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Abstract

The synchronous brain activity measured via MEG (or EEG) can be interpreted as arising from a

collection (possibly large) of current dipoles or sources located throughout the cortex. Estimating the

number, location, and time course of these sources remains a challenging task, one that is significantly

compounded by the effects of source correlations and unknown orientations and by the presence of

interference from spontaneous brain activity, sensor noise, and other artifacts. This paper derives an

empirical Bayesian method for addressing each of these issues in a principled fashion. The resulting

algorithm guarantees descent of a cost function uniquely designed to handle unknown orientations

and arbitrary correlations. Robust interference suppression is also easily incorporated. In a restricted

setting, the proposed method is shown to produce theoretically zero reconstruction error estimating

multiple dipoles even in the presence of strong correlations and unknown orientations, unlike a variety

of existing Bayesian localization methods or common signal processing techniques such as beamforming

and sLORETA. Empirical results on both simulated and real data sets verify the efficacy of this approach.

I. INTRODUCTION

Magnetoencephalography (MEG) and related electroencephalography (EEG) use an array of sensors

to take electromagnetic field (or voltage) measurements from on or near the scalp surface with excellent
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temporal resolution. In both MEG and EEG, the observed field can in many cases be explained by

synchronous, compact current sources located within the brain. Although useful for research and clinical

purposes, accurately determining the spatial distribution of these unknown sources is an a challenging

inverse problem. The relevant estimation problem can be posed as follows: The measured electromagnetic

signal is B ∈ R
db×dt , where db equals the number of sensors and dt is the number of time points at which

measurements are made. Each unknown source Si ∈ R
dc×dt is a dc-dimensional neural current dipole, at

dt timepoints, projecting from the i-th (discretized) voxel or candidate location distributed throughout the

brain. These candidate locations can be obtained by segmenting a structural MR scan of a human subject

and tesselating the brain volume with a set of vertices. B and each Si are related by the likelihood model

B =

ds∑

i=1

LiSi + E , (1)

where ds is the number of voxels under consideration and Li ∈ R
db×dc is the so-called lead-field matrix

for the i-th voxel. The k-th column of Li represents the signal vector that would be observed at the scalp

given a unit current source/dipole at the i-th vertex with a fixed orientation in the k-th direction. It is

common to assume dc = 2 (for MEG) or dc = 3 (for EEG), which allows flexible source orientations to be

estimated in 2D or 3D space. Multiple methods based on the physical properties of the brain and Maxwell’s

equations are available for the computation of each Li [25]. Finally, E is a noise-plus-interference term

where we assume, for simplicity, that the columns are drawn independently from N (0,Σε). However,

temporal correlations can easily be incorporated if desired using a simple transformation outlined in [10]

or using the spatio-temporal framework introduced in [3].

To obtain reasonable spatial resolution, the number of candidate source locations will necessarily be

much larger than the number of sensors (ds � db). The salient inverse problem then becomes the ill-posed

estimation of regions with significant brain activity, which are reflected by voxels i such that ‖Si‖ > 0;

we refer to these as active dipoles or sources. Because the inverse model is severely underdetermined

(the mapping from source activity configuration S , [ST
1 , . . . , ST

ds
]T to sensor measurement B is many

to one), all efforts at source reconstruction are heavily dependent on prior assumptions, which in a

Bayesian framework are embedded in the distribution p(S). Such a prior is often considered to be fixed

and known, as in the case of minimum `2-norm estimation (MNE) [1], minimum current estimation

(MCE) [30], minimum variance adaptive beamforming (MVAB) [27], FOCUSS [13], and sLORETA

[19]. Alternatively, empirical Bayesian approaches have been proposed that attempt a form of model

selection by using the data, whether implicitly or explicitly, to guide the search for an appropriate prior.

Examples include a rich variety of variational Bayesian methods and hierarchical covariance component

June 10, 2009 DRAFT



3

models [10], [16], [20], [24], [26], [36], [37]. These hierarchical models can also be handled by replacing

variational inference and related procedures with Markov-Chain Monte Carlo sampling [18]. In general,

these approaches differ in the types of covariance components that are assumed, the cost functions and

approximations used to estimate unknown parameters, and in how posterior distributions are invoked to

affect source localization. While advantageous in many respects, none of these methods are explicitly

designed to handle complex, correlated source configurations with unknown orientation in the presence

of background interference (e.g., spontaneous brain activity, sensor noise, etc.).

There are two types of correlations that can potentially disrupt the source localization process. First,

there are correlations within dipole components (meaning the individual rows of Si are correlated), which

always exists to a high degree in real data (i.e., dc > 1). For example, dipoles with a fixed unknown

orientation will have a correlation coefficient of 1.0; for rotating or wobbling dipoles this value will

typically be smaller. Secondly, there are correlations between different dipoles that are simultaneously

active (meaning rows of Si are correlated with rows of Sj for some voxels i 6= j). These correlations are

more application specific and may or may not exist. The larger the number of active sources, the greater

the chance that both types of correlation can disrupt the estimation process. This issue can be problematic

for two reasons. First, and most importantly, failure to accurately account for unknown orientations or

correlations can severely disrupt the localization process, leading to a very misleading impression of

which brain areas are active. Secondly, the orientations and correlations themselves may have clinical

significance, although this will not be our focus herein.

In this paper, we present an alternative empirical Bayesian scheme that attempts to improve upon ex-

isting methods in terms of source reconstruction accuracy and/or computational robustness and efficiency.

Section II presents the basic generative model which underlies the proposed method and describes the

associated inference problem. This model is designed to estimate the number and location of a small

(sparse) set of flexible dipoles that adequately explain the observed sensor data. Section III derives a

robust algorithm, which we call Champagne, for estimating the sources using this model and proves that

each iteration is guaranteed to reduce the associated cost function. It also describes how interference

suppression is naturally incorporated. Section IV then provides a theoretical analysis of conditions

under which perfect reconstruction of arbitrary, correlated sources with unknown orientation is possible,

demonstrating that the proposed method has substantial advantages over existing approaches. Finally,

Section V contains experimental results using our algorithm on both simulated and real data, followed

by brief conslucsions in Section VI.
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II. MODELING ASSUMPTIONS

To begin we invoke the noise model from (1), which fully defines the assumed likelihood

p(B|S) ∝ exp


−

1

2

∥∥∥∥∥B −
ds∑

i=1

LiSi

∥∥∥∥∥

2

Σ−1
ε


 , (2)

where ‖X‖W denotes the weighted matrix norm
√

trace[XT WX]. The unknown noise covariance Σε

will be estimated from the data using a variational Bayesian factor analysis (VBFA) model as discussed

in Section III-C below; for now we will consider that it is fixed and known. Next we adopt the following

source prior for S:

p (S|Γ) ∝ exp

(
−

1

2
trace

[
ds∑

i=1

ST
i Γ−1

i Si

])
. (3)

This is equivalent to applying independently, at each time point, a zero-mean Gaussian distribution with

covariance Γi to each source Si. We define Γ to be the dsdc × dsdc block-diagonal matrix formed by

ordering each Γi along the diagonal of an otherwise zero-valued matrix. This implies, equivalently, that

p (S|Γ) ∝ exp
(
−1

2 trace
[
ST Γ−1S

])
.

If Γ were somehow known, then the conditional distribution p(S|B,Γ) ∝ p(B|S)p(S|Γ) is a fully

specified Gaussian distribution with mean and covariance given by

Ep(S|B,Γ) [S] = ΓLT
(
Σε + LΓLT

)−1
B

Covp(sj |B,Γ) [sj ] = Γ − ΓLT
(
Σε + LΓLT

)−1
LΓ, ∀j, (4)

where L , [L1, . . . , Lds
] and sj denotes the j-th column of S (i.e., the sources at the j-th time point) and

individual columns are uncorrelated. However, since Γ is actually not known, a suitable approximation

Γ̂ ≈ Γ must first be found. One principled way to accomplish this is to integrate out the sources S and

then maximize

p(B|Γ) =

∫
p(B|S)p(S|Γ)dS ∝ |Σb|

− 1

2 exp

(
−

1

2
BT Σ−1

b B

)
, Σb , Σε + LΓLT . (5)

This is equivalent to minimizing the cost function

L(Γ) , −2 log p(B|Γ) ≡ trace
[
CbΣ

−1
b

]
+ log |Σb| , (6)

where Cb , d−1
t BBT is the empirical covariance. This process is sometimes referred to as type-II

maximum likelihood, evidence maximization, or empirical Bayes [2].

The first term of (6) is a measure of the dissimilarity between the empirical data covariance Cb and

the model data covariance Σb; in general, this factor encourages Γ to be large because it is convex and
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nonincreasing in Γ (in a simplified scalar case, this is akin to minimizing 1/x with respect to x, which

of course naturally favors x being large). The second term provides a regularizing or sparsifying effect,

penalizing a measure of the volume formed by the model covariance Σb.1 Since the volume of any high

dimensional space is more effectively reduced by collapsing individual dimensions as close to zero as

possible (as opposed to incrementally reducing all dimensions isometrically), this penalty term promotes a

model covariance that is maximally degenerate (or non-spherical), which pushes elements of Γ to exactly

zero (hyperparameter sparsity). This intuition is supported theoretically by the results in Section IV.

Given some type-II ML estimate Γ̂ computed by minimizing (6), we obtain the attendant empirical

prior p(S|Γ̂). To the extent that this ‘learned’ prior is realistic, the resulting posterior p(S|B, Γ̂) quantifies

regions of significant current density and point estimates for the unknown source dipoles Si can be

obtained by evaluating the posterior mean computed using (4). If a given Γ̂i → 0 as described above,

then the associated Ŝi computed using (4) also becomes zero. It is this pruning mechanism that naturally

chooses the number of active dipoles and is consistent with the hypothesis that most regions of the brain

are approximately inactive for a given task.

III. ALGORITHM DERIVATION

Given Σε and Γ, computing the Gaussian posterior on S is straightforward as outlined above. Con-

sequently, determining these unknown quantities is the primary estimation task. We will first derive an

algorithm for computing Γ assuming Σε is known. Later in Section III-C, we will describe a powerful

procedure for learning Σε.

A. Learning the Hyperparameters Γ

The primary objective of this section is to minimize (6) with respect to Γ. Of course one option is to

treat the problem as a general nonlinear optimization task and perform gradient descent or some other

generic procedure. Alternatively, several methods in the MEG literature rely, either directly or indirectly,

on a form of the expectation maximization (EM) algorithm [10], [26]. However, these algorithms are

exceedingly slow when ds is large and they have not been extended to handle arbitrary, unknown

orientations. Consequently, here we derive an optimization procedure that expands upon ideas from

[26], [36], handles arbitrary/unknown dipole orientations, and converges quickly.

To begin, we note that L(Γ) only depends on the data B through the db × db sample correlation

matrix Cb. Therefore, to reduce the computational burden, we replace B with a matrix B̃ ∈ R
db×rank(B)

1The determinant of a matrix is equal to the product of its eigenvalues, a well-known volumetric measure.
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such that B̃B̃T = Cb. This removes any per-iteration dependency on dt, which can potentially be large,

without altering that actual cost function. It also implies that, for purposes of computing Γ, the number of

columns of S is reduced to match rank(B). We now re-express the cost function L(Γ) in an alternative

form leading to convenient update rules and, by construction, a proof that L
(
Γ(k+1)

)
≤ L

(
Γ(k)

)
at each

iteration.

The procedure we will use involves constructing auxiliary functions using sets of hyperplanes; an

introduction to the basic ideas can be found in Appendix A. First, the log-determinant term of L(Γ) is

a concave function of Γ and so it can be expressed as a minimum over upper-bounding hyperplanes via

log |Σb| = min
Z

[
ds∑

i=1

trace
(
ZT

i Γi

)
− h∗(Z)

]
, (7)

where Z ,
[
ZT

1 , . . . , ZT
ds

]T is a matrix of auxiliary variables that differentiates each hyperplane and

h∗(Z) is the concave conjugate of log |Σb|. While h∗(Z) is unavailable in closed form, for our purposes

below, we will never actually have to compute this function. Next, the data fit term is a concave function

of Γ−1 and so it can be also be expressed using similar methodology as

trace
[
CbΣ

−1
b

]
= min

X



∥∥∥∥∥B̃ −

ds∑

i=1

LiXi

∥∥∥∥∥

2

Σ−1
ε

+

ds∑

i=1

‖Xi‖
2
Γ−1

i


 , (8)

where X ,
[
XT

1 , . . . , XT
ds

]T is a matrix of auxiliary variables as before. Note that in this case, the

implicit concave conjugate function exists in closed form.

Dropping the minimizations and combining terms from (7) and (8) leads to the modified cost function

L(Γ, X, Z) =

∥∥∥∥∥B̃ −
ds∑

i=1

LiXi

∥∥∥∥∥

2

Σ−1
ε

+
ds∑

i=1

[
‖Xi‖

2
Γ−1

i

+ trace
(
ZT

i Γi

)]
− h∗(Z), (9)

where by construction L(Γ) = minX minZ L(Γ, X, Z). It is straightforward to show that if {Γ̂, X̂, Ẑ} is

a local (global) minimum to L(Γ, X, Z), then Γ̂ is a local (global) minimum to L(Γ).

Since direct optimization of L(Γ) may be difficult, we can instead iteratively optimize L(Γ, X, Z) via

coordinate descent over Γ, X , and Z . In each case, when two are held fixed, the third can be globally

minimized in closed form. This ensures that each cycle will reduce L(Γ, X, Z), but more importantly,

will reduce L(Γ) (or leave it unchanged if a fixed-point or limit cycle is reached). The associated update

rules from this process are as follows.

The optimal X (with Γ and Z fixed) is just the standard weighted minimum-norm solution given by

Xnew
i → ΓiL

T
i Σ−1

b B̃ (10)
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for each i. The minimizing Z equals the slope at the current Γ of log |Σb|, which follows from simple

geometric considerations [4]. As such, we have

Znew
i → OΓi

log |Σb| = LT
i Σ−1

b Li. (11)

With Z and X fixed, computing the minimizing Γ is a bit more difficult because of the constraint

Γi ∈ H+ for all i, where H+ is the set of positive-semidefinite, symmetric dc × dc covariance matrices.

To obtain each Γi, we must solve

Γnew
i → arg min

Γi∈H+

[
‖Xi‖

2
Γ−1

i

+ trace
(
ZT

i Γi

)]
. (12)

An unconstrained solution will satisfy

OΓi
L(Γi, Xi, Zi) = 0, (13)

which, after computing the necessary derivatives and re-arranging terms gives the equivalent condition

XiX
T
i = ΓiZiΓi. (14)

There are multiple (unconstrained) solutions to this equation; we will choose the unique one that satisfies

the constraint Γi ∈ H+. This can be found using

XiX
T
i = Z

−1/2
i

(
Z

1/2
i XiX

T
i Z

1/2
i

)
Z

−1/2
i

= Z
−1/2
i

(
Z

1/2
i XiX

T
i Z

1/2
i

)1/2 (
Z

1/2
i XiX

T
i Z

1/2
i

)1/2
Z

−1/2
i

=

[
Z

−1/2
i

(
Z

1/2
i XiX

T
i Z

1/2
i

)1/2
Z

−1/2
i

]
Zi

[
Z

−1/2
i

(
Z

1/2
i XiX

T
i Z

1/2
i

)1/2
Z

−1/2
i

]
. (15)

This indicates (via simple pattern matching) the solution (or update equation)

Γnew
i → Z

−1/2
i

(
Z

1/2
i XiX

T
i Z

1/2
i

)1/2
Z

−1/2
i , (16)

which satisfies the constraint. And since we are minimizing a convex function of Γi (over the constraint

set), we know that this is indeed a minimizing solution.

In summary then, to estimate Γ, we need simply iterate (10), (11), and (16), and with each pass we

are guaranteed to reduce (or leave unchanged) L(Γ); we refer to the resultant algorithm as Champagne.

The per-iteration cost is linear in the number of voxels ds so the computational cost is relatively modest

(it is quadratic in db, and cubic in dc, but these quantities are relatively small). The convergence rate is

orders of magnitude faster than EM-based algorithms such as those in [10], [26] (Section V contains a

representative example).
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B. Simplifications Using Constraints on Γ

Here we consider two constraints on the parameterization of Γ that lead to much less complex updates

and provide connections with existing algorithms. First, we can require that off-diagonal terms of each

Γi are equal to zero, i.e., the prior covariance of each source Si is diagonal. We then restrict ourselves to

learning the diagonal elements of Γi via simplified versions of those presented above. A second possibility

is to further constrain each Γi to satisfy Γi = γiI , where γi is a scalar non-negative hyperparameter. In

both cases, the resulting cost functions and algorithms also fall out of the framework we discuss in [31],

[36]. These variants are also similar to the covariance component estimation model used in [16], [10],

albeit with a much larger number of components.

As we will see in Sections IV and V, the reduced parameterization associated with these models can

potentially degrade performance in some of situations. Nonetheless, these approaches are very useful for

comparison purposes. To distinguish all three cases, we use the designations CHAMPS for the scalar

version, CHAMPD, for the arbitrary diagonal case, and CHAMPM when the matrices Γi are unrestricted.

For the special case where dc = 2, this gives the following parameterizations:

CHAMPS CHAMPD CHAMPM

Γi =


 γi 0

0 γi


 Γi =


 γi1 0

0 γi2


 Γi =


 γi11 γi12

γi12 γi22


 .

(17)

C. Learning the Interference Σε

The learning procedure described in the previous section boils down to fitting a structured maximum

likelihood covariance estimate Σb = Σε + LΓLT to the data covariance Cb. The idea here is that LΓLT

will reflect the brain signals of interest while Σε will capture all interfering factors, e.g., spontaneous

brain activity, sensor noise, muscle artifacts, etc. Since Σε is unknown, it must somehow be estimated or

otherwise accounted for. Given access to pre-stimulus data (i.e., data assumed to have no signal/sources

of interest), stimulus evoked partitioned factor analysis provides a powerful means of decomposing a

data covariance matrix Cb into signal and interference components. While details can be found in [17],

the procedure computes the approximation

Cb ≈ Λ + EET + FF T , (18)

where E ∈ R
db×de represents a matrix of learned interference factors, Λ is a diagonal noise matrix, and

F ∈ R
db×df represents signal factors. Both the number of interference factors de and the number of

signal factors df are learned from the data via a variational Bayesian factor analysis procedure. Using a
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generalized form of the expectation maximization algorithm, the method attempts to find a small number

of factors that adequately explains the observed sensor data covariance during both the pre- and post-

stimulus periods. The pre-stimulus is modeled with a covariance restricted to the terms Λ +EET , while

the post-stimulus covariance, which contains the signal information FF T we wish to localize, is expressed

additively as in (18).

There are two ways to utilize the decomposition (18). First, we can simply set Σε → Λ + EET and

proceed as in Section III-A. Alternatively, we can set Σε → 0 (or set it to a small diagonal matrix for

robustness/stability) and then substitute FF T for Cb, i.e., run the same algorithm on a de-noised signal

covariance. In practice, both methods have been successful; however, a full technical discussion of the

relative merits is beyond the scope of this paper.

IV. CONDITIONS FOR PERFECT RECONSTRUCTION

Whenever a new inverse algorithm is proposed, it is often insightful to know what source configurations

it can recover exactly and under what conditions. While in general this will require unrealistic assumptions

such as zero noise and a perfect forward model, the underlying idea is that if only implausible source

configurations can be recovered even given these strong simplifications, then perhaps the algorithm may

have serious difficulties.

For example, consider the classical MNE method [1]. Here exact recovery of the true sources requires

that columns of the source activity matrix S lie in the null space of the lead-field, i.e., S = LTA, for

some coefficient matrix A. But this is a very contrived requirement, because the lead-field transpose is

highly overdetermined (many more rows than columns) meaning that the true S must be constrained to

a small subspace of the total possible source space, i.e., a subspace of R
dsdc×dt . But this subspace has

nothing to do with any source activity or neurophysiological plausibility. The lead-field, which determines

this subspace, only specifies how a given source configuration maps to the sensors, it is unrelated to what

the actual activity is. Therefore, MNE is effectively constraining the possible source space in an ad hoc

manner even before confounding noise or forward modeling errors are introduced.

A related concept is the notion of localization bias, which is basically a way of quantifying the ability

of an algorithm to accurately (or sometimes perfectly) estimate a single dipolar source. Recently it has

been shown, both empirically and theoretically [19], [28], that the MVAB and sLORETA algorithms

have zero location bias given noiseless data and an ideal forward model, meaning their respective source

estimates will peak exactly at the true source. Note that this is a slightly different notion than perfect

reconstruction, since both methods will still (incorrectly) produce nonzero source estimates elsewhere.
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These ideas have been extended to include certain empirical Bayesian methods [26], [36]. However, these

results assume a single dipole with fixed, known orientation (i.e., dc = 1), and therefore do not formally

handle more complex issues that arise when multiple dipoles with unknown orientations are present. The

methods from [24], [37] also purport to address these issues, but no formal analyses are presented.

Despite its utilization of a complex, non-convex cost function L(Γ), we now demonstrate relatively

general conditions whereby Champagne can exhibit perfect reconstruction. We will assume that the full

lead-field L represents a sufficiently high sampling of the source space such that any active dipole com-

ponent aligns with some lead-field columns (the ideal forward model assumption). Perfect reconstruction

can also be shown in the continuous case, but the discrete scenario is more straightforward and of course

more relevant to any practical task.

Some preliminary definitions are required to proceed. We define the empirical intra-dipole correlation

matrix at the i-th voxel as Cii , 1
dt

SiS
T
i ; non-zero off-diagonal elements imply that correlations are

present. Except in highly contrived situations, this type of correlation will always exist. The empirical

inter-dipole correlation matrix between voxels i and j is Cij , 1
dt

SiS
T
j ; any non-zero element implies

the existence of a correlation. In practice, this form of correlation may or may not be present. With

regard to the lead-field L, spark is defined as the smallest number of linearly dependent columns [8].

By definition then, 2 ≤ spark(L) ≤ db + 1. Finally, da denotes the number of active sources, i.e., the

number of voxels whereby ‖Si‖ > 0.

Theorem 1: In the limit as Σε → 0 (high SNR) and assuming dadc < spark(L) − 1, the cost function

L(Γ) maintains the following two properties:

1) For arbitrary Cii and Cij , the unique global minimum Γ∗ produces a source estimate S∗ =

Ep(S|B,Γ∗) [S] computed using (4) that equals the generating source matrix S, i.e., it produces

a perfect source reconstruction.

2) If Cij = 0 for all active dipoles (although Cii is still arbitrary), then there are no local minima,

i.e., the cost function is unimodal.

See the Appendix B for the proof. In words, this theorem says that intra-dipole correlations do not disrupt

the estimation process by creating local minima, and that the global minimum always achieves a perfect

source reconstruction. In contrast, inter-dipole correlations can potentially create local minima, but they

do not affect the global minimum. Empirically, we will demonstrate that the algorithm derived in Section

III is effective at avoiding these local minima (see Section V). With added assumptions these results can
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be extended somewhat to handle the inclusion of noise.

The cost functions from [26], [36] bear the closest resemblance to L(Γ); however, neither possesses

the second attribute from Theorem 1. This is a significant failing because, as mentioned previously,

intra-dipole correlations are always present in each active dipole. Consequently, reconstruction errors can

occur because of convergence to a local minimum. The iterative Bayesian scheme from [37], while very

different in structure, also directly attempts to estimate flexible orientations and handle, to some extent,

source correlations. While details are omitted for brevity, we can prove that the full model upon which this

algorithm is based fails to satisfy the first property of the theorem, so the corresponding global minimum

can fail to reconstruct the sources perfectly. In contrast, beamformers and sLORETA are basically linear

methods with no issue of global or local minima. However, the popular sLORETA and MVAB solutions

will in general display peaks that may be misaligned from the true sources for multi-component dipoles

(dc > 1) or when multiple dipoles (da > 1) are present, regardless of correlations (they will of course

never produce perfect reconstructions of dipolar sources because of spatial blur).

So in summary, our analysis provides one level of theoretical comparison. In some sense it is relevant

to questions of the sort, do we expect the underlying true current sources to lie in the subspace formed

by S = LTA, where LT is essentially an arbitrary overdetermined matrix in this context, or will they

more likely be of the form S equals the sum of da <
spark(L)−1

dc
arbitrary dipoles with unconstrained

orientations and locations? This latter configuration is a actually equivalent to the union of a large number

of dadc-dimensional subspaces (in fact the number is combinatorial,
(
ds

da

)
, which represents all possible

unique configurations of da dipoles), a far more complex, and in some sense richer, set of possible

sources. Champagne is designed to recover sources resembling the latter, an approximation to ‘real’

source configurations that many neurophysiologists would say is both plausible and useful clinically.

V. EMPIRICAL EVALUATION

In this section we test the performance of our algorithm on both simulated and real data sets. We

focus here on localization accuracy assuming strong source correlations and unknown orientations. Note

that the primary purpose of the proposed algorithm is not really to estimate the actual orientations or

correlations per se. It is to accurately estimate the location and power of sources confounded by the

effects of unknown orientations and correlations. Consequently, accurate localization estimates implicitly

indicate that these confounds have been adequately handled, hence orientation (or correlation) estimates

themselves are not stressed.
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A. Simulated Data

We first conducted tests using simulated data with realistic source configurations. The brain volume was

segmented into 5mm voxels and a two orientation (dc = 2) forward lead-field was calculated using a single

spherical-shell model [25]. The data time course was partitioned into pre- and post-stimulus periods. In

the pre-stimulus period (263 samples) there is only noise and interfering brain activity, while in the post-

stimulus period (437 samples) there is the same (statistically) noise and interference factors plus source

activity of interest. The pre-stimulus activity consisted of the resting-state sensor recordings collected from

a human subject presumed to have spontaneous activity (i.e., non-stimulus evoked sources) and sensor

noise; this activity was on-going and continued into the post-stimulus period, where the simulated source

signals were added. Source time courses were seeded at locations in the brain with damped-sinusoidal

signals and this voxel activity was projected to the sensors through the lead-field. The locations for the

sources were chosen so that there was some maximum distance between sources and a maximum distance

from the center of the head. We could adjust both the signal-to-noise-plus-interference ratio (SNIR), the

correlations between the different voxel time courses (inter-dipole), and the correlations between the two

orientations of the dipoles (intra-dipole) to examine the algorithm performance on unknown correlated

sources and dipole orientations. For our purposes, SNIR is defined as

SNIR , 20 log
‖LS‖F
‖E‖F

. (19)

To obtain aggregate data on the performance of our method on many different dipole configurations

and noise levels, we ran 100 simulations of three randomly (located) seeded sources at SNIR levels of

-5, 0, 5, 10dB. The sources in these simulations always had an inter-dipole correlation coefficient and

an intra-dipole correlation coefficient of 0.95. We chose to test our algorithm against five representative

source localization algorithms from the literature: minmum variance adaptive beamforming (MVAB) [27],

two non-adaptive spatial filtering methods, sLORETA [19] and dSPM [6], and two variants of minimum

current estimation (MCE) specially tailored to handle multiple time-points and unconstrained dipoles

[31], [34]. These two methods extend standard MCE by applying a `2 norm penalty across time (an `1

norm over space and an `2 norm over time, sometimes called an `1,2 norm in signal processing). In one

case both dipole components are also included within the `2 penalty (MCE1), in the other case they are

treated individually (MCE2). Similar to Champagne, both versions of MCE favor sparse/compact source

reconstructions. Related algorithms are discussed in [3], [14].

We ran the simulations using a total of eight algorithms, the five above plus the three variants of our

Champagne method: CHAMPS , CHAMPD, and CHAMPM (see Section III-B for a description of these
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variants). In order to evaluate performance, we used two features: source localization accuracy and time

course estimation accuracy. To assess localization accuracy, we used the A′ metric [29] and to assess the

estimation of the time courses, we used the correlation coefficient between the true and estimated time

courses.

When assessing the localization accuracy, it is important to take into account both the number of

hits (sources that were correctly localized) and the presence of false positives or spurious localizations.

A principled way to take these two features into account is the ROC (receiver-operator characteristic)

method modified for brain imaging results [7], which is a measure of hit rate (HR) versus false positive

rate (FR). Specifically, we used the A′ metric which is a way to approximate the area under the ROC for

one HR/FR pair. We determined the HR and FR at each SNIR level and each algorithm in the following

way. For each simulation, we calculated all the local peaks in the image. A local peak is defined as a

voxel that is greater than its 30 three-dimensional nearest neighbors and is at least 10 percent of the

maximum activation of the image. (This thresholding at 10 percent is designed to filter out any spurious

peaks or ripples in the image that are much weaker than the maximum peak.)

After all the local peak locations were obtained, we tested whether each true source location has at

least one local peak within a centimeter of it. (We also tested the performance at a radius of half a

centimeter and the trends were similar for all algorithms.) If there were multiple local peaks within one

centimeter of a particular true source, we counted it as one hit. Each image has the possibility of having

0, 1, 2, or 3 hits and we divided the number of hits by three to get the HR. Determining the false positive

rate is more tenuous. There is not a clear maximum number of possible false positives, as there is with

hits. We decided that given the spatial smoothness of the images, we could place a ceiling on the number

of local peaks in an image at 5 percent of the total number of voxels or 100 voxels in the case of our

simulations. Thus we divided the number of false positives, those local peaks not within one centimeter

of a seeded source location, by 100 to get the FR. Since each algorithm was treated the same for the

determination of the FR, we do not think that this estimated ceiling on the false positives caused any

bias in our performance evaluation.

For evaluating the time-course reconstruction we used the correlation coefficient between the true

time course seeded for the simulations and the estimated time series from each algorithm. Both the A′

metric and correlation coefficient range from 0 to 1, with 1 implying perfect localization and time course

estimation. For both the localization accuracy and the time course estimation assessments 100 simulations

were averaged. Figure 1 displays comparative results for the eight algorithms at different SNIR levels

with standard errors. Figure 1 Left demonstrates the A′ metric and Figure 1 Right shows the time-course
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correlation coefficients. All three variants of Champagne quite significantly outperform the others. For

all further analyses, only CHAMPM was used because of its superior performance.
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Fig. 1. Performance evaluation: Left Aggregate localization results (A′ metric) for MVAB, sLORETA, dSPM, two variants of

MCE (MCE1 and MCE2), and the three variants of Champagne (CHAMPS ,CHAMPD, and CHAMPM ) for recovering three

correlated sources with unknown orientations. Right Estimated time-course correlation coefficient results for the eight algorithms.

Error bars denote the standard error over 100 simulations.

Figures 2 and 4 show sample reconstructions of three correlated dipoles at 5dB and -5dB SNIR

respectively. The associated sensor data is depicted in Figures 3 and 5. Inter- and intra-dipole correlation

coefficients were 0.90 in each case. All of the surface plots are maximum-intensity projections of estimated

power maps onto the coronal plane. These power maps were obtained by calculating the average power at

every voxel from the reconstructed voxel time courses. The green circles indicate the projection of the true

locations of the sources and the surface plot shows the maximum-intensity projection of the power-map.

For these images the black/dark red regions are the maximum and the minimum is pale yellow/white. The

figures show reconstructions from CHAMPM against MVAB, MCE1, and sLORETA/dSPM. In practice,

the localization maps for sLORETA and dSPM are nearly identical (e.g., see Figure 1), so we chose to

only show the sLORETA images to represent both methods. CHAMPM performs significantly better at

localizing the activity at both high and low SNIR levels with highly correlated dipoles.

Figure 6 shows a sample reconstruction of a much more complex source configuration involving 10

dipolar sources. We compared CHAMPM versus MVAB, MCE1, and sLORETA/dSPM assuming (i) the
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Fig. 2. Localization of three highly Correlated Dipoles at SNIR = 5dB, the green circles denote the true locations of the sources

and the red-to-white colored surface plot shows the maximum-intensity projection of the source power estimates produced by

each algorithm. The color scale gradation goes from dark being the maximum to light being the minimum.

dipoles had zero inter- and intra-dipole correlations, and (ii) they had a correlation coefficient of 0.5 for

both inter- and intra-dipole interactions. The SNIR for these simulations was 10dB. CHAMPM performs

significantly better than the other algorithms on both the correlated and uncorrelated cases. Note that the

reason superficial sources are easier to find via Chamgpagne (and with many other methods) is simply

because the effective SNIR of deep sources is significantly lower. This occurs because deep sources,

when combined with superficial ones, contribute very little to the numerator of (19) because the norm of

the associated lead-field columns is relatively small. It is not because there is an intrinsic bias favoring

superficial dipoles; in fact, the global minimum of L(Γ) is invariant to the lead-field column norms in

the sense that the activation/sparsity pattern is completely unaffected.

As evidence that deeper sources need not necessarily be more difficult to find for a fixed SNIR, consider

a scenario with three sources that are all reasonably deep. In this situation, the relative SNIR of each
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Fig. 3. Sensor data from all 275 MEG channels associated with Figure 2 example. The red line denotes the pre- and post-stimulus

periods.

source will be comparable, meaning the overall source power is somewhat evenly distributed. If we are

assuming a fixed SNIR for three superficial sources versus three deep ones, then the power associated

with the deep ones will necessarily be larger to compensate for the small lead-field values. As a result,

these deep sources will be of similar difficulty to find. So it is really in the situation where the SNIR

is fixed but both deep and superficial sources are present that trouble arises. The shallow sources will

dominate the SNIR calculation and will be readily located, while the deep ones contribute almost nothing

to the data covariance and will likely be overlooked.

Figure 7 shows recovery results using three deep sources with 0.5 correlation (inter- and intra-dipole)

and 2dB SNIR, with interference from real brain noise as in previous experiments. Clearly Champagne

has no difficulty in this scenario while the other algorithms struggle. Of course in a practical situation,

the SNIR for deep sources may be well below 2dB, rendering them more difficult to find.

We also tested Champagne on more distributed source configurations. Previously, we created sources

constrained to one voxel; now we consider sources formed from activity in 10 adjacent voxels to form

clusters. We seeded 10 of these source clusters throughout the brain volume of interest. The lead-field

used for this experiment is the same as the previous experiments with a spatial resolution of 5mm. The

SNIR was 10dB and the intra-dipole correlation was 0.5 in all cases. The inter-dipole correlation was

0.8 for dipoles within the same cluster and 0.5 between dipoles in different clusters. We visualized the

clusters by projecting the source-power estimates to the surface of the 3-D rendered MRI.

From Figure 8 we observe that Champagne was able to resolve much of each cluster and 80 of the 100
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Fig. 4. Localization of 3 highly Correlated Dipoles at SNIR = -5dB, the green circles denote the true locations of the sources

and the red-to-white colored surface plot shows the maximum-intensity projection of the source power estimates produced by

each algorithm. The color scale gradation goes from dark being the maximum to light being the minimum.

voxels were found to be significantly active above any small spurious peaks. Comparing with the ground

truth plot, Champagne was able to reconstruct the clusters quite accurately, while MCE, sLORETA, and

MVAB are not able to do so. Consequently, Champagne is found to be both applicable to focal sources

as well as small diffuse clusters.

Finally, Figure 9 gives an example of the improvement in convergence rate afforded by our method

relative to an EM implementation analogous to [10], [26]; the per-iteration cost is the same for both

methods. A simulated 2D dipolar source was generated and projected to the sensors using the experimental

paradigm described in [37] with ds = 1725 voxels. The signal was corrupted by 10dB additive Gaussian

sensor noise. Figure 9 displays the reduction in the Champagne cost function L(Γ) as a function of

the iteration number. Consistent with previous observations, the EM updates are considerably slower in

reducing the cost. While the detailed rationale for this performance discrepancy is beyond the scope of
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Fig. 5. Sensor data from all 275 MEG channels associated with Figure 4 example. The red line denotes the pre- and post-stimulus

periods.

this paper, ultimately it is a consequence of the different underlying bounds being used to form auxiliary

functions. EM leads to slower convergence because it is effectively using a much looser bound around zero

than the bound described in Section III-A and therefore fails to fully penalize redundant or superfluous

components. This prevents the associated hyperparameters from going to zero very quickly, drastically

slowing the convergence rate. More details on this topic can be found in [35].

B. Real Data

Three stimulus-evoked data sets were collected from normal, healthy research subjects on a 275-

channel CTF System MEG device. The first data set was a sensory evoked field (SEF) paradigm, where

the subject’s right index finger was tapped for a total of 240 trials. A peak is typically seen 50ms after

stimulation in the contralateral (in this case, the left) somatosensory cortical area for the hand, i.e.,

dorsal region of the postcentral gyrus. Champagne and MCE1 were able to localize this activation to

the correct area of somatosensory cortex as seen in Figure 10 and the estimated time course shows the

typical 50ms peak Figure 13 (Left). The other algorithms were also able to localize this activity, but

the estimated activations are much more diffuse. Champagne and MCE’s sparsity characteristics result

in focal activations that do not have spatial blur like MVAB and sLORETA/dSPM. Note that for these

examples, we do not perform a maximum intensity projection. Instead, we simply find the voxels with

maximum power (obtained from the estimated time courses). Champagne and MCE’s activations were

very focal, but for the other two algorithms we thresholded the image of estimated source power to obtain
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a focal activation around the maxima.

The other two data sets analyzed were from an auditory evoked field (AEF) paradigm, where two

subjects were presented tones binaurally for a total of 120 trials. There are two typical peaks seen

after the presentation of an auditory stimulus, one at 50ms and one at 100ms, called the M50 and

M100 respectively. The auditory processing of tones is bilateral at early auditory cortical areas and the

activations are correlated. Champagne was able to localize activity in both primary auditory cortices for

both subjects, Figures 11 and 12, and the time courses for these two activations reveal the M50 and

M100 Figure 13 (Middle) and (Left). In general, these figures demonstrate that ChampM outperforms

both MVAB, MCE, and sLORETA/dSPM. The analysis of simple auditory paradigms is problematic for

MVAB because it cannot handle the bilateral correlated sources well. sLORETA/dSPM does show some

degree of bilateral activation but there is a large amount of spatial blur, while Champagne is focal in its

localization. Note that the first iteration of Champagne is very related to sLORETA/dSPM (see [36]) so

this result is perhaps not surprising. Finally, MCE like Champagne produces focal estimates, but with

additional spurious peaks and bilateral activations outside of auditory cortical areas.

VI. CONCLUSION

This paper derives a novel empirical Bayesian algorithm for MEG source reconstruction that readily

handles multiple correlated sources with unknown orientations, a situation that commonly arises even with

simple imaging tasks. Based on a principled cost function and fast, convergent update rules, this procedure

displays significant theoretical and empirical advantages over many existing methods. We have restricted

most of our exposition and analyses to MEG; however, preliminary work with EEG is also promising.

For example, on a real-world passive visual task where subjects viewed flashing foreground/background

textured images, our method correctly localizes activity to the lateral occipital cortex while two state-of-

the-art beamformers fail. This remains an active area of research.

There are a number of directions for future research. First, while not the focus of this paper, our

model can readily be augmented to produce model evidence approximations, which have been proposed

for Bayesian model comparison/selection purposes [10], [11], [34]. While here such approximations

emerge from the concavity bounds associated with the derivation of Champagne in Section III-A, in

[10], [11], related bounds follow from factorial (or mean-field) assumptions built into a variational free

energy framework. The connection between these two different types of bounds, as well as their relative

performance in model selection tasks, has not been explored to our knowledge.

Secondly, a full investigation of the effects of the temporal windowing of sensor time courses, and
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algorithmic extensions for learning optimal windows, is very important to empirical Bayesian methods

such as Champagne. There is an intrinsic trade-off here. Large windows are most effective for localizing

stationary sources that remain active across the whole window length; however, if a source has limited

temporal extent or is moving, extending the window size can drastically reduce performance. In contrast,

small windows are optimal for non-stationary, ephemeral sources, but the effective SNIR will generally be

worse. In preliminary studies with data from facial processing experiments, adjusting the window size has

been crucial for localizing regions such as the fusiform face area. This issue is implicitly considered in

[3], where temporal basis functions are used in extended MCE framework (a notion that could potentially

be applied to Champagne as well). Spatial basis functions can also be incorporated to allow more flexible

estimation of distributed sources, a useful notion that has been applied in a wide variety of settings [3],

[15], [21], [22], [34].

APPENDIX A: INTRODUCTION TO CONJUGATE DUALITY

At the heart of the algorithm derived in Section III is the ability to represent a concave function in its

dual form. For example, given a concave function f(y) : R → R, the dual form is given by

f(y) = inf
υ

[υy − f∗(υ)] , (20)

where f∗(υ) denotes what is called the conjugate function. Geometrically, this can be interpreted as

representing f(y) as the lower envelope or infimum of a set of lines parameterized by υ. The selection

of f∗(υ) as the intercept term ensures that each line is tangent to f(y). If we drop the maximization in

(20), we obtain the bound

f(y) ≤ υy − f ∗(υ). (21)

Thus, for any given υ, we have a rigorous bound on f(y); we may then optimize over υ to find the

optimal or tightest bound in a region of interest. In higher dimensions, the strategy is the same, only

now the bounds generalize from lines to hyperplanes.

APPENDIX B: PROOF OF THEOREM 1

We begin with Property 1. While it is possible to prove this result using manipulations of L(Γ) in

Γ-space, it is convenient to transform the problem to an equivalent one in S-space. Specifically, the

solution S∗ will be the global minimum of the dual optimization problem

S∗ = lim
Σε→0

[
min

S:B=LS
g(S)

]
(22)
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where

g(S) , min
Γ

[
ds∑

i=1

trace
(
ST

i Γ−1
i Si

)
+ log |Σb|

]
(23)

and Σb = Σε + LΓLT as defined in the main text. The global and local minima of (22) correspond with

those of L(Γ) by straightforward extension of results in [33]. Therefore, we only need to show that the

global minimizer of (22) S∗ satisfies Property 1. For simplicity, we will assume that Σε = εI with ε → 0

and that spark(L) = db + 1 (i.e., every subset of db lead-field columns are linearly independent). The

more general case is trivial to handle but complicates notation and exposition unnecessarily.

To begin we require two intermediate results:

Lemma 1: The function g(S) satisfies

g(S) = O(1) + (db − min[db, Ddc]) log ε, (24)

where D equals the cardinality of the set {Si : ‖Si‖ > 0}, i.e., D is the number of Si not equal to zero.2

3

In words this result states that g(S) will be O(1) unless Ddc < db, in which case g(S) will be dominated

by the log ε term when ε is small.

Proof : Computing g(S) via (23) involves a minimization over two terms. The first term encourages each

Γi to be large, the second encourages each Γi to be small. Whenever a given Si = 0, the first term can

be ignored and the associated Γi is driven to exactly zero by the second term. In contrast, for any Si 6= 0,

the minimizing Γi can never be zero for any ε ≥ 0 or the first term will be driven to infinity. This a

manifestation of the fact that

arg min
x≥0

[
1

x
+ log(x + ε)

]
> 0, ∀ε ≥ 0. (25)

Consequently, for any given S, the associated minimizing Γ will necessarily have a matching sparsity

profile, meaning the indices of zero-valued Si will align with zero-valued block-diagonal elements in Γ.4

Whenever Ddc > db, the above analysis (and the assumption that spark(L) = db + 1) ensures that the

minimizing Σb will be full rank even for ε = 0. This implies that g(S) = O(1) for essentially the same

reason that

min
x≥0

[
1

x
+ log(x + ε)

]
= O(1). (26)

2Here we have adopted the notation f(x) = O(h(x)) to indicate that |f(x)| < C1|h(x)| for all x < C2, with C1 and C2

constants independent of x.
3If S = Sgen, then by definition D = da.
4This point can be made more rigorous as shown in the first author’s PhD thesis, but we omit lengthy details here.
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In contrast, when Ddc < db, the minimizing Σb will become degenerate when ε → 0. Let λi denote the

i-th nonzero eigenvalue of LΓLT at the minimizing Γ. The spark assumption (coupled with the analysis

above) guarantees that there will be Ddc such eigenvalues. Then we have

log |Σb| =

Ddc∑

i=1

log(λi + ε) + (db − Ddc) log ε. (27)

This gives g(S) = O(1) + (db − Ddc) log ε.

�

Lemma 2: For any solution S such that B = LS, D will always satisfy D ≥ da. The sources S that

achieve equality are unique and satisfy S = Sgen.

Proof : This result represents a simple extension of uncertainty principles detailed in [5], [8]. In particular,

based on Lemma 1 in [5], if Sgen satisfies

dadc < (spark(L) + rank(B) − 1) /2 ≤ (spark(L) + min[dt, dadc] − 1) /2, (28)

then no other solution S can exist such that B = LS and D ≤ da. Additionally, by directly applying

results from [9], we find that this condition will also hold for all S, except a set with measure zero, if

dadc < spark(L) − 1. (29)

�

Given these two results, the proof of Property 1 is simple. In the limit as ε → 0, Lemma 1 dictates

that g(S) is minimized when D is minimized. Lemma 1 then shows that D is uniquely minimized (with

D = da) when S = Sgen.

Property 2 is relatively easy to show by leveraging Theorem 2 from [32]. For our purposes, this result

implies that if the data covariance Cb satisfies Cb = Σb for some Γ, then the cost function L(Γ) is

unimodal and Cb = Σb at any minimizing solution. When ε → 0, the data covariance satisfies

Cb =
1

dt
BBT =

1

dt
LSgenS

T
genLT = L

(
1

dt
SgenST

gen

)
LT . (30)

Given the conditions of Property 2, SgenST
gen will be zero except for dc × dc block diagonal elements.

Therefore, if Γ = 1/dtSgenST
gen (which is allowable given the specified block-diagonal structure of Γ),

then Σb = LΓLT = Cb and we have no local minima.
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[18] A. Nummenmaa, T. Auranen, M. Hämäläinen, I. Jääskeläinen, J. Lampinen, M. Sams, and A. Vehtari, “Hierarchical

Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods,”

Neuroimage, vol. 35, no. 2, pp. 669-685, 2007.

[19] R.D. Pascual-Marqui, “Standardized low resolution brain electromagnetic tomography (sloreta): Technical details,” Methods

and Findings in Experimental and Clinical Pharmacology, vol. 24, Suppl D, pp. 5–12, 2002.

June 10, 2009 DRAFT



24

[20] C. Phillips, J. Mattout, M. Rugg, P. Maquet, and K. Friston, “An empirical Bayesian solution to the source reconstruction

problem in EEG,” NeuroImage, vol. 24, pp. 997–1011, January 2005.

[21] C. Phillips, M. Rugg, and K. Friston, “Anatomically informed basis functions for EEG source localization: combining

functional and anatomical constraints,” NeuroImage, vol. 13, no. 3, pt. 1, pp. 678–95, July 2002.

[22] R. Ramı́rez and S. Makeig, “Neuroelectromagnetic source imaging using multiscale geodesic neural bases and sparse

Bayesian learning,” Human Brain Mapping, 12th Annual Meeting, Florence, Italy, June 2006.

[23] R. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[24] M. Sahani and S.S. Nagarajan, “Reconstructing MEG sources with unknown correlations,” Advances in Neural Information

Processing Systems 16, 2004.

[25] J. Sarvas, “Basic methematical and electromagnetic concepts of the biomagnetic inverse problem,” Phys. Med. Biol., vol.

32, pp. 11–22, 1987.

[26] M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for

MEG inverse problem,” NeuroImage, vol. 23, pp. 806–826, 2004.

[27] K. Sekihara and S.S. Nagarajan, Adaptive Spatial Filters for Electromagnetic Brain Imaging, Springer, 2008.

[28] K. Sekihara, M. Sahani, and S.S. Nagarajan, “Localization bias and spatial resolution of adaptive and non-adaptive spatial

filters for MEG source reconstruction,” NeuroImage, vol. 25, pp. 1056–1067, 2005.

[29] J.G. Snodgrass, and J.Corwin, “Pragmatics of Measuring Recognition Memory: Applications to Dementia and Amnesia,”

Journal of Experimental Psychology: General, vol. 17, no. 1 pp. 34-50, 1988.

[30] K. Uutela, M. Hamalainen, and E. Somersalo, “Visualization of magnetoencephalographic data using minimum current

estimates,” NeuroImage, vol. 10, pp. 173–180, 1999.

[31] D. Wipf, “Bayesian methods for finding sparse representations,” PhD Thesis, University of California, San Diego, 2006.

[32] D.P. Wipf and S. Nagarajan, “Beamforming using the relevance vector machine,” International Conference on Machine

Learning, June 2007.

[33] D.P. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Advances in Neural Information

Processing Systems 20, MIT Press, 2008.

[34] D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework for MEG/EEG Source Imaging,” NeuroImage, vol. 44, no.

3, February 2009.

[35] D.P. Wipf and S. Nagarajan, “Iterative Reweighted `1 and `2 Methods for Finding Sparse Solutions,” Submitted, 2009.

[36] D.P. Wipf, R.R. Ramı́rez, J.A. Palmer, S. Makeig, and B.D. Rao, “Analysis of empirical Bayesian methods for

neuroelectromagnetic source localization,” Advances in Neural Information Processing Systems 19, 2007.

[37] J.M. Zumer, H.T. Attias, K. Sekihara, and S.S. Nagarajan, “A probabilistic algorithm for interference suppression and

source reconstruction from MEG/EEG data,” Advances in Neural Information Processing System 19, 2007.

June 10, 2009 DRAFT



25

x (mm)

C
H

A
M

P
M

   
  

z 
(m

m
) 

   
  

Uncorrelated

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

C
H

A
M

P
M

   
   

   
 

z 
(m

m
) 

   

Correlated

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

M
V

A
B

z 
(m

m
)

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)
M

V
A

B
z 

(m
m

)

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

sL
O

R
E

T
A

/d
S

P
M

z 
(m

m
)

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

sL
O

R
E

T
A

/d
S

P
M

z 
(m

m
)

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

M
C

E
1   

   

z 
(m

m
) 

   
  

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

x (mm)

M
C

E
1   

 

z 
(m

m
) 

   

−60 −40 −20 0 20 40

−20

−10

0

10

20

30

40

50

Fig. 6. Localization of 10 dipoles Left Column: Uncorrelated sources; Right Column: Correlated sources. The green circles

denote the true locations of the sources and the red-to-white colored surface plot shows the maximum-intensity projection of

the source power estimates produced by each algorithm. The color scale gradation goes from dark being the maximum to light

being the minimum.
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Fig. 7. Deep source example.

Fig. 8. Localization of diffuse sources. 10 clusters of 10 dipoles each were seeded in the brain and reconstructed using various

algorithms. True and estimated sources were then projected to the rendered surface of the brain. Champagne comes the closest

to matching the true sources.
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Fig. 9. Convergence rate of proposed update rules relative to a conventional EM implementation based on [10], [26], [31].
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(a) CHAMPM (b) MVAB

(c) sLORETA (d) MCE1

Fig. 10. Localization of SEF data. All four algorithms localize to somatosensory cortical areas, but Champagne and MCE are

the most focal.
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(a) CHAMPM (b) MVAB

(c) sLORETA (d) MCE1

Fig. 11. Localization of AEF data (subject 1). Only Chamgagne is able to localize bilateral activity in primary auditory cortex.
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(a) CHAMPM (b) MVAB

(c) sLORETA (d) MCE1

Fig. 12. Localization of AEF data (subject 2). Only Chamgagne is able to localize bilateral activity in primary auditory cortex.
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Fig. 13. Top Row: Sensor data from all 275 MEG channels associated with Figures 10, 11, and 12. Bottom Row: Recovered

timescourses at the maximum intensity voxels as estimated via CHAMPM . Left: Left somatosensory cortex showing peak at

50ms. Middle: Left auditory cortex from subject 1 (right auditory cortex, not shown, is similar) showing M50 and M100. Right:

Right auditory cortex from subject 2 (left auditory cortex, not shown, is similar) showing M50 and M100.
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