ϕ(γi), (6)
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where ϕ(γi) is a non-negative function andN (z; µ, Σ) henceforth denotes a Gaussian overz with

meanµ and covarianceΣ.1 In a machine learning context, (6) is commonly referred to asa variational

representation whose form is rooted in convex analysis and duality theory [20], and when the maximization

is dropped, provides a family of rigorous lower bounds onp(x) parameterized byγ [26], [33]. Note that

any priorp(x), constructed viag(xi) = h
(
x2

i

)
as in (4), withh concave and non-decreasing on[0,∞),

is expressable using (6) given the appropriateϕ [26]. Consequently, virtually all sparse priors (based on

sparse penalties) of interest can be decomposed in this manner, including the popular Laplacian, Jeffreys,

Student’st, and generalized Gaussian priors.2

The utility of (6) comes in forming approximations to the posterior p(x|y), or for practical reasons the

joint distributionp(x, y) ∝ p(x|y), which in turn can lead to alternative sparse estimators. For example,

while computing the posterior mean ofp(x|y) is intractable, given an appropriate approximation, the

required integrals lead to analytic solutions. One practical option is to form a Gaussian approximation

using (6) as follows.

For a fixedγ, we obtain the approximate (unnormalized) prior

p̂γ(x) =
∏

i

N (xi; 0, γi)ϕ(γi), (7)

which leads to the approximate (normalized) posterior

p̂γ(x|y) =
p(y|x)p̂γ(x)∫
p(y|x)p̂γ(x)dx

= N (x; µx, Σx) (8)

with

µx = ΓΦT
(
λI + ΦΓΦT

)−1
y

Σx = Γ − ΓΦT
(
λI + ΦΓΦT

)−1
Φ, (9)

whereΓ , diag[γ]. The key task then is to choose values for the latent variablesγ such that, to the

extent possible,p(x|y) ≈ N (x; µx, Σx). One useful criterion that leverages the variational represention

1Here we are assuming continuity for simplicity, and so (6) will have a maximum; otherwise we require a supremum operator

instead.

2The functionϕ(γi) can either be chosen constructively to produce some priorp(xi), or alternatively, for a given sparsep(xi),

the associated value ofϕ(γi) can be computed using convexity results [26]. However, technically there is some ambiguity involved

here in thatϕ(γi) need not be unique. For example, consider a priorp(xi) composed as a maximization over two zero-mean

Gaussian kernels with variancesσ2
1 andσ2

2 . In this situation, the value ofϕ(γi) need only be rigidly specificed atϕ(σ2
1) and

ϕ(σ2
2); at all other points its value is constrained but need not be unique. Regardless, a natural, unique selection forϕ(γi)

does exist based on the concave conjugate ofh from (3). We will accept this convention forϕ(γi) and discuss how it may be

computed below.
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involves solving

γ(II) , arg min
γ

∫
p(y|x) |p(x) − p̂γ(x)| dx

= arg max
γ

∫
p(y|x)

∏

i

N (xi; 0, γi)ϕ(γi)dx, (10)

where the absolute value can be conveniently removed by virtue of the variational lower bound (γ-

independent terms are omitted). The idea behind (10) is that we would like to minimize the sum of the

misaligned mass between the true priorp(x) with the approximate onêpγ(x), but only in regions where

the likelihoodp(y|x) is significant. Ifp(y|x) ≈ 0, then we do not really care if the prior approximation

is poor, since the ultimate contribution of this error to theposterior distribution will be minimal (see [33,

Chapter IV] for more details).

Once γ(II) is obtained, a commonly-accepted point estimate forx is the posterior meanµx with

γ := γ(II):

x(II) = Γ(II)Φ
T
(
λI + ΦΓ(II)Φ

T
)−1

y. (11)

Note that ifγ(II) is sparse, the corresponding coefficient estimatex(II) will be sparse as well, consistent

with our modeling assumptions. Type II is sometimes referred to as empirical Bayes, since we are

(somewhat counterintuitively) using the data to empirically ‘learn’ a prior on x [1]. Relevant Type II

examples include sparse Bayesian learning (SBL) [30], [33], automatic relevance determination (ARD)

[25], [34], evidence maximization [28], and methods for learning overcomplete dictionaries [17].

B. Preliminary Definitions and Problem Statement

To begin, theℓ0 norm is defined as

‖x‖0 ,

m∑

i=1

I(xi 6=0) [xi] , (12)

where the indicator functionI(xi 6=0) takes a value of0 if xi = 0 and 1 otherwise.3 With regard to the

dictionaryΦ, thespark represents the smallest number of linearly dependent columns [13]. By definition

then,2 ≤ spark(Φ) ≤ n+1. As a special case, the condition spark(Φ) = n+1 is equivalent to the unique

representation property from [19], which states that everysubset ofn columns is linearly independent.

Finally, we say thatΦ is overcompleteif m > n.

Turning to the problem of obtaining sparse point estimatesx̂, we start with the most straightforward

case whereε → 0. If Φ is overcomplete, then we are presented with an underdetermined inverse problem

3Note that‖x‖0, because it does not satisfy the required axioms, is not technically a norm.
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unless further assumptions are made. For example, if a vector of unknown, generating coefficientsxgen

satisfies

‖xgen‖0 < spark(Φ)/2, (13)

then no other solutionx can exist such thaty = Φx and ‖x‖0 ≤ ‖xgen‖0 [13], [18]. Furthermore, if

we assume suitable randomness on the nonzero entries ofxgen, then this result also holds almost surely

under the alternative inequality

‖xgen‖0 < spark(Φ) − 1, (14)

which follows from [33, Lemma 2]. Given that (13) and/or (14) hold, then recoveringxgen is tantamount

to solving

xgen = x0 , arg min
x

‖x‖0, s.t. y = Φx. (15)

This cost function encourages feasible solutionsx with the largest possible number of elements identically

equal to zero and a few unrestricted coefficients; such solutions are often referred to asmaximally sparse.

While ideal in spirit for many applications that require exact sparsity, finding the global minimum is

combinatorial (NP-hard [24]) and therefore often difficult to obtain in practice. Fortunately, many Type

I and Type II methods represent viable surrogates that provide tractable approximations that solve (15)

with high probability. In Sections III and IV we will examine the solution of (15) in much further detail.

For the remainder of this paper, wheneverε = 0, we will assume thatxgen satisfies (13) or (14), and so

x0 andxgen can be used interchangeably.

Although not the primary focus of our analysis herein, whenε 6= 0, things are decidedly more

nebulous. Because noise is present, we typically do not expect to representy exactly, suggesting the

relaxed optimization problem

x0(λ) , arg min
x

‖y − Φx‖2
2 + λ‖x‖0, (16)

whereλ is a non-negative trade-off parameter balancing estimation quality with sparsity, noting that in

the limit asλ → 0, the problems (15) and (16) are equivalent (the limit must betaken outside of the

minimization). Unfortunately, solving (16) is also NP-hard, nor is it clear how to selectλ so as to best

approximatexgen.

In this paper, we will consider the application of general Type I and Type II methods to the solution of

(15) and/or (16) for the purpose of estimatingxgen. On the surface, the above developments suggest that

Type I methods are much more closely related to canonical sparse recovery problems; however, we will

demonstrate that Type II is quite suitable, if not advantageous, as well. In general, most of the analytical
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results will address solutions to (15), which lends itself more directly to theoretical inquiries. Regardless,

the underlying ideas still carry over to the case where noiseis present.

C. Overview

In applying the many existing variants of Type I and Type II inpractice, the performance recovering

sparse generative coefficients can be highly varied because of convergence issues and properties of

global and local minima. Moreover, the relationship between Type I methods, which involve transparently

optimizing a cost function directly inx-space, and Type II approaches, which effectively operate less

intuitively in γ-space, is very ambiguous. Additionally, it is not clear with Type II how to implement

extensions for handling alternative noise models or constraints such as non-negativity, etc., because the

required integrals, e.g., (9) and (10), become intractable. To address all of these issues, this paper will

investigate the cost functions that emerge from latent variable characterizations of sparse priors, with

a particular emphasis on special cases of Type II that perform exceedingly well on sparse estimation

problems.

Starting in Section II we will demonstrate a fundamental duality between Type I and Type II sparse

estimation methods, showing that both can be expressed ineither x-space orγ-space with a common

underlying set of objective functions uniting all possiblemethods. This perspective facilitates direct com-

parisons and demonstrates that, for all methods, optimization or additional/alternative solution constraints

can be implemented in either space depending on the application. Perhaps surprisingly, the analysis also

reveals that Type I is a special limiting case of Type II, suggesting that the broader Type II may offer

an avenue for improvement.

Because Type I has been thoroughly analyzed by others in a variety of contexts, we focus the next

two sections on properties of Type II with respect to finding maximally sparse solutions. Working in

coefficient space, Type II is shown to be exactly equivalent tostandard MAP estimation using a large

class of potentially feature- and noise-dependent,non-factorialcoefficient priors (meaning a prior which

cannot be expressed in the factored formp(x) =
∏

i p(xi)). This is unlike Type I, which is always

restricted to factorial priors independent ofλ and Φ. In Section III we demonstrate that one prior (at

least) from this class maintains several desirable advantages over all possible Type I methods in finding

maximally sparse solutions. In particular, it utilizes a novel, non-convex approximation to theℓ0 norm

with most local minima smoothed away; importantly, the global minimum is left unaltered. This prior can

be viewed in some sense as a dual form of sparse Bayesian learning (SBL) [30] or automatic relevance

determination (ARD) [25].
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Necessary conditions for local minima are derived and depicted geometrically in Section IV providing

insight into the best- and worst-case performance. Additionally, we describe how the distribution of non-

zero generating coefficients affects the sparse recovery problem, defining a limited regime whereby Type

II is unequivocally superior to any possible Type I approachand guaranteed to find maximally sparse

solutions using a simple iterative algorithm.

Section V contains empirical experiments comparing an iterative reweightedℓ2-norm implementation

of SBL (Type II) with basis pursuit (BP) and orthogonal matching pursuit (OMP) (Type I) recovering

sparse coefficients as the dictionary size, sparsity level, and coefficient distribution are varied. In all cases,

Type II is significantly more successful than Type I, even in the worst-case regime for Type II. Finally,

Section VI has concluding remarks and provides an abstract perspective on the success of Type II that

deviates somewhat from the underlying Bayesian model. All proofs are contained in the Appendix so as

not to disrupt the flow of the main text.

Overall, Type I methods, especially when viewed as forms of sparse penalized regression, are much

more prevalent in the statistics and signal processing community in the context of sparse linear inverse

problems. By demonstrating a fundamental duality with TypeII methods as well as some of the advantages

of the associated broader class of underlying cost functions, we hope to inspire alternative means of

estimating sparse solutions. Portions of this work have previously appeared in conference proceedings

[34], [37], [38].

II. DUALITY AND UNIFICATION

Previously we have described how Type I methods minimize a cost function inx-space while Type II

approaches operate inγ-space. This distinction presently makes direct comparisons difficult. However,

this section will demonstrate a fundamental duality between Type I and Type II. In particular, we will

show how the cost functions associated with both approachescan be expressed either inx-space or inγ-

space. This duality has several important consequences. First, it facilitates straightforward comparisons of

the underlying cost functions and elucidates actual differences with respect to sparse estimation problems.

Ultimately it will contribute substantial clarity regarding exactly how the less transparent Type II operates,

leading to a variety of theoretical results linking Type I and Type II.

Secondly, it naturally allows us to impose constraints in either γ-space orx-space, depending on the

application. For example, in non-negative sparse coding applications, we require thex-space constraint

x ≥ 0 [4]. In contrast, to implement certain iterative reweighting optimization schemes designed to avoid

local minima or allow for soft bounds onx, we can include minimum variance constraints inγ-space,
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i.e., γ ≥ ǫ, as described in [7], [35]. Finally, this duality suggests alternative means of constructing cost

functions and algorithms for promoting sparsity. Other benefits, such as learning trade-off parameters and

quantifying sparsity with alternative data-fit terms, are discussed in [36].

To begin, we will first re-express the Type I objective from (5)in an equivalentγ-space representation

in Section II-A. A byproduct of this analysis will be the demonstration that the Type I cost function is

a special limiting case of Type II. Later, Section II-B will recast Type II cost from (10) inx-space.

A. Cost Functions inγ-Space

Computing the integral from (10), which is a standard convolution of Gaussians for which analytic

solutions exist, and then applying a−2 log(·) transformation gives the Type II cost function inγ-space

Lγ
(II)(γ) , −2 log

∫
p(y|x)N (x; 0, Γ)p(γ)dx ≡ yT Σ−1

y y + log |Σy| +
m∑

i=1

f(γi), (17)

where

f(γi) , −2 log ϕ(γi). (18)

and

Σy , λI + ΦΓΦT . (19)

HereΣy represents the covariance of the datay conditioned on the latent variablesγ (sometimes referred

to as hyperparameters) after the unknown coefficientsx have been integrated out. The function is then

minimized to find someγ(II) and the point estimate forx(II) is subsequently obtained via (11). Note

that the data-dependent term in (17) can be shown to be convexin γ, while the log-det term is concave

in γ, and so in generalLγ
(II)(γ) may be multi-modal.

In contrast, Type I coefficient estimatesx(I) are obtained by minimizing

Lx
(I)(x) , −2 log p(y|x)p(x) ≡ ‖y − Φx‖2

2 + λ
∑

i

g(xi), (20)

with g defined via (3). These estimates can be obtained from an analogous optimization procedure in

γ-space as follows:

Theorem 1:Given theγ-space cost function

Lγ
(I)(γ) , yT Σ−1

y y +
m∑

i=1

f(I)(γi) (21)
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with f(I)(γi) , log γi + f(γi), let γ(I) , arg minγ≥0 Lγ
(I)(γ). Then the global minimum of (20)x(I)

satisfies

x(I) = Γ(I)Φ
T
(
λI + ΦΓ(I)Φ

T
)−1

y, Γ(I) = diag
[
γ(I)

]
. (22)

The correspondence extends to local minima as well:x∗ is a local minimum of (20) iffγ∗ is a local

minimum of (21).

So Type I methods can always be interpreted as minimizing the Type II-like cost functionLγ
(I)(γ) in

γ-space, albeit without the log-det term in (17), and with a particular selection forf , i.e., f(I).
4

Several points are worth mentioning with respect to this result. First, if g is known, as opposed tof

directly, thenf(I) can be computed using the concave conjugate [2, Section 3.3] of ϕ = g(
√

| · |). When

composed with the reciprocal functionγ−1
i , this gives

f(I)(γi) = min
z≥0

z

γi
− ϕ(z). (23)

For example, usingg(z) = |z|p gives theℓp-quasi-norm penalized minimization problem

x(I) = arg min
x

‖y − Φx‖2
2 + λ‖x‖p

p, p ∈ (0, 2). (24)

The analogous problem inγ-space, using (23) to computef(I)(γi), becomes

γ(I) = arg min
γ

yT Σ−1
y y +

(2 − p)

p

m∑

i=1

γ
p

2−p

i . (25)

Secondly, when viewed inγ-space, it is straightforward to add variance constraints to any Type I

objective where appropriate, e.g., minimizeLγ
(I)(γ) with γi ∈ [ǫ,∞) for all i. If ǫ is gradually reduced

during optimization, we have observed that local minima toLγ
(I)(γ) can often be avoided. This notion

is very similar in spirit to the algorithm from [7] yet more straightforward when viewed inγ-space. In

general, convergence proofs, complementary analyses, andalternative optimization strategies are possible

using this perspective. It also provides a particularly useful route for estimating the trade-off parameter

λ, which as a noise variance, is more naturally handled in theγ-space of variances [36].

Finally, theγ-space cost functionLγ
(I)(γ) can be interpreted as a special (limiting) case of the Type

II cost function (17), which leads to the following:

4Alternatively, it can equivalently be viewed as minimizing a Type II-like cost function with log |Γ| =
P

i
log γi replacing

log |Σy|.
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Corollary 1: Let x(I) denote Type I coefficients obtained by minimizing (20) or (21)with λ and f

set to some arbitrarȳλ and f̄ . Additionally, let xα
(II) denote the coefficients obtained by implementing

the Type II procedure withλ := α−1λ̄ andf(·) := α log [α(·)] + αf̄ [α(·)]. Thenx(I) = limα→∞ xα
(II).

In conclusion then, by choosing the appropriate sparse prior, and therefore the functionf , any Type I

solution can be viewed as a limiting case of Type II. This also implies that the less commonly adopted

Type II framework offers a wider variety of potential cost functions, relative to Type I, for tackling sparse

estimation problems. Consequently, as we will argue in later sections, a selection from this larger set

may possibly lead to improved performance.

B. Cost Functions inx-Space

Borrowing ideas from the previous section, we now demonstrate a simple means of computingx(II)

directly in x-space.

Theorem 2:Define thex-space cost function

Lx
(II)(x) , ‖y − Φx‖2

2 + λg(II)(x), (26)

with penalty

g(II)(x) , min
γ≥0

∑

i

x2
i

γi
+ log |Σy| +

∑

i

f(γi). (27)

The Type II coefficients computed via (11) then satisfyx(II) = arg minxLx
(II)(x). The correspondence

extends to local minima as well given additional assumptions (see Appendix):x∗ is a local minimum of

(26) iff γ∗ is a local minimum of (17).

Consequently, Type II solutions can be obtained by minimizing a penalized regression problem similar

in form to Type I. Additionally, a natural noiseless reduction exists leading to a constrained optimization

problem, analogous to Type I methods. Whenλ → 0, then Type II equivalently solves

x(II) = lim
λ→0

arg min
x

g(II)(x), s.t. y = Φx. (28)

The only reason we retain the limit, as opposed to merely setting λ = 0 in g(II)(x), is because solutions

with ‖x‖0 < n will effectively involve taking the log of zero when minimizing overγ, which is undefined.

Using the limit in this manner (outside of the minimization)avoids this complication, although practical

implementations for solving (28) are well-behaved and stable with λ = 0 [35].
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From an optimization standpoint, both (26) and (28) can easily be supplemented with additional

constraints, e.g.,x ≥ 0, facilitating the extension of Type II-like methods to a much wider range of

applications (e.g., see [35]). Additionally, when viewed in x-space, it is very natural to consider using

different values forλ, e.g., λ1 and λ2, given the two instances that appear in (26) and implicitly in

(28). In other words, the value ofλ multiplying g(II)(x) could be set to some arbitraryλ1 while the

value embedded inΣy could be set toλ2. For example, in (28) where it is assumed thatλ1 → 0, we

could easily allow a nonzeroλ2 (replacingλ → 0 with λ2 inside of Σy). While beyond the scope of

this paper, when using iterative reweightedℓ1 minimization algorithms to solve (26) or (28), adjusting

this λ2 can potentially improve performance substantially [35], similar to theǫ factor in the reweighting

method of Cand̀es et al. [6]. Note that it is only when we analyze Type II inx-space (as a standard form

of penalized regression) that manipulatingλ in this way makes any sense; in the original hierarchical

Bayesian model it is counterintuitive to maintain two values of λ. This also opens the door to using a

different dictionary for constructingg(II)(x). This issue will be taken up again in Section VI.

III. A NALYSIS OF THE TYPE II COST FUNCTION IN x-SPACE

The distinguishing factor of Type II methods is the log-det term in (17) and (27); the other regularization

term based onf(γi) is effectively present in Type I as well (see Section II-A) and, when mapped into

x-space, has been analyzed extensively in this context [5], [7], [10], [13], [27], [32]. Consequently, we

will concentrate our attention here on the simple case wheref(γi) = 0 and flesh out the corresponding

characteristics of the underlying Type II cost function inx-space and examine the relationship with

popular Type I methods. Additionally, local minimum analyses in Section IV suggest that the choice

f(γi) = 0 is particularly useful when maximal sparsity is concerned.Alternative choices forf(γi) in the

context of sparse recovery are examined in [37], further justifying the selectionf(γi) = 0.

A. General Properties of the Type II Penaltyg(II)(x)

It is well-know that concave, non-decreasing functions of the coefficient magnitudes favor sparse

solutions [27]. We now demonstrate thatg(II)(x) is such a penalty, meaningg(II)(x) = h(|x|), where

|x| , [|x1|, . . . , |xm|]T andh is a concave, non-decreasing function of|x|.

Theorem 3:Whenf(γi) = 0, g(II)(x) is a concave, non-decreasing function of|x| (sparsity-inducing).

Additionally, every local minimum of (26) or (28) is achieved at a solution with at mostn nonzero

elements, regardless ofλ.
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In the noiseless case, such solutionsx with ‖x‖0 ≤ n are referred to asbasic feasible solutions(BFS).

The second point in Theorem 3 has also been shown for the analogous Type II cost function directly in

γ-space [33], meaning local minima can be achieved with at most n nonzero elements ofγ, but the result

is much less transparent. Theorem 3 also holds for anyf(γi) that is concave and non-decreasing. As

an aside, it also implies that globally convergent, reweighted ℓ1 minimization is possible for optimizing

Lx
(II)(x) [35], assuming again thatf(γi) that is concave and non-decreasing.

Regarding global minima we have the following result:

Theorem 4:Given spark(Φ) = n+1, assume that there exists at least one feasible solution toy = Φx

with ‖x‖0 < n. Then the set of coefficient vectors that globally minimize (15) equals the set of coefficient

vectors that globally minimize (28) withf(γi) = 0,∀i.

Consequently the global minimum of (28) will always correspond with the global minimum of (15).

(Theorem 4 actually holds for anyf that is bounded.)

Thus far we have not provided any reason why the Type II penaltyg(II)(x) has any direct advantage

over Type I. In fact, both Theorems 3 and 4 are also trivially satisfied by replacingg(II)(x) with the

canonical sparse penalty‖x‖0, which is a special case of Type I. However, several factors distinguish

g(II)(x) in the context of sparse approximation.

First, g(II)(x) is non-separable, meaningg(II)(x) 6= ∑
i g(II)(xi). Equivalently, the implicit prior

distribution onx given byp(II)(x) ∝ exp[−1
2g(II)(x)], is non-factorial. Additionally, unlike traditional

Type I procedures (e.g., Lasso, ridge regression, etc.), this penalty is explicitly dependent on both the

dictionaryΦ and potentially the regularization parameterλ (assuming we only use a singleλ as discussed

above). The only exception occurs whenΦT Φ = I; hereg(II)(x) factors and can be expressed in closed

form independently ofΦ, althoughλ-dependency remains.

In general, theℓ1 norm is the optimal or tightestconvexrelaxation of theℓ0 norm, and therefore it

is commonly used leading to the Lasso and relatedℓ1 penalty algorithms [29]. However, theℓ1 norm

need not be the best relaxation in general. In Sections III-B and III-C we will demonstrate that the

non-separable,λ-dependentg(II)(x) provides a tighter, albeitnon-convex, approximation that promotes

greater sparsity than‖x‖1 while conveniently producing many fewer local minima than when using

‖x‖0 directly. We also show that, in certain settings, no separable, λ-independent regularization term can

achieve similar results. Consequently, the widely used family of ℓp quasi-norms, i.e.,‖x‖p
p =

∑
i |xi|p,

June 28, 2010 DRAFT



14

p ≤ 1 [9], or the Gaussian entropy measure
∑

i log |xi| based on the Jeffreys prior [15] provably fail in

this regard.

Finally, at a superficial level, theΦ-dependency ofg(II)(x) leads to scale-invariant solutions in the

following sense. If we rescaleΦ with a diagonal matrixD, i.e., Φ → ΦD, then the optimal solution

becomesx(II) → Dx(II). In contrast, when minimizing theℓ1 norm, such a rescaling leads to a

completely different solution which requires solving an entirely new convex program; there is no simple

linear relationship between the solutions.

B. Benefits of a Non-Separable Penalty

The benefits of the non-separable nature ofg(II)(x) are most pronounced in the overcomplete case,

meaning there are more dictionary columns than dimensions of the signaly. In a noiseless setting (with

λ → 0), we can explicitly quantify the potential of this propertyof g(II)(x). As discussed previously,

the global minimum of (28) will equalx0, the maximally sparse solution to (15), assuming the latteris

unique. The real distinction then is regarding the number of local minimum. In this capacityg(II)(x) is

superior to any possible separable variant:

Theorem 5:In the limit asλ → 0 and assuming spark(Φ) = n + 1, no separablepenaltyg(x) =
∑

i g(xi) exists such that corresponding Type I optimization problem

min
x

∑

i

g(xi) s.t. y = Φx (29)

is: (i) Always globally minimized by a maximally sparse solution x0 and, (ii) Has fewer local minima

than when solving (28).

Note that the spark condition is merely included to simplifythe proof (see the Appendix); Theorem

5 can be extended with additional effort to include other spark values.5 In general, Theorem 5 speaks

directly to the potential limitations of restricting oneself to factorial priors (or equivalently separable

penalties) when maximal sparsity is paramount. As stated previously, use of the separableℓ1 norm has

traditionally been advocated because it represents the tightest convex approximation to theℓ0 norm.

However, a viable alternative relaxation is to replace the convexity requirement with condition (i) from

above (i.e., matching global minimum) and then ask what is the smoothest approximation to theℓ0 norm,

5We can also always add an arbitrarily small amount of randomness to any dictionary to satisfy the spark constraint.
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separable or not, consistent with this assumption. The Type II method discussed above provides very

substantial smoothing at the expense of convexity, yet can still be implemented with tractable, provably

convergent updates [35].

While generally difficult to visualize, in restricted situations it is possible to explicitly illustrate the type

of smoothing over local minima that is possible using non-separable penalties. For example, consider

the case wherem = n + 1 and spark(Φ) = m, implying that Φ has a null-space dimension of one.

Consequently, any feasible solution toy = Φx can be expressed asx = x0 + αv, wherev ∈ null(Φ), α

is any real-valued scalar, andx0 is the maximally sparse solution. We can now plot any penaltyfunction

g(x) over the 1D feasible region ofx-space as a function ofα to view the local minima profile.

In this simplified situation, the maximum number of local minima equalsn + 1, since removing any

column fromΦ produces a BFS. However, if‖x0‖0 < n, then not all of these BFS can be unique. For

example, if‖x0‖0 = 1, then only two BFS will be unique: one solution that includes all columns ofΦ

not used byx0, and then the solutionx0 itself. In contrast, if‖x0‖0 = n−1, then there will ben unique

BFS (becausex0 will have two zero-valued elements and removing either associated dictionary column

will lead to the same BFS). Therefore, the local minima problem is exacerbated as‖x0‖0 becomes larger,

consistent with expectations. Ideally then, a non-separable penalty will provide additional smoothing in

this regime.

We demonstrate these ideas with two test cases, both of whichinvolve the same10 × 11 dictionary

Φ generated with iid unit Gaussian entries. In the first case we computey = Φx0, wherex0 is a sparse

vector with‖x0‖0 = 1; the single nonzero element is drawn from a unit Gaussian. Figure 1 (left) displays

the plots of two example penalties in the feasible region ofy = Φx: (i) the non-separable Type II penalty

g(II)(x), and (ii) the conventional penaltyg(x) =
∑

i |xi|p, p = 0.01. The later is a separable penalty

that converges to the canonicalℓ0 norm whenp → 0. From the figure, we observe that, while both

penalties peak at the maximally sparse solutionx0, the Type I penalty has a second, small local minima

as well located atα ≈ 2. While the Type II penalty is unimodal, its smoothing benefitsare not very

pronounced in this situation.

In the second case, we repeat the above with‖x0‖0 = 9. This is the largest number of nonzeros such

that a unique, maximally sparse solution still exists (withhigh probability by virtue of (14)). Hence it

is the most difficult sparse recovery problem to solve, with 10unique local minima per the discussion

above. Figure 1 (right) shows the results. Now the Type I penalty reflects all 10 localminima (9 are

shown), while Type II demonstrates dramatic smoothing. While the ℓ1 norm (which is equivalent to the

assumptionp = 1) also smooths out local minima, the global minimum may be biased away from the
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maximally sparse solution in many situations, unlike Type II which provides a non-convex approximation

with its global minimum anchored atx0. We will revisit this issue in much more detail in Section IV.
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Fig. 1. Plots of the Type II penalty (normalized) across the feasible region as parameterized byα. A separable penalty given by

g(x) ∝
P

i
|xi|

0.01 ≈ ‖x‖0 is included for comparison. Both approximations to theℓ0 norm retain the correct global minimum,

but only the Type II penalty smooths out local minima.Left: ‖x0‖0 = 1 (simple case).Right: ‖x0‖0 = 9 (hard case).

In general, the Achilles heel of standard, separable penalties (Type I) is that if we want to retain the

global minimum of (15), we require a highly concave penalty on eachxi. However, this implies thatall

BFS will form local minima of the penalty function constrained to the feasible region (see the proof of

Theorem 5 in the Appendix). This is a very undesirable propertysince there are on the order of
(
m
n

)

unique BFS with‖x‖0 = n (assuming spark(Φ) = n+1), which is not very sparse. In the example from

Figure 1 (right) there are 10 such solutions and hence 10 local minima to the Type I cost. We would

really like to find degenerateBFS, where‖x‖0 is strictly less thann. Such solutions are exceedingly

rare and difficult to find, yet it is these very solutions that canbe favored by the proper construction of

highly concave, non-separable penalties.

A simple example serves to illustrate how a non-separable penalty can remove non-degenerate BFS that

act as local minima. Consider the penalty functionh0(x) , min(‖x‖0, n), whereh0(x) is equivalent to

taking theℓ0 norm of the largest (in magnitude)n elements ofx; this leads to the optimization problem

min
x

h0(x), s.t. y = Φx. (30)

While the global minimum remains atx0, all local minima occurring at non-degenerate BFS have been

effectively removed. In other words, at any feasible solution x∗ with n nonzero entries, we can always

add a small componentαv ∈ null(Φ) and maintain feasibility without increasingh0(x), sinceh0(x) can
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never be greater thann. Therefore, we are free to move from BFS to BFS without increasing h0(x). Also,

the rare degenerate BFS that do remain, even if suboptimal, are sparser by definition. Therefore, locally

minimizing the new problem (30) is clearly superior to locally minimizing (15). This is possible because

we have replaced the troublesome separable penalty‖x‖0 with the non-separable surrogateh0(x).

This notion is illustrated with a simple graphic in Figure 2 (left), which compares theℓ0 norm with

h0(x) in a 1D feasible region parameterized byα with the same setup as in Figure 1 (right). In this

situation, all local minima are removed by the simple, non-separable ‘truncated’ℓ0 norm h0(x).

To create effective sparsity penalties in general, it may not be optimal to apply concave, sparsity-

inducing functions directly to the individual coefficients (or latent variables) in an elementwise fashion

(separable), which is characteristic of all Type I methods.Rather, it can be useful to map the coefficients to

a lower-dimensional space first. The latter operation, which is effectively what Type II accomplishes, then

necessitates that the resulting penalty be non-separable in the original full-dimensional space. For example,

h0(x) first maps to ann-dimensional space (then largest coefficients ofx), before applying theℓ0 norm.

Of courseh0(x) is not viable practically since there is no gradient information or curvature, rendering

minimization intractable. However, a simple alternative is hp(x), which applies theℓp quasi-norm (with

0 < p < 1) to the n largest elements ofx. Figure 2 (right) compareshp(x) with direct application of

‖x‖p
p, using p = 0.01 and the same experimental setup as before. Notice that the smoothing of local

minima closely mimics that of Type II. While this may on the surface be a surprising result, analysis

of Type II in γ-space provides strong intuitive evidence for why this should be the case; however, for

space considerations we defer this analysis to a future publication.

C. Benefits ofλ dependency

To briefly explore the potential benefits ofλ dependency in the Type II penaltyg(II)(x), we adopt the

simplifying assumptionΦT Φ = I. In this special case,g(II)(x) actually becomes separable and can be

computed in closed form via

g(II)(x) =
∑

i

g(II)(xi) ∝
∑

i

2|xi|
|xi| +

√
x2

i + 4λ
+ log

(
2λ + x2

i + |xi|
√

x2
i + 4λ

)
, (31)

which is independent ofΦ. A plot of g(II)(xi) is shown in Figure 3 below. Theλ dependency of (31)

contributes some desirable properties to the Type II cost function. Before giving the main result, we state

thatg(x) is astrictly concavefunction of |x| if g(x) = h(|x|) andh[αx+(1−α)y] > αh(x)+(1−α)h(y)

for all α ∈ (0, 1) andx, y ∈ [0,∞), x 6= y. This leads to the following:
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Fig. 2. Example smoothing of two hypothetical non-separable penalties.Left: h0(x) and theℓ0 norm vs.α. 10 distinct local

minima are present with theℓ0 norm (9 are shown), but only a single degenerate BFS. However, the ‘truncation’ of theℓ0 norm

that characterizesh0(x) has removed all local minima; the global minimum remains unaltered.Right: hp(x) and‖x‖p
p vs. α,

p = 0.01 (the Type II plot from Figure 1 (right) is also included for comparison). This represents a more practical non-separable

approximation that retains slope information pointing towards the global solution that could, at least in principle, be used for

optimization purposes.

Theorem 6:AssumingΦT Φ = I, then the following hold:

1) The cost function (26) has no (non-global) local minima.

2) g(II)(xi) is a non-decreasing and strictly concave function of|xi|, and so provides a tighter

approximation to‖x‖0 than‖x‖1 (see Appendix for more details).

3) No fixed,λ-independent penalty can satisfy both of the above properties.

4) Direct minimization of (15) has2m local minima; any other strictly concave,λ-independent penalty

function can potentially have this many local minima as well, depending onΦ andy.

Intuitively, whenλ is small, the Gaussian likelihood term (or quadratic data-fitterm) is highly restric-

tive, constraining most of its relative mass to a very localized region ofx-space. Therefore, a tighter

prior/penalty more closely resembling theℓ0 norm can be used without the risk of local minima, which

occur when the spines of a sparse prior overlap non-negligible portions of the likelihood (see Figure 6 in

[30] for a good 2D visual of a sparse prior with characteristic spines running along the coordinate axes).

In the limit asλ → 0, g(II)(x) converges to a scaled proxy of theℓ0 norm, yet no local minimum exist

because the likelihood in this case only permits a single feasible solution withx = ΦT y. To see this,
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consider re-expressing (31) as

g(II)(x) =
∑

i

g(II)(xi) ∝
∑

i

2|xi|
|xi| +

√
x2

i + 4λ
+
∑

i

log

(
2λ + x2

i + |xi|
√

x2
i + 4λ

)
. (32)

With λ → 0, the first summation converges to‖x‖0 while the second reduces to
∑

i log |xi|, ignoring an

irrelevant scale factor and a constant. Sometimes referred to as Gaussian entropy, this log-based factor can

then be related to theℓ0 norm via‖x‖0 ≡ limp→0
∑

i |xi|p and limp→0
1
p

∑
i (|xi|p − 1) =

∑
i log |xi|.

In contrast, whenλ is large, the likelihood is less constrained and a looser prior (meaning a less concave

penalty function) is required to avoid local minima troubles, which will arise whenever the now relatively

diffuse likelihood intersects the sharp spines of a highly sparse prior. In this situationg(II)(x) converges

to a scaled version of theℓ1 norm. The Type II penalty naturally handles this transition becoming sparser

asλ decreases and vice versa.

Of course as we alluded to previously, we can potentially treat theλ embedded ing(II)(x) as a separate

parameter; in general there is no guarantee that keeping thetwo instances ofλ equal is necessarily optimal.

But the analysis here does motivate the point that varying the concavity of the penalty function to reflect,

for example, differing noise levels can expand the utility of non-convex approximations.

In summary, use of theℓ1 norm in place ofg(II)(x) also yields no local minima; however, it is a

much looser approximation of theℓ0 norm and penalizes coefficients linearly unlikeg(II)(x). As a final

point of comparison, the actual coefficient estimate obtained from minimizing (26) whenΦT Φ = I is

exactly equivalent to the non-negative garrote estimator that has been advocated for wavelet shrinkage

[16], [33].
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Fig. 3. 1D example of the Type II penalty (normalized) assumingΦT Φ = I. Theℓ1 andℓ0 norms are included for comparison.
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IV. T YPE II L OCAL M INIMA CONDITIONS

From Section III-A we know that the global minimum of the Type IIcost function (whether inx-space

or γ-space) coincides with the global solution to (15) whenf(γi) = 0 and λ → 0. Additionally, we

have shown that Type II provides a way to smooth local minima created by direct use of theℓ0 norm

(or any close, separable approximation). However, it remains unclear what determines when and where

local minima will occur or conditions whereby they are all removed. From Theorem 3 we know that

every local minimum is achieved with at mostn nonzero elements, i.e., a basic feasible solution (BFS).

Assumingλ → 0 (noiseless case) and spark(Φ) = n+1, this provides an easy way to bound the possible

number of local minima:

1 ≤ # of Type II
Local Minima

≤ # of BFS to
y = Φx

∈
{(

m − 1

n

)
+ 1,

(
m

n

)}
. (33)

Any Type I (separable) method whose global solution always globally minimizes (15) necessarily will

achieve the upper bound (see the proof of Theorem 5 in the Appendix); however, with Type II this need

not be the case. In fact, most BFS will not end up being local minima (e.g., see Figure 1 (right)). As

we will show below, in some cases it is even possible to achieve the ideal lower bound, i.e., a single

minima that is globally optimal. As before, we will focus ourattention to the case wheref(γi) = 0.

Local minima analyses for arbitraryf(γi) are considered in [33].

A. Necessary Conditions for Local Minima

Although we cannot remove all non-degenerate local minima in all situations and still retain compu-

tational tractability, it is possible to remove many of them, providing some measure of approximation to

(30). This is effectively what is accomplished using Type II as will be subsequently argued. Specifically,

we will derive necessary conditions required for a non-degenerate BFS to represent a local minimum to

Lx
(II)(x) (assumingλ → 0). We will then show that these conditions are oftennot satisfied, implying

that there are potentially many fewer local minima. Thus, locally minimizing Lx
(II)(x) comes closer to

(locally) minimizing (30) than traditional Type I methods,which in turn, is closer to globally minimizing

‖x‖0.

Suppose that we have found a (non-degenerate) BFSx∗ and we would like to assess whether or not it

is a local minimum to the Type II cost function withλ → 0. For convenience, let̃x denote then nonzero

elements ofx∗ and Φ̃ the associated columns ofΦ (therefore,y = Φ̃x̃ and x̃ = Φ̃−1y). Intuitively, it

would seem likely that if we are not at a true local minimum, then there must exist at least one additional

column of Φ not in Φ̃, e.g., someu, that is appropriately aligned with or in some respect similar to
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y. Moreover, the significance of this potential alignment mustbe assessed relative tõΦ. For example,

it seems plausible (desirable) that ifu ≈ y and all columns ofΦ̃ are not close toy, then possibly

(hopefully) we are not at a local minimum and a sparser solution can be descended upon by including

u.

A useful metric for comparison is realized when we decomposeu with respect toΦ̃, which forms a

basis inR
n under the assumption that spark(Φ) = n + 1. For example, we may form the decomposition

u = Φ̃ṽ, where ṽ is a vector of coefficients analogous tõx. As will be shown below, the similarity

required betweenu and y (needed for establishing the existence of a local minimum) may then be

realized by comparing the respective coefficientsx̃ and ṽ. In more familiar terms, this is analogous to

suggesting that similar signals have similar Fourier expansions. Loosely, we may expect that ifṽ is ‘close

enough’ tox̃, thenu is sufficiently close toy (relative to all other columns iñΦ) such that we are not

at a local minimum. We formalize this idea via the following result:

Theorem 7:Let Φ satisfy spark(Φ) = n + 1 and letx∗ represent a solution vector with‖x∗‖0 = n

entries such that̃x = Φ̃−1y. Let U denote the set ofm − n columns ofΦ not included inΦ̃ andV the

set of coefficients given by
{

ṽ : ṽ = Φ̃−1u, u ∈ U
}

. Thenx∗ is not a local minimum of (28) if

∑

i6=j

ṽiṽj

x̃ix̃j
> 0 (34)

for someṽ ∈ V.

This theorem provides a useful picture of what is required forlocal minima to exist and more importantly,

why many (possibly most) BFS are not local minima. Moreover, there are several convenient ways in

which we can interpret this result to accommodate a more intuitive perspective.

In general, if the sign patterns of̃v and x̃ tend to align, then the left-hand-side of (34) will likely be

positive and we cannot be at a local minimum. For illustration purposes, in the extreme instance where

the sign patterns match exactly, this will necessarily be the case. This special situation can be understood

geometrically as follows. Consider the convex cone constructed via the columns of the matrix̃ΦS, where

S , diag(sign(x̃)). This cone is equivalent to the set vectors which can be formedas positive linear

combinations of the columns of̃ΦS, i.e., the set
{

z : z = Φ̃Sw, w ∈ R
n, w ≥ 0

}
. By definition, this

cone will necessarily contain the signaly. However, if this cone contains any other basis vectoru ∈ U ,

then the sign pattern of the correspondingṽ will match x̃ and we cannot be at a local minimum via (34).

By symmetry arguments, the same is true for anyu in the convex cone formed by−Φ̃S. The simple 2D
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example shown in Figure 4 helps to illustrate this point.
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Fig. 4. 2D example with a2 × 3 dictionary Φ (i.e., n = 2 and m = 3) and a basic feasible solution using the columns

eΦ = [φ1 φ2]. The shaded areas represent the cone (and its reflection about the origin) described above. In this simple case,

φ1 andφ2 divide x-space into four quadrants. The shaded regions include the quadrantcontainingy and its reflection about

zero. Left: In this case,u = φ3 penetrates the shaded region, and so we satisfy the conditions of Theorem 7, ensuring that

this configuration doesnot represent a local minima of Type II. But itdoesrepresent a local minimum of any Type I method

constrained to match the global minimum of theℓ0 norm. Right: Now u is outside of the cone (and cannot be used to form a

tighter cone abouty), so this situation does represent a minimizing basic feasible solution for Type II.

Alternatively, we can cast this geometric perspective in terms of relative cone sizes. For example, let

C represent the convex cone, and its reflection, formed byΦ̃S. Then we are not at a local minimum

to Lx
(II)(x) if there exists a second convex coneC ′ formed from a subset of columns ofΦ such that

y ∈ C ′ ⊂ C, i.e., C ′ is a tighter cone containingy. In Figure 4 (left), we obtain a tighter cone abouty

by replacingφ1 with u.

Of course we must emphasize that these geometric conditionsare muchweaker than (34), e.g., if all

u ∈ U arenot in C, we still may not be at a local minimum. In fact, for a local minimum to occur, all

u must be reasonably far from this cone such that
∑

i6=j
evievj

exiexj
≤ 0, ∀ṽ ∈ V.

B. Conditions for Removing All Local Minima

This section describes conditions, based on the relative magnitudes of the nonzero elements inx0,

such that all (non-global) local minima of (28) are removed leaving a unique global solution that equals

x0. The core idea is that as these nonzero magnitudes become highly scaled, there are increasingly fewer

local minima until eventually all are smoothed away. In contrast, we argue in Section IV-C that when

all the nonzero coefficients have equal magnitudes, obtaining x0 is more difficult because of more local
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minima. However, even in this worst-case scenario we demonstrate empirically in Section V that Type

II still outperforms widely used Type I algorithms.

Theorem 8:Let x(i) denote thei-th largest coefficient magnitude ofx and assume spark(Φ) = n + 1.

Then there exists a set ofn − 2 scaling constantsνi ∈ (0, 1] (i.e., strictly greater than zero) such that,

for any y = Φx′ generated with‖x′‖0 < n and

x′
(i+1) ≤ νix

′
(i) i = 1, . . . , n − 2, (35)

the problem (28) has a unique minimumx(II) such thatx(II) = x′. Moreover,x′ will equal x0, the

unique maximally sparse solution.

This result is obviously restrictive in the sense that the dictionary-dependent constantsνi significantly

confine the class of signalsy that we may represent. Moreover, we have not provided any convenient

means of computing what the different scaling constants might be. But Theorem 8 nonetheless solidifies

the notion that the Type II cost function is especially capable of recovering coefficients of different scales

(and it must still find all nonzero elements no matter how smallsome of them may be). Additionally,

we have specified conditions whereby we will find the uniquex0 even when the sparsity is as large as

‖x0‖ = n−1, provided we use an appropriate, globally-convergent algorithm such as iterative reweighted

ℓ1 minimization [35].

It is important to stress that this result specifies sufficient conditions for removing all suboptimal local

minima from the Type II cost function, but these conditions are by no means necessary for removing

most/all influential local minima. In practice, locally minimizing (28) performs quite well even when the

coefficients are not highly scaled (see Section V). Moreover, we can always initialize at the minimum

ℓ1-norm solution (best convex approximation), and then progress from there. In fact, when optimized

via an iterative reweightedℓ1 minimization technique, Theorem 8 can be leveraged to show that locally

minimizing (28) can never do worse than the minimumℓ1 solution and that, for any dictionary and sparsity

profile, there will always be cases where it does better (in particular, when highly scaled coefficients are

present) [35]. This is true even for dictionaries with arbitrarily bad coherence properties, e.g.,φT
i φj ≈ 1

for all i 6= j, whereφi andφj are thei-th andj-th columns ofΦ respectively [36].

In contrast, no possible Type I method satisfies a result comparable to Theorem 8:

Theorem 9:For any set ofn− 2 nonzero scaling constants there will always exist a dictionary Φ and
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a set of ordered coefficientsx′, consistent with the stipulations of Theorem 8, such that anypossible

Type I cost function, givenΦ and the signaly = Φx′, will have multiple local minima and/or a global

minimum that is not maximally sparse.

Because this again holds regardless of coherence between dictionary columns, it can then be used to

show that, for any signaly, there will always be poorly structured dictionaries such that Type II succeeds

but any Type I method fails [36].

At this point, it may be unclear what probability distributions are likely to produce coefficient magni-

tudes that satisfy the conditions of Theorem 8. It turns out that the Jeffreys prior, given byp(x) ∝ 1/x,

is appropriate for this task. This distribution has the unique property that the probability mass assigned

to any given scaling is equal. More explicitly, for anys ≥ 1,

Prob
(
x ∈

[
si, si+1

])
∝ log(s) ∀i ∈ Z. (36)

For example, the probability thatx is between1 and 10 equals the probability that it lies between10

and100 or between0.01 and0.1. Because this is an improper density, we define an approximateJeffreys

prior with range parametera ∈ (0, 1). Specifically, we say thatx ∼ J(a) if

p(x) =
−1

2 log(a)x
for x ∈ [a, 1/a]. (37)

With this definition in mind, we present the following result.

Theorem 10:For a givenΦ that satisfies spark(Φ) = n + 1, let y be generated byy = Φx′, where

‖x′‖0 < n with nonzero magnitudes drawn iid fromJ(a). Then asa approaches zero, the probability

that we obtain anx′ such that the conditions of Theorem 8 are satisfied approaches unity.

While the proof is deferred to [33], on a conceptual level this result can be understood by considering

the distribution of order statistics. For example, givenn−1 samples from a uniform distribution between

zero and someθ, with probability approaching one, the distance between the k-th and(k + 1)-th order

statistic can be made arbitrarily large asθ moves towards infinity. Likewise, with theJ(a) distribution,

the relative scaling between order statistics can be increased without bound asa decreases towards zero,

leading to the stated result.

In conclusion, we have shown that a simple, (approximate) noninformative Jeffreys prior leads to

sparse inverse problems that are optimally solved via Type II with high probability. Interestingly, it is
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this same Jeffreys prior that forms the generating coefficient prior of Type II whenf(γi) = 0, e.g., the

prior obtained by maximizing outγ in (6). However, it is worth mentioning that other Jeffreys prior-based

techniques, e.g., direct minimization of− log p(x) ∝∏i log |xi| subject toy = Φx, do not provide any

Type II-like guarantees. Although several algorithms do exist that can perform such a minimization task

(e.g., [15], [19]), they perform poorly with respect to (15)in our experience because of convergence to

bad local minimum as shown in [33]. This is especially true if the coefficients are highly scaled. Section

VI will analyze this issue in more detail.

C. Worst-Case Scenario

If the best-case scenario (no local minima) occurs when the nonzero generating coefficients are all of

very different scales, it is reasonable to conjecture that the most difficult sparse inverse problem may

involve nonzero coefficients of the same or even identical scale. If we definex̄ ∈ R
d to be the vector of

d nonzero magnitudes in some generatingx, then this implies that̄x1 = x̄2 = . . . x̄d. This notion can

be formalized somewhat by considering thex̄ distribution that is furthest from the Jeffreys prior. First,

we note that the Type II cost function is effectively independent of the overall scaling of the generating

coefficients, meaningαx̄ is functionally equivalent tōx providedα is nonzero. This invariance must be

taken into account in our analysis. Therefore, we assume the coefficients are rescaled such that
∑

i x̄i = 1.

Given this restriction, we can easily determine the distribution of nonzero coefficient magnitudes that

is most different from the Jeffreys prior. Using the standard procedure for changing the parameterization

of a probability density, the joint density of the constrained variables can be computed simply as

p(x̄1, . . . , x̄d) ∝
1

∏d
i=1 x̄i

for
d∑

i=1

x̄i = 1, x̄i ≥ 0,∀i. (38)

From this expression, it is easily shown thatx̄1 = x̄2 = . . . = x̄d achieves the global minimum.

Consequently, equal coefficient magnitudes are the absoluteleast likely to occur from the Jeffreys prior.

Hence, we may argue that the distribution that assignsx̄i = 1/d with probability one is, in some sense,

furthest from the constrained Jeffreys prior.

Nevertheless, because of the complexity of the Type II penalty, it is difficult to prove axiomatically that

x̄ ∼ 1 is overall the most problematic distribution with respect to sparse recovery. However geometric

considerations from [38] (omitted here for brevity), as well as illustrations from Section IV-D, support

this conclusion. Regardless, it will be demonstrated in Section V that the worst-case performance of Type

II is still better than common Type I approaches.
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D. Illustration of Best- and Worse-Case Scenarios

Before proceeding to empirical results, it is insightful toobserve directly the smoothing of local minima

that leads to the best- and worst-case scenarios detailed inSections IV-B and IV-C. To accomplish this,

we repeat the exact same toy experiment from Section III-B, where we plotted penalty functions over a

1D feasible region parameterized byα. Using ‖x0‖0 = 9, we recreate Figure 1 (right) with two minor

alterations. First, in Figure 5 (left), we take the square root of each nonzero coefficient magnitude, creating

magnitudes with very similar scales (a more difficult situation). Secondly, in Figure 5 (right), we square

each nonzero magnitude, creating highly scaled coefficients(a more favorable situation). The effect then

becomes very clear.
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Fig. 5. Plots of the Type II penalty (normalized) across the feasible region as parameterized byα. A separable penalty given

by g(x) ∝
P

i
|xi|

0.01 ≈ ‖x‖0 is included for comparison.Left: Similar nonzero magnitudes (hard case). The Type II cost has

3 distinct local minima.Right: Highly scaled nonzero magnitudes (easy case). Type II now has onlya single minima atx0; the

Type I example still has 10 minima (not all are shown).

V. EMPIRICAL RESULTS

The central purpose of this section is to present empirical evidence that supports our theoretical

analysis and illustrates the improved performance afforded by Type II in solving (15) as various problem

parameters are varied. We will focus our attention on the insights provided by Sections III and IV,

comparing Type II (assumingf(γi) = 0 andλ = 0) with two standard Type I approaches, basis pursuit

(BP) [8] and orthogonal matching pursuit (OMP) [31]. (Empirical comparisons with other Type I methods

are included in [35].) BP is the optimal convex approximation to (15) obtained by minimizing‖x‖1

subject to the constrainty = Φx; this can be solved using standard linear programming. In contrast,
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OMP is a greedy strategy for locally minimizing (15) that iteratively selects the basis vector most aligned

with the current signal residual. At each step, a new approximant is formed by projectingy onto the

range of all the selected dictionary columns. For the Type IIimplementation, we utilize an iterative

reweightedℓ2 minimization technique based on convex upper bounds [35], which is equivalent to the

EM implementation of sparse Bayesian learning (SBL) from [30] using λ → 0.

Given a fixed distribution for the nonzero elements ofx0, we will assess which algorithm is best

(at least empirically) for most dictionaries relative to a uniform measure on the unit sphere, a metric

suggested in [11] and relevant to compressive sensing. To this effect, a number of monte-carlo simulations

were conducted, each consisting of the following: First, a random, overcompleten × m dictionaryΦ is

created whose columns are each drawn uniformly from the surface of the unit sphere inRn. Next, sparse

coefficient vectorsx0 are randomly generated withd nonzero entries. Nonzero magnitudesx̄0 are drawn

iid from an experiment-dependent distribution. Signals arethen computed asy = Φx0. Each algorithm

is presented withy andΦ and attempts to estimatex0. In all cases, we ran 1000 independent trials and

compared the number of times each algorithm failed to recover x0. Under the specified conditions for

the generation ofΦ andy, all other feasible solutionsx almost surely have more nonzeros thand, so our

synthetically generatedx0 will be maximally sparse in practice. Moreover,Φ will almost surely satisfy

spark(Φ) = n + 1.

With regard to particulars, there are essentially four variables with which to experiment: (i) the

distribution ofx̄0, (ii) the sparsity leveld, (iii) the signal dimensionn, and (iv) the number of dictionary

columnsm. In Figure 6, we display results from an array of testing conditions. In eachrow of the figure,

elements of̄x0 are drawn iid from a fixed distribution for alli; the first row uses unit nonzero coefficients,

the second has elements drawn fromJ(a = 0.001), and the third uses a unit Gaussian. In all cases, the

signs of the nonzero coefficients are irrelevant due to the randomness inherent in the basis vectors.

The columnsof Figure 6 are organized as follows: The first column is based on the valuesn = 50,

d = 16, while m is varied fromn to 5n, testing the effects of an increasing level of dictionary redundancy,

m/n. The second fixesn = 50 andm = 100 while d is varied from10 to 30, exploring the ability of

each algorithm to resolve an increasing number of nonzero coefficients. Finally, the third column fixes

m/n = 2 and d/n ≈ 0.3 while n, m, and d are all increased proportionally. This demonstrates how

performance scales with larger problem sizes.

The first row of plots essentially represents the worst-case scenario for Type II per our previous analysis,

and yet performance is still consistently better than both BP and OMP. In contrast, the second row of

plots approximates the best-case performance for Type II, where we see that Type II is almost infallible.
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Fig. 6. Empirical results comparing the probability that OMP and BP (Type Imethods), and Type II fail to findx0 under various

testing conditions. Each data point is based on 1000 independent trials. The distribution of the nonzero coefficient magnitudes

is labeled on the far left for each row, while the values forn, m, andd are included on the top of each column. Independent

variables are labeled along the bottom of the figure.

The handful of failure events that do occur are becausea is not sufficiently small and therefore,J(a)

was not sufficiently close to a true Jeffreys prior to achieve100% success (see center plot). Finally, the

last row of plots, based on Gaussian distributed coefficient amplitudes, reflects a balance between these

two extremes. Nonetheless, Type II still holds a substantial advantage. In general, we observe that Type

II is capable of handling more redundant dictionaries (column one) and resolving a larger number of

nonzero coefficients (column two). Also, column three illustrates that it is able to recover a number of
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nonzero coefficients that grows linearly in the signal dimension.

By comparing row one, two and three, we observe that the performance of BP is independent of the

coefficient magnitude distribution. This occurs because equivalence between the minimumℓ0-norm and

minimum ℓ1-norm solutions only depends on the sign pattern and sparsity profile of x0 [23]. This result

suggests a potential limitation of BP, namely, it does not allow exploitation of the nonzero magnitudes

(as Type II does) to increase the probability that we successfully recoverx0. Moreover, BP performance

is slightly below the worst-case Type II performance.

In contrast, like Type II, OMP results are highly dependent on the magnitude distribution. Unfortu-

nately though, when the magnitude distribution is unity (top row), performance is unsatisfactory. In our

experience, this appears to be a common problem with greedy methods designed to locally minimize

(15). With highly scaled coefficients, OMP does considerablybetter than BP (middle row); however,

the scale parametera can never be adjusted such that OMP always succeeds (this canbe proven using

a simple toy counter-example [33]), and performance is significantly inferior to Type II. Finally, an

additional weakness of OMP is that, unlike both Type II and BP, performance can potentially degrade as

the problem size increases (upper right plot). Of course additional study is necessary to fully compare

the relative performance of these methods on large-scale problems.

In summary, while the relative proficiency between OMP and BP is contingent on experimental

particulars, Type II is uniformly superior in the cases we have tested (including examples not shown,

e.g., results with other dictionary types).

VI. CONCLUSION

In this paper we have examined sparsity-promoting cost functions that emerge from a simple latent

variable Bayesian model, emphasizing the distinction between Type I (MAP estimation) and Type II

(empirical Bayes) approaches, demonstrating that the former is actually a special limiting case of the

latter and that both can be equivalently expressed in eithercoefficient or latent variable space. This

process allowed us to directly compare underlying cost functions and argue that there are many potential

advantages of at least one flavor of Type II. While Bayesian considerations formed the starting point for

these analyses, we should stress that the central underlying ideas regarding why Type II is so effective can

be understood independently. More concretely, we do not actually believe that the unknown coefficients

x are distributed asp(II)(x) ∝ exp
[
−1/2g(II)(x)

]
(exemplified by statistical dependencies between

elements) and that the validity of this assumption is the primary reason for the success of Type II.

Rather, we would argue that the Bayesian hierarchy upon which Type II is based represents a convenient
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fiction that happens to give rise to a useful class of sparsity-inducing cost functions. A similar point is

raised in [3] regarding the performance ofℓ1 solutions. Here success follows from desirable properties

of the underlying convex cost function, not from the presumed Laplacian distribution of the unknown

coefficients.

This perspective then allows us to consider alternative costfunctions and manipulations of the implicit

Type II sparsity penalty that may lose meaning in the contextof the original Bayesian hierarchy but

show promise on sparse estimation tasks. For example, we have shown that the non-separable Type II

penaltyg(II)(x) is dependent on both the dictionaryΦ and the noise varianceλ. While meaningless from

a Bayesian perspective, when we analyze the situation abstractly as a general form of Type I penalized

regression, it becomes apparent that it could be beneficial tosubstitute alternative choices forλ or Φ in

g(II)(x). In other words, if the only goal is to efficiently estimate global solutions to canonical sparse

recovery problems, then it is not clear that the optimal selections are consistent with the original Bayesian

model. Moreover, as we demonstrate in [35], other non-separable penalty functions inspired by Type II

but deviating from the Bayesian hierarchical derivation can be very effective as well.

All of this serves to motivate a wider class of cost functionsfor sparse estimation tasks and, in particular,

allows us to exploit the fact that the distribution of nonzero coefficient magnitudes can drastically affect

the difficulty of computing perfect sparse signal reconstructions. The popular minimumℓ1-norm solution

(Type I) is completely blind to this distribution, and therefore exhibits performance below the worst-case

regime possible via Type II. Note that neither method is given a priori knowledge of this distribution;

rather, it is that Type II automatically operates more successfully when the distribution happens to be

favorable. In general, we would argue that new sparse inverse algorithms should take these and related

issues into account.

In [3] it is suggested that the distribution of nonzero coefficients is not really that important in a

variety of practical situations such as image reconstruction. In its simplest form, the argument goes as

follows. In some transform domain (e.g., wavelets) the coefficient distribution of many common images

can be estimated and fit to a generalized Gaussianp(x) ∝ exp [−1/2‖x‖p
p], where the learned value

of p tends to be significantly less thanp = 1. However, when it comes to actually estimatingx using

a sparse recovery algorithm based on this learned value ofp, i.e., solving a problem akin to (24) with

p < 1 (Type I), performance is no better than when usingp = 1. The authors conclude then that, given

the validity of the assumption thatx is sparse, the coefficient distribution of the nonzero elements is

relatively inconsequential.

While this is certainly a very plausible conclusion, our results herein suggest that the effect of coefficient
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distributions on performance can be important but to a degree that is highly algorithm-dependent. Two

important questions are relevant in this regard:

1) Does the distribution of nonzero coefficients affect the performance of a given algorithm?

2) Assuming the true distribution of the nonzeros (or a closeapproximation) is known, what is the

optimal sparse recovery algorithm?

The results of this paper speak directly to 1) as discussed above. Regarding 2), it is presently difficult

to provide a concrete answer. For example, in the image reconstruction example from [3], it is not

clear that solving the Type I problem (24) is optimal since, with p < 1, there can potentially exist a

combinatorial number of local minima, so any tractable minimization procedure will often be producing

a local solution.6 This may explain why performance is no better thanℓ1 in some cases (although ifΦ

is orthogonal, local minima are generally not the problem).It is possible that an alternative procedure,

potentially based on the ideas behind Type II, could do substantially better. This is an area of future

research.

To conclude this point then, the coefficient distribution mayindeed matter even in practical situations,

but only if exploited by an appropriate algorithm. Such an algorithm may or may not actually require

knowledge of this distribution to succeed.

APPENDIX

This appendix contains the proofs of all results presented inthis paper.

Proof of Theorem 1

Based on (6) and (20) we have

Lx
(I)(x) = ‖y − Φx‖2

2 + λ
∑

i

[
min
γi≥0

x2
i

γi
+ log γi + f(γi)

]

≡ min
γ≥0

1

λ
‖y − Φx‖2

2 + xT Γ−1x +
∑

i

[log γi + f(γi)]

≤ 1

λ
‖y − Φx‖2

2 + xT Γ−1x +
∑

i

f(I)(γi)

, Lγ,x
(I) (γ, x). (39)

6Note that the true distribution ofall coefficients will not be a generalized Gaussian anyway once the zero-valued coefficients

are taken into account. A more accurate description of this distribution wouldbe a delta-function at zero and a (weighted)

generalized-Gaussian distribution everywhere else. However, such aprior further exacerbates the problem of local minima.
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Note that we allowγi = 0 when xi = 0; for xi 6= 0, γi → 0 leads to infinity, so this value can never

represent a minimizing solution. SoLγ,x
(I) (γ, x) is a rigorous upper bound onLx

(I)(x) with Lx
(I)(x) =

minγ≥0 Lγ,x
(I) (γ, x). With γ fixed, the value ofx that minimizesLγ,x

(I) (γ, x) is given byµx from (9), and

from basic linear algebra manipulations we get

min
x

1

λ
‖y − Φx‖2

2 + xT Γ−1x = yT Σ−1
y y. (40)

Using this expression with (39) gives

Lγ
(I)(γ) , min

x
Lγ,x

(I) (γ, x) = yT Σ−1
y y +

m∑

i=1

f(I)(γi). (41)

This suggests an alternative means of computing (or analyzing) the Type I problem: First compute

γ(I) , arg minγ≥0 Lγ
(I)(γ). Then by construction, it follows that

x(I) = Γ(I)Φ
T
(
λI + ΦΓ(I)Φ

T
)−1

y (42)

will minimize (20).

Additionally, the correspondence between global solutions to (20) and (41) extends to locally mini-

mizing solutions as well in the following sense: it can be shown that {x∗, γ∗} is a local minimum of

the auxiliary functionLγ,x
(I) (γ, x) iff x∗ is a local minimum of (20) andγ∗ is a local minimum of (41).

This correspondence occurs because, given a fixedx (or γ), optimization overx (or γ) is unimodal (it

is actually convex with the proper change of variables). So the local minima profile is preserved when

we move fromx-space toγ-space. �

Proof of Corollary 1

This is possible because we can always select a particularf and λ and then reparameterize things

such that thelog |Σy| term in (17) vanishes. Pluggingλ := α−1λ̄ andf(·) := α log[α(·)]+αf̄ [α(·)] into

(17), we have

Lγ
(II)(γ) = yT

[
α−1λ̄I + ΦΓΦT

]−1
y + log

∣∣α−1λ̄I + ΦΓΦT
∣∣+
∑

i

(
α log[αγi] + αf̄ [αγi]

)

≡ yT
[
λ̄I + αΦΓΦT

]−1
y +

1

α
log
∣∣λ̄I + αΦΓΦT

∣∣+
∑

i

(
log[αγi] + f̄ [αγi]

)

and so asα becomes large

Lγ
(II)(γ) → yT

[
λ̄I + Φ(αΓ) ΦT

]−1
y +

∑

i

(
log[αγi] + f̄ [αγi]

)
. (43)
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This is equivalent to (21) usingλ := λ̄ andf := f̄ with the exception of the scaling factor ofα on γ.

However, this factor is irrelevant in that the coefficient estimate obtained via (22) will be identical to that

obtained from (11). �

Proof of Theorem 2

Using (40), we can create the strict upper bounding auxiliary function onLγ
(II)(γ) given by

Lγ,x
(II)(γ, x) ,

1

λ
‖y − Φx‖2

2 +
∑

i

x2
i

γi
+ log |Σy| +

∑

i

f(γi), (44)

whereLγ
(II)(γ) = minxLγ,x

(II)(γ, x) for all γ ≥ 0. When we minimize overγ, we get

Lx
(II)(x) , min

γ≥0
Lγ,x

(II)(γ, x) ≡ ‖y − Φx‖2
2 + λg(II)(x), (45)

with

g(II)(x) , min
γ≥0

∑

i

x2
i

γi
+ log |Σy| +

∑

i

f(γi). (46)

By construction, the minimum ofLx
(II)(x) will equal thex(II) computed using (11).

While g(II)(x) cannot generally be computed in closed form, in many (possibly all) cases the optimiza-

tion problem from (46) will have a single basin of attraction(meaning all local minima are connected),

and even convex with the appropriate reparameterization ofγ. For example, iff [exp(·)] is convex and

we defineβi , log γi, β , [β1, . . . , βm]T , then it can be shown that the minimization problem

g(II)(x) ≡ min
β

∑

i

e−βix2
i + log |Σy| +

∑

i

f
(

eβi

)
(47)

is convex inβ, meaning that no unconnected local minima can exist (although it still need not be convex

in γ). This implies that there will be a correspondence between local minima of (45) and local minima of

(17), analogous to the duality situation for Type I discussed in the previous section (the global minimum

will of course always correspond regardless off ). The sufficient convexity condition onf [exp(·)] is

satisfied in a wide variety of cases. For example, wheng(z) = |z|p, meaningp(x) is a generalized

Gaussian, thenf [exp(βi)] = [exp(βi)]
p/(2−p) − log[exp(βi)] = exp[pβi/(2 − p)] − βi.7 This expression

is clearly convex inβi. �

7Here we have used (23) to computef(I) and thereforef .
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Proof of Theorem 3

Becauselog |Σy| is a concave, non-decreasing function ofγ, we can express it as

log |Σy| = min
z≥0

zT γ − h∗(z), (48)

whereh∗(z) is the concave conjugate [2] oflog |Σy| given by

h∗(z) , min
γ≥0

zT γ − log |Σy|. (49)

Therefore, we can expressg(II)(x) as

g(II)(x) = min
γ,z≥0

xT Γ−1x + zT γ − h∗(z). (50)

Optimizing overγ for fixed x andz, we get

γopt
i = z

−1/2
i |xi|, ∀i. (51)

Substituting this expression into (50) gives

g(II)(x) = min
z≥0

[
m∑

i=1

(
x2

i

z
−1/2
i |xi|

+ ziz
−1/2
i |xi|

)
− h∗(z)

]
= min

z≥0

m∑

i=1

2z
1/2
i |xi| − h∗(z). (52)

This latter expression representsg(II)(x) as a minimum over upper-bounding hyperplanes in|x| (meaning

each value ofz defines a unique hyperplane with respect to|x|). From basic convex analysis, any function

expressable in this form is necessary concave and non-decreasing sincez ≥ 0 [2].

Finally, the local minima result follows directly from [27, Theorem 1], which is derived for general

Type I methods but can be applied to any penalty function suchas g(II)(x) that is a concave and

nondecreasing function of each|xi|. �

Proof of Theorem 4

In [33], we show an equivalent result using manipulations ofLγ
(II)(γ) in γ-space. Here we present

a much simpler, high-level proof directly inx-space. For this purpose we adopt the notationf(x) =

O(h(x)) to indicate that|f(x)| < C1|h(x)| for all x < C2, with C1 andC2 constants independent ofx.

To begin, it will be shown that

g(II)(x) = O(1) + (n − min[n, d]) log λ, (53)

whered , ‖x‖0. In other words,g(II)(x) will be O(1) unlessd < n, in which case it will be dominated

by the log λ term whenλ is small. Given (53), the proof of Theorem 4 is simple. In the limit asλ → 0,
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given that at least one feasible solution exists withd < n, then minimizingg(II)(x) is tantamount to

minimizing d, and so any global solution to (28) will be a global solution to (15).

It only remains then to show that (53) is true. Computingg(II)(x) via (27) involves a minimization

over two terms (sincef(γi) = 0). The first term (convex, non-increasing) encourages eachγi to be large,

the second (concave, non-decreasing) encourages eachγi to be small. Whenever a givenxi = 0, the first

term can be ignored and the associatedγi is driven to exactly zero by the second term regardless of other

γj , i 6= j. In contrast, for anyxi 6= 0, the minimizingγi can never be zero for anyλ ≥ 0 or the first

term will be driven to infinity. This a manifestation of the factthat

arg min
z≥0

[
1

z
+ log(z + ǫ)

]
> 0, ∀ǫ ≥ 0. (54)

Consequently, for any givenx, the associated minimizingγ will necessarily have a matching sparsity

profile, meaning the indices of zero-valuedxi will align with zero-valued elements inγ.

Wheneverd ≥ n, the above analysis, and the assumption that spark(Φ) = n + 1, ensures that the

minimizing Σy will be full rank even forλ = 0. This implies thatg(II)(x) = O(1) for essentially the

same reason that

min
z≥0

[
1

z
+ log(z + ǫ)

]
= O(1). (55)

In contrast, whend < n, the minimizingΣy will become degenerate whenλ → 0. Let si denote the

i-th nonzero eigenvalue ofΦΓΦT at the minimizingΓ. The spark assumption (coupled with the analysis

above) guarantees that there will bed such eigenvalues. Then we have

log |Σy| =
d∑

i=1

log(λ + si) + (n − d) log λ. (56)

This givesg(II)(x) = O(1) + (n − d) log λ. �

Proof of Theorem 5

We begin by assuming thatg(xi) is a concave, non-decreasing function of|xi|.8 With some additional

effort, can be shown that the theorem holds in the general case as well, consistent with intuition. We

will also assume, without loss of generality, thatg(0) = 0 andg(1) = 1 (we can always rescale and add

a constant such that this is the case). A simple 3D example then serves to show that conditions (i) and

(ii) cannot be satisfied simultaneously.

8Any penalty arising from (6) will be concave, non-decreasing functionof x2
i , but not necessarily of|xi|.
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Assume we have a3 × 5 dictionary Φ where the first two columns are given byφ1 ∝ [1 α 0]T and

φ2 ∝ [−1 α 0]T , with α > 0 arbitrarily small (we use a proportionality here to avoid the irrelevant,

cumbersome factor required forℓ2 column normalization). Now assume a coefficient vectorx(1) ,

[1 1 0 0 0]T , giving y = Φx(1) = [0 2α 0]T , and that the remaining three basis vectorsφ3, φ4, φ5, are

radially symmetric about the signaly, with an arbitrarily small angular distance fromy. Then a second

feasible solutionx(2) , [0 0 ǫ ǫ ǫ]T exists withǫ (a function ofα) arbitrarily small.

Under these circumstances,x(1) equalsx0, the unique global solution to (15). To satisfy condition (i),

it is therefore necessary that

∑

i

g
(
x

(1)
i

)
= 2g(1) <

∑

i

g
(
x

(2)
i

)
= 3g(ǫ), (57)

or equivalently, thatg(ǫ) > 2/3,∀ǫ > 0. We now show that anyg that satisfies this restriction cannot have

fewer local minimum than when solving (28). So if we satisfy condition (i), we cannot simultaneously

satisfy condition (ii).

A basic feasible solutionx∗ is a local minimizer of (29) if for every vectorv ∈ null(Φ), there is a

δ > 0 such that

d(ε) ,
∑

i

g(x∗
i + εvi) −

∑

i

g(x∗
i ) > 0, ∀ε ∈ (0, δ]. (58)

Based on the concavity ofg with respect to|xi|, we know that local minima are always achieved at basic

feasible solutions with at leastm − n elements equal to zero. Consequently, we can expressd(ε) as

d(ε) =
∑

i∈Z
[g(εvi) − g(0)] +

∑

i/∈Z
[g(x∗

i + εvi) − g(x∗
i )]

=
∑

i∈Z
g(εvi) +

∑

i/∈Z
[g(x∗

i + εvi) − g(x∗
i )] , (59)

whereZ is the set of all indeces associated with zero-valued elements in x∗. As a direct consequence of

the assumption spark(Φ) = n+1, anyv ∈ null(Φ) must have a nonzero element corresponding to a zero

element inx∗, meaning at least onevi, i ∈ Z must be nonzero. Therefore, the first term in (59) cannot

be smaller than2/3 or we violate condition (i) as discussed above. Moreover, becauseg is concave on

[0,∞), it must be continuous on(0,∞). Consequently, the second term in (59) can be made arbitrarily

small in magnitude for anyε ∈ (0, δ] when δ is sufficiently small, implying thatd(ε) will always be

positive. Thusx∗ must be a local minimizer of (29).

In conclusion then, anyg which satisfies condition (i) will have a local minimum at every basic feasible

solution. Moreover, from Theorem 3, the number of distinct basic feasible solutions forms an upper bound

to the number of local minima to (28). Of course with the exception of very contrived situations, the
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number of Type II local minima will be considerably less as discussed in Sections III and IV. �

Proof of Theorem 6

The unimodality of (26) is revealed by examining the dual costfunction (17) in γ-space, which

conveniently decouples because of the orthogonality assumption. This produces the element-wise cost

Lγi

(II)(γi) , log(λ + γi) +
ai

λ + γi
,∀i, (60)

whereai , φT
i y and φi is the i-th column ofΦ. This expression is readily shown to be unimodal in

eachγi, implying unimodality overγ.

The second property follows by taking the gradient of (31) with respect toxi and noting that it is

strictly positive for all xi ∈ (0,∞). We also note that any penaltyg(x) that is a non-decreasing and

strictly concave function of|x|, will both promote sparsity [27] and provide a tighter approximation to

‖x‖0 than‖x‖1 in the following sense: There will always exist some positiveconstantR < ∞ such that,

for any sphereSr in R
m centered at zero with radiusr > R, we have that
∫

x∈Sr

|‖x‖0 − g(x)| dx <

∫

x∈Sr

|‖x‖0 − ‖x‖1| dx. (61)

In words, the approximation error will always be smaller as long as we average over a large enough

region. This follows directly from the definition of strict concavity (and the implicit assumption thatg(0)

is finite).

The third property can be shown by contradiction. Assume thatg(II)(x) is a non-decreasing and strictly

concave function of|x|, but is fixed and independent ofλ as in Type I methods. We will show that multiple

minima are always possible for some choice ofλ, Φ, andy. Given the orthogonality assumption,Lx
(I)(x)

decouples and we can consider each coordinate separately with the reduced cost function

Lxi

(I)(xi) , x2
i − 2xiai + λg(xi). (62)

For simplicity, we will assume thatg is differentiable, but the more general case follows with a little

additional effort. We will also assume, without loss of generality that ai ≥ 0,∀i. Now consider

Lxi

(I)
′(xi) ,

∂Lx
(I)(xi)

∂xi
= 2xi − 2ai + λg′(xi), (63)

with g′(xi) , ∂g(xi)/∂xi. If Lxi

(I)
′(xi) is positive asxi → 0+, then there will necessarily be one local

minimum atxi = 0. A second local minimum will also occur ifLxi

(I)
′(xi) < 0 for somexi > 0. This is

becauseLxi

(I)
′(xi) must be greater than zero for somexi sufficiently large due to the concavity ofg(xi)
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with respect to|xi|, and so a negative gradient for smaller values ofxi implies a local minimum must exist

in the middle somewhere. Therefore we only need show that bothminima are possible simultaneously.

To have a minimum atxi = 0, it is sufficient based on the positive gradient requirement that ai =

λg′(0)/2 − ǫ, whereg′(0) , limxi→0+ g′(xi), and ǫ > 0 is a small constant such thatai is positive. A

second minimum will occur if

Lxi

(I)
′(xi) = 2xi − 2

[
λg′(0)/2 − ǫ

]
+ λg′(xi) < 0 (64)

for somexi > 0. We can always satisfy this inequality for someλ sufficiently large sinceg′(0) > g′(xi)

by definition of strict concavity. Consequently, two local minima are always possible for eachi, giving

2m total local minima as an upper bound, which is trivially achieved when theℓ0 norm is used (forth

property). �

Proof of Theorem 7

If x∗ is a non-degenerate locally minimizing solution to (28), then there is an associatedγ∗, with

matching sparsity profile, that locally minimizesLγ
(II)(γ) with λ = 0. For this to be true, the following

necessary condition must hold for allu ∈ U :

∂Lγ
(II)(γ)

∂γu

∣∣∣∣∣
γ=γ∗

≥ 0, (65)

whereγu denotes the latent variable corresponding to the basis vector u. In words, we cannot reduce

Lγ
(II)(γ) along a positive gradient because this would pushγu below zero; a negative gradient would

imply that γu can be increased to further reduceLγ
(II)(γ), meaning a local minima is impossible. Using

the matrix inversion lemma, a determinant identity, and some algebraic manipulations, we arrive at the

expression
∂Lγ

(II)(γ)

∂γu

∣∣∣∣∣
γ=γ∗

=
uT Bu

1 + γuuT Bu
−
(

yT Bu

1 + γuuT Bu

)2

, (66)

whereB , (Φ̃Γ̃Φ̃T )−1 andΓ̃ is the diagonal matrix of latent variables associated withΦ̃. Since we have

assumed that we are at a local minimum, it is straightforwardto show that̃Γ = diag(x̃)2 leading to the

expression

B = Φ̃−T diag(x̃)−2Φ̃−1. (67)

Substituting this expression into (66) and evaluating at thepoint γu = 0, the above gradient reduces to

∂Lγ
(II)(γ)

∂γu

∣∣∣∣∣
γ=γ∗

= ṽT
(
diag(x̃−1x̃−T ) − x̃−1x̃−T

)
ṽ, (68)
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wherex̃−1 , [x̃−1
1 , . . . , x̃−1

n ]T . This implies that we will be at a local minimum only if

∑

i6=j

ṽiṽj

x̃ix̃j
≤ 0 ∀ṽ ∈ V, (69)

which leads directly to the stated theorem. �

Proof of Theorem 8

Every local minimum of (28) is achieved at a basic feasible solution (BFS) (see Theorem 3). Inter-

estingly, the converse is not true; that is, every BFS need notcorrespond with a minimum of (28) as

shown via Theorem 7. In fact, for a suitable selection of scaling constantsνi, we will show that this

reduced set of minima naturally leads to a proof of Theorem 8. In the most general setting, the constants

νi may all be unique, leading to the largest set of allowable coefficients. However, for simplicity we will

assume thatν1 = ν2 = . . . = νn−2 = ǫ, whereǫ is a constant in the interval(0, 1]. The extension is

straightforward.

We begin with an arbitrary coefficient vectorx′ such thatx′
(i+1) ≤ ǫx′

(i) and‖x′‖0 = d ∈ {1, . . . , n−
1}. For convenience, we will also assume thatx′

(i) = |x′
i|. In other words, the first element ofx′ has the

largest magnitude, the second element has the second largest magnitude, and so on. To avoid any loss

of generality, we incorporate anm × m permutation matrixP into our generative model, giving us the

signal y = ΦPx′ = Φ′x′. BecauseΦ′ , ΦP is nothing more thanΦ with reordered columns, it will

necessarily satisfy the spark constraint for allP given thatΦ does.

We now examine the properties of an arbitrary BFS with nonzerocoefficients defined as̄x (so the

length of x̄ is less than or equal ton by definition of a BFS), and associated dictionary columnsΦ̄, i.e.,

y = Φ̄x̄. There exist two possibilities for a candidate BFS:

• Case I: The columns ofΦ′ associated with the nonzerod < n nonzero coefficients ofx′ are

contained inΦ̄. By virtue of the spark assumption, no other basis vectors will be present, so we

may conclude that̄Φ = [φ′
1, φ

′
2, . . . ,φ

′
d] = Φ′.

• Case II: At least one of the columns associated with thed nonzero coefficients is missing from̄Φ.

Given this distinction, we would like to determine when a candidate BFS, particularly a Case II BFS of

which there are many, is a local minimum.

To accomplish this, we letr ∈ {1, . . . , d} denote the index of the of the largest coefficient magnitude

for which the respective dictionary column,φ′
r is not in Φ̄. Therefore, by assumption the firstr − 1
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columns ofΦ̄ equal [φ′
1, φ

′
2, . . . ,φ

′
r−1]. The remaining columns of̄Φ are arbitrary (provided of course

that φ′
r is not included). This allows us to express any Case II BFS as

x̄ = Φ̄−1y = Φ̄−1Φ′x′ =
r−1∑

k=1

x′
kek + Φ̄−1

d∑

k=r

x′
kφ

′
k, (70)

whereek is a zero vector with a one in thek-th element and we have assumed that every Case II BFS

utilizes exactlyn columns ofΦ′ (i.e., Φ̄ is n × n and therefore invertible via the spark requirement).

This assumption is not restrictive provided we allow for zero-padding of BFS with less thann nonzero

coefficients (this implies that some elements ofx̄ will be equal to zero if we have to add dummy columns

to Φ̄).

Without loss of generality, we will assume thatx′
r = 1 (the overall scaling is irrelevant). We also

defineṽ , Φ̄−1φ′
r, giving us

x̄ = Φ̄−1y =
r−1∑

k=1

x′
kek + ṽ + Φ̄−1

d∑

k=r+1

x′
kφ

′
k. (71)

By virtue of the stipulatedǫ-dependent coefficient scaling, we know that

Φ̄−1
d∑

k=r+1

x′
kφ

′
k =

d∑

k=r+1

On

(
ǫk−r

)
= On (ǫ) , (72)

whereO(x) is defined as in the proof of Theorem 4 andOn(x) refers to ann-dimensional vector with

all elements of orderO(x). Combining (71) and (72), we can express thei-th element ofx̄ as

x̄i = x′
iI [i < r] + ṽi + O (ǫ) . (73)

Providedǫ is chosen suitably small, we can ensure that allx̄i are necessarily nonzero (so in fact no

zero-padding is ever necessary). Wheni ≥ r, this occurs because all elements ofṽ must be strictly

nonzero or we violate the spark assumption. For thei < r case, a sufficiently smallǫ means that thex′
i

term (which is of orderO
(
1/ǫr−i

)
by virtue of (35)) will dominate, leading to a nonzerox̄i. This allows

us to apply Theorem 7, from which we can conclude that a candidate BFS withn nonzero coefficients

will not represent a local minimum if
∑

i6=j

ṽiṽj

x̄ix̄j
> 0. (74)

Substituting (73) into this criterion, we obtain

∑

i6=j

(
ṽi

x′
iI [i < r] + ṽi + O(ǫ)

)(
ṽj

x′
j I [j < r] + ṽj + O(ǫ)

)
= (75)

O(ǫ) +
∑

i6=j; i,j≥r

(
ṽi

ṽi + O(ǫ)

)(
ṽj

ṽj + O(ǫ)

)
.
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Sinced < n, thenr < n by definition and so there will always be at least one set of indicesi andj that

satisfy the above summation constraints (since bothi and j run from 1 to n). This then implies that

∑

i6=j

ṽiṽj

x̄ix̄j
≈

∑

i6=j; i,j≥r

1 > 0, (76)

since each̃vi is a nonzero constant independent ofǫ. So (74) holds and we are not at a local minimum.

In summary, we have shown that, providedǫ is small enough, an arbitrary Case II BFS cannot be a

local minimum to (28). The exact value of thisǫ will depend on the particular BFS and permutation

matrix P . However, if we choose the smallestǫ across all possibilities, it follows that no Case II BFS can

be a local minimum. The unique minimum that remains is the CaseI BFS which will satisfyd = ‖x0‖0,

so x′ = x0. �

Proof of Theorem 9

We assumeg(xi) is a non-decreasing, concave function of|xi|; as stated in the proof of Theorem 5,

with other choices it can be shown that the global minimum will not generally equalx0. For the special

case whereg(xi) = |xi|,∀i, the cost function is unimodal and, given the spark assumption will have a

unique global minimum. However, regardless of nonzero coefficient scalings, this global minimum need

not be maximally sparse under the stated conditions. This directly follows from [23, Theorem 6], from

which we can infer that the success of the minimumℓ1-norm solution only depends on the sparsity

profile and sign pattern ofx0; it is independent of the nonzero magnitudes. Since the minimum ℓ1-norm

solution cannot always recoverx0 given only the spark and sparsity level assumptions of the theorem,

the restriction on the magnitudes will not help, and so the unique global minimum will not always equal

x0.

Now assume thatg(xi) is a strictly concave function of|xi|; the more general case (concave and

nonlinear but not necessarily strictly concave) naturallyfollows. If limǫ→0 [g(ǫ) − g(0)] /ǫ = ∞, then

based on the proof of Theorem 5, there will exist a local minimum at every basic feasible solu-

tion; this result is independent of nonzero coefficient magnitudes. The more ambiguous case is when

limǫ→0 [g(ǫ) − g(0)] /ǫ = C < ∞. In this situation, a simple 2D counter example suffices to show that

local minima are still always possible. Let

x0 =




1

0

0


 Φ =


 1 1√

1+α2

1√
1+α2

0 α√
1+α2

− α√
1+α2


 y = Φx0 =


 1

0


 , (77)
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whereα > 0 is a small constant and the
√

1 + α2 factor is included only for normalization purposes.

Here x0 and Φ satisfy the conditions of Theorem 8. Now consider the alternative solution x′ =
[
0

√
1+α2

2

√
1+α2

2

]T
. For α sufficiently small, this solution will always be a local minimum for any

strictly concave Type I method. To see this, consider the following. The dictionaryΦ has a 1D null-space

spanned by the vectorv ,

[
1 −

√
1+α2

2
−
√

1+α2

2

]T
sinceΦv = 0, and so any feasible solution can be

expressed asx′ + ǫv for some constantǫ; to move towardsx0 requiresǫ > 0. By taking the gradient

of
∑

i g(xi) with respect toǫ evaluated atǫ → 0+, we can evaluate ifx′ is a local minimum; namely,

a local minima occurs if this gradient is positive when the limit is approached from the right. With

g′(xi) , ∂g(xi)/∂xi, the relevant limit is

lim
ǫ→0+

∂

∂ǫ

∑

i

g(x′
i + ǫvi) = lim

ǫ→0+

∂

∂ǫ

(
g(ǫ) + 2g

[√
1 + α2

2
(1 − ǫ)

])
(78)

= lim
ǫ→0+

(
g′(ǫ) −

√
1 + α2g′

[√
1 + α2

2
(1 − ǫ)

])

= g′(ǫ)
∣∣
ǫ→0+ −

√
1 + α2g′

[√
1 + α2

2

]
.

By definition of strict concavity, this expression will be positive for someα sufficiently small, implying

that x′ is a local minimum. �
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