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ABSTRACT OF THE DISSERTATION

Bayesian Methods for Finding Sparse Representations

by

David Paul Wipf

Doctor of Philosophy in Electrical Engineering

(Intelligent Systems, Robotics & Control)

University of California, San Diego, 2006

Professor Bhaskar D. Rao, Chair

Finding the sparsest or minimum `0-norm representation of a signal given a

(possibly) overcomplete dictionary of basis vectors is an important problem in many

application domains, including neuroelectromagnetic source localization, compressed

sensing, sparse component analysis, feature selection, image restoration/compression,

and neural coding. Unfortunately, the required optimization is typically NP-hard, and

so approximate procedures that succeed with high probability are sought.

Nearly all current approaches to this problem, including orthogonal match-

ing pursuit (OMP), basis pursuit (BP) (or the LASSO), and minimum `p quasi-norm

methods, can be viewed in Bayesian terms as performing standard MAP estimation

using a fixed, sparsity-inducing prior. In contrast, we advocate empirical Bayesian ap-

proaches such as sparse Bayesian learning (SBL), which use a parameterized prior to

encourage sparsity through a process called evidence maximization. We prove several

xvi



results about the associated SBL cost function that elucidate its general behavior and

provide solid theoretical justification for using it to find maximally sparse representa-

tions. Specifically, we show that the global SBL minimum is always achieved at the

maximally sparse solution, unlike the BP cost function, while often possessing a more

limited constellation of local minima than comparable MAP methods which share this

property. We also derive conditions, dependent on the distribution of the nonzero model

weights embedded in the optimal representation, such that SBL has no local minima.

Finally, we demonstrate how a generalized form of SBL, out of a large class of latent-

variable models, uniquely satisfies two minimal performance criteria directly linked to

sparsity. These results lead to a deeper understanding of the connections between vari-

ous Bayesian-inspired strategies and suggest new sparse learning algorithms.

Several extensions of SBL are also considered for handling sparse representa-

tions that arise in spatio-temporal settings and in the context of covariance component

estimation. Here we assume that a small set of common features underly the observed

data collected over multiple instances. The theoretical properties of these SBL-based

cost functions are examined and evaluated in the context of existing methods. The

resulting algorithms display excellent performance on extremely large, ill-posed, and

ill-conditioned problems in neuroimaging, suggesting a strong potential for impacting

this field and others.
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Chapter I

Introduction

Suppose we are presented with some target signal and a feature set that are

linked by a generative model of the form

t = Φw + ε, (I.1)

where t ∈ R
N is the vector of responses or targets, Φ ∈ R

N×M is a dictionary of M

features (also referred to as basis vectors) that have been observed or determined by

experimental design, w is a vector of unknown weights, and ε is Gaussian noise.1 The

goal is to estimate w given t and Φ.

Perhaps the most ubiquitous estimator used for this task is one that maximizes

the likelihood of the data p(t|w) and is equivalent to the least squares solution. When

the dimensionality of w is small relative to the signal dimension (i.e., M � N ), then

the ML solution is very effective. However, a rich set of applications exist where the

1While here we assume all quantities to be real, we will later consider the complex domain as well.

1
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opposite is true, namely, the dimensionality of the unknownw significantly exceeds the

signal dimension N . In this situation, the inverse mapping from t to w is said to be

underdetermined, leading to a severely more complicated estimation task since there are

now an infinite number of solutions that could have produced the observed signal t with

equal likelihood.

A Bayesian remedy to this indeterminacy assumes that nature has drawn w

from some distribution p(w) that allows us to narrow the space of candidate solutions in

a manner consistent with application-specific assumptions. For example, if we assume

that w has been drawn from a zero-mean Gaussian prior with covariance σ2
wI while ε

is independently Gaussian with covariance σ2
ε I , then the maximum a posteriori (MAP)

estimator of w is given by

ŵ = arg max
w

p(t|w)p(w) = ΦT
(
λI + ΦΦT

)−1
t, (I.2)

where λ , σ2
ε/σ

2
w. Here the inverse mapping ΦT

(
λI + ΦΦT

)−1 is linear like the for-

ward (generative) model; however, in general this need not be the case.

Use of (I.2) favors estimates ŵ with a large number of small nonzero coeffi-

cients. Instead, assume now that we have some prior belief that t has been generated by

a sparse coefficient expansion, meaning that most of the elements inw are equal to zero.

Such inverse solutions can be encouraged by the incorporation of a so-called sparsity-

inducing prior, characterized by fat tails and a sharp, possibly infinite, peak at zero [79].

An alternative route to sparsity is to use special so-called empirical priors characterized
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by flexible parameters that must be estimated (somewhat counterintuitively) from the

data itself [66]. The problem in both situations, however, is that the ensuing inverse

problem from t to w becomes highly non-linear. Moreover, although as M increases

there is a greater possibility that a highly sparse representation exists, the associated

estimation task becomes exponentially more difficult, with even modest sized problems

becoming insolvable.

In the next section, we will discuss a few relevant applications where sparse

representations as described are crucial. We will then more precisely define the types of

sparse inverse problems we wish to solve followed by detailed descriptions of several

popular Bayesian solutions to these problems. We will conclude by providing an outline

of the remainder of this thesis.

I.A Applications

Numerous applications can effectively be reduced to the search for tractable

sparse solutions to (I.1) and the associated interpretation of the coefficients that result.

Three interrelated examples are signal denoising, compression/coding of high dimen-

sional data, and dictionary learning or sparse component analysis. In the first, the goal

is to find a mapping such that signal energy is concentrated in a few coefficients while

the noise energy remains relatively distributed, or is relegated to a few noise components

of an appropriately fashioned overcomplete dictionary. This allows for thresholding in

the transform domain to remove noise while limiting the signal degradation [15, 43].

Secondly, for coding purposes, sparsity can play an important role in redundancy reduc-
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tion, leading to efficient representations of signals [64, 68, 96]. It has also been argued

that such representations are useful for modelling high dimensional data that may lie in

some lower-dimensional manifold [69]. Thirdly, a large number of overcomplete dictio-

nary learning algorithms rely heavily on the assumption that the unknown sources are

sparse [31, 50, 52, 53]. These methods typically interleave a dictionary update step with

a some strategy for estimating sparse sources at each time point. Here the distinction

arises between learning the optimal sources at every time point for a given dictionary

and blindly learning an unknown dictionary, which does not necessarily require that we

learn the optimal source reconstruction.

Applications of sparsity are not limited to the above as will be discussed in the

following subsections. These descriptions represent topics particularly germane to the

research contained in this thesis.

I.A.1 Nonlinear Parameter Estimation and Source Localization

Sparse solutions to (I.1) can be utilized to solve a general class of nonlinear

estimation problems. Suppose we are confronted with the generative model

t = g(α,Θ) + ε =
D∑

d=1

αdf (θd) + ε (I.3)

where α = [α1, . . . , αD]T is an unknown coefficient vector, Θ = [θ1, . . . ,θD] ∈ R
R×D

is an unknown parameter matrix, and f : R
R → R

N is a known nonlinear function.

Given t and f(·), the goal here is to learn α and Θ. A surprisingly large number of
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parameter estimation tasks, including many ML problems, can be expressed in this form.

We will refer to this problem as source localization, since often the parameters Θ and

α correspond with the location and amplitude of some source activity of interest. Note

also that D, which can be considered the number of active sources, may be unknown.

Assuming that f(·) is highly nonlinear, then estimation of α and Θ can be

extremely difficult and subject to numerous local optima. However, by densely sampling

Θ space, this estimation task can be mapped into the sparse representation framework,

assuming D is sufficiently smaller than N . This requires a dictionary to be formed with

columns φi = f (θi), with sampling sufficiently dense to obtain the required accuracy.

The nonzero coefficients obtained from learning a sparse solution ŵ correspond with

the unknown αd, while the corresponding selected columns of Φ signify, to within the

quantization accuracy, the values of θ1, . . . ,θD.

This method generally has a significant advantage over more traditional non-

linear optimization techniques, in that results are much less dependent on the initializa-

tion that is used and the local minimum profile of (I.3). This occurs because, in some

sense, the sparse approximation framework considers ‘all’ source locations initially and

then prunes away unsupported values in a competitive process. While local minima

may still exist, they are local minima with respect to a more global solution space and

typically a reasonable solution is obtainable. In contrast, minimizing (I.3) directly us-

ing some descent method considers only a single solution at a time and proceeds based

only on local information in the neighborhood of this solution. Moreover, it requires

explicit knowledge of D, whereas in theory, the sparse approximation framework can
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learn this value from the data (i.e., upon convergence, the number of nonzero elements

in ŵ approximately equals D).

The next section, in part, addresses a particular instance of this methodology

related to neuroimaging. Another very relevant example (not discussed) involving this

framework is direction-of-arrival estimation [34, 60].

I.A.2 Neuroelectromagnetic Source Imaging

Recent non-invasive imaging techniques based on electroencephalography (EEG)

and magnetoencephalography (MEG) draw heavily on the resolution of underdeter-

mined inverse problems using (implicitly or explicitly) a sparse Bayesian formulation

[33, 40, 74, 75, 100]. At least two fundamental issues can be addressed under a Bayesian

sparse recovery framework. The first relates to source localization, the second uses

sparse component analysis to remove artifacts and analyze macro-level brain dynamics.

MEG and EEG use an array of sensors to take EM field measurements from on

or near the scalp surface with excellent temporal resolution. In both cases, the observed

field is generated by the same synchronous, compact current sources located within the

brain. Because the mapping from source activity configuration to sensor measurement

is many to one, accurately determining the spatial locations of these unknown sources is

extremely difficult. In terms of the generative model (I.1), the relevant localization prob-

lem can be posed as follows: The measured EM signal is t where the dimensionality N

is equal to the number of sensors. The unknown coefficientsw are the (discretized) cur-

rent values at M candidate locations distributed throughout the cortical surface. These
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candidate locations are obtained by segmenting a structural MR scan of a human sub-

ject and tesselating the gray matter surface with a set of vertices. The i-th column of Φ

then represents the signal vector that would be observed at the scalp given a unit current

source at the i-th vertex. Multiple methods (based on the physical properties of the brain

and Maxwell’s equations) are available for this computation [88].

To obtain reasonable spatial resolution, the number of candidate source lo-

cations will necessarily be much larger than the number of sensors. The salient inverse

problem then becomes the ill-posed estimation of these activity or source regions. Given

the common assumption that activity can be approximated by compact cortical regions,

or a collection of equivalent current dipoles, the sparse recovery framework is particu-

larly appropriate. Source localization using a variety of implicit Bayesian priors have

been reported with varying degrees of success [33, 42, 71, 75, 100]. This problem can

also be viewed as an instance of (I.3), where θd represents the 3D coordinates of a partic-

ular current dipole and the corresponding αd is the source amplitude, which is assumed

to be oriented orthogonal to the cortical surface. The case of unconstrained dipoles can

be handled by adding two additional source components tangential to the cortex.

Direct attempts to solve (I.3) using nonlinear optimization exhibit rather poor

performance, e.g., only two or three sources can be reliably estimated in simulation, due

to the presence of numerous local minima. In contrast, using the sparse representation

framework upwards of fifteen sources can be consistently recovered [75]. Regardless,

the estimation task remains a challenging problem.

A second application of sparse signal processing methods to EEG/MEG in-
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volves artifact removal and source separation. Whereas the dictionary Φ is computed

directly using standard physical assumptions to solve the localization task, here we as-

sume an unknown decomposition Φ that is learned from a series of observed EEG/MEG

signals t(n) varying over the time index n. The dimensionality of the associated w(n)

is interpreted as the number of unknown neural sources or causes plus the number of

artifactual sources and noise. A variety of algorithms exist to iteratively estimate both Φ

(dictionary update) andw(n) (signal update) using the a priori assumption that the latter

time courses are sparse. In practice, it has been observed that the resulting decomposi-

tion often leads to a useful separation between unwanted signals (e.g., eye blinks, heart

beats, etc.) and distinct regions of brain activity or event-related dynamics [48, 75].

Note that all of the sparse Bayesian methods discussed in this thesis, when combined

with a dictionary update rule, can conceivably be used to address this problem.

In summary, high-fidelity source localization and dynamic source detection/separation

serve to advance non-invasive, high temporal resolution electromagnetic brain imaging

technologies that heretofore have suffered from inadequate spatial resolution and am-

biguous dynamics. The solution of a possibly underdetermined system using the as-

sumption of sparsity plays a crucial role is solving both problems.

I.A.3 Neural Coding

This section focuses on the role of sparse representations operating at the level

of individual neurons within a population. A mounting collection of evidence, both

experimental and theoretical, suggests that the mammalian cortex employs some type of
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sparse neural code to efficiently represent stimuli from the environment [67, 72, 101].

In this situation, the observed data t represent a particular stimuli such as a visual scene

projected onto the retina. Each column of the matrix Φ models the receptive field of a

single neuron, reflecting the particular feature (e.g., such as an oriented edge) for which

the neuron is most responsive. The vector w then contains the response properties

of a set of M neurons to the input stimulus t, with a sparse code implying that most

elements ofw, and therefore most neurons, are inactive at any given time while a small

set with stimulus-correlated receptive fields maintain substantial activity or firing rates.

In many situations the number of neurons available for coding purposes is much greater

than the intrinsic dimensionality of the stimulus, possibly reflecting the existence of a

large number of potential causes underlying the space of potential stimuli [69]. This

requires that the response properties of many cortical neurons are effectively nonlinear,

consistent with sparse inverse mappings associated with (I.1) and a variety of empirical

data.

A key pointer to the potential role of sparse coding in the processing of sensory

data came in the seminal work by Olshausen and Field [67, 68]. Here an iterative algo-

rithm is proposed to learn a matrix Φ that encourages/faciliates sparse representations

w when presented with patches from natural images t.2 With no other assumptions, the

Φ that results from this procedure contains columns representing a full set of spatially

localized, oriented, and bandpass receptive fields consistent with those observed in the

simple cells of the mammalian primary visual cortex. This result reinforces the notion

2We will briefly discuss learning the dictionary Φ in Section VIII.C
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that a sparse coding principle could underly the brain’s neural representation of natural

stimuli.

As summarized in [69], sparse coding strategies offers several advantages to

an individual organism. For example, sparse codes from overcomplete dictionaries lead

to efficient, less redundant representations and may make it easier for higher areas of

the brain to learn relevant structure and causal relationships embedded in sensory inputs.

Recent work using overcomplete representations in a biologically motivated recognition

systems support this assertion [65]. Moreover, in understanding how the brain processes

information, the possibility exists for building better artificial systems for robust com-

pression and recognition.

I.A.4 Compressed Sensing

Compressed sensing begins with the assumption that some sparse data vector

of interest w exists in a high-dimensional space [8, 20, 102]. We would like to have

access to w but direct measurement of each element in w is assumed to be very expen-

sive. As such, the objective is to obtain an accurate estimate by measuring only a few

random projections ofw. In this situation, each row of Φ becomes a random vector and

each element of t is the associated measurement/projection. The goal is then to recover

w using only the observed projections t and the knowledge that w is sparse.
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I.B Definitions and Problem Statement

To simplify matters, it is useful to define

‖w‖0 ,

M∑

i=1

I [|wi| > 0] , (I.4)

where I[·] denotes the indicator function. ‖ · ‖0 is a diversity measure since it counts the

number of elements in w that are not equal to zero. It is also commonly referred to as

the `0 norm, although it is not actually a true norm. This is in contrast to sparsity, which

counts the number of elements that are strictly equal to zero. The two are related by

diversity = M − sparsity. (I.5)

The nonzero elements of any weight vector are referred to as active sources.

With regard to the dictionary Φ, spark is defined as the smallest number of

linearly dependent columns [17]. By definition then, 2 ≤ spark(Φ) ≤ N + 1. As a

special case, the condition spark(Φ) = N + 1 is equivalent to the unique representation

property from [34], which states that every subset ofN columns is linearly independent.

Finally, we say that Φ is overcomplete if M > N and rank(Φ) = N .

Turning to the sparse representation problem, we begin with the most straight-

forward case where ε = 0. If Φ is overcomplete, then we are presented with an ill-posed

inverse problem unless further assumptions are made. For example, if a matrix of gen-
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erating weights wgen satisfies

‖wgen‖0 < spark(Φ)/2, (I.6)

then no other solution w can exist such that t = Φw and ‖w‖0 ≤ ‖wgen‖0. Results

of this nature have been derived in [34] and later discussed in [17]. Furthermore, if we

assume suitable randomness on the nonzero entries of wgen, then this result also holds

under the alternative inequality

‖wgen‖0 < spark(Φ) − 1, (I.7)

which follows from the analysis in Section II.B.2. Given that one or both of these

conditions hold, then recovering wgen is tantamount to solving

wgen = w0 , arg min
w

‖w‖0, s.t. t = Φw. (I.8)

This has sometimes been called the exact sparse recovery problem, since any solution

forces exact (strict) equality. In general, (I.8) is NP-hard so approximate procedures are

in order. In Chapters II and III, we will examine the solution of (I.8) in further detail,

which has also been studied exhaustively by others [17, 29, 35, 95]. For the remainder

of this thesis, whenever ε = 0, we will assume thatwgen satisfies (I.6) or (I.7), and sow0

(the maximally sparse solution) and wgen can be used interchangeably.

When ε 6= 0, things are decidedly more nebulous. Because noise is present,
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we typically do not expect to represent t exactly, suggesting the relaxed optimization

problem

w0(λ) , arg min
w

‖t− Φw‖2
2 + λ‖w‖0, (I.9)

where λ is a trade-off parameter balancing estimation quality with sparsity. Unfortu-

nately, solving (I.9) is also NP-hard, nor is it clear how to select λ. Furthermore, there

is no guarantee that the global solution, even if available for the optimal value of λ, is

necessarily the best estimator of wgen, or perhaps more importantly, is the most likely

to at least have a matching sparsity profile. This latter condition is often crucial, since

it dictates which columns of Φ are relevant, a notion that can often have physical sig-

nificance (e.g., in the source localization problem). Although not the central focus of

this thesis, if the ultimate goal is compression of t, then the solution of (I.9) may trump

other concerns.

From a conceptual standpoint, (I.9) can be recast in Bayesian terms by adding

constants and applying a exp[−(·)] transformation. This leads to a Gaussian likelihood

function p(t|w) with λ-dependent variance

p(t|w) ∝ exp

[
−1

λ
‖t− Φw‖2

2

]
(I.10)

and a prior distribution given by

p0(w) ∝ exp [−‖w‖0] . (I.11)

In weight space, this improper prior maintains a sharp peak when a weight equals zero
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and heavy (in fact uniform) ‘tails’ everywhere else. The optimization problem from (I.9)

can equivalently be written as

w0(λ) ≡ arg max
w

p(t|w)p0(w) = arg max
w

p(t|w)p0(w)

p(t)
= arg max

w
p0(w|t). (I.12)

Therefore, (I.9) can be viewed as a challenging MAP estimation task, with a posterior

characterized by numerous locally optimal solutions.

I.C Finding Sparse Representations vs. Sparse Regression

Before proceeding to discuss various Bayesian strategies for solving (I.8) and

(I.9), it is important to make the following distinction. In many ways, the problem of

finding sparse representations can be thought of as regression where sparsity acts as a

regularization mechanism to avoid overfitting the training data t as well as potentially

leading to more interpretable model structures. Nonetheless, there remains one sub-

tle difference: while the ultimate goal of regression is to minimize generalization error

(i.e., error on evaluation data not available during model training), here we are more

concerned with the actual sparse representation of the training data t. This distinction

is reflected in the results of this paper, which focus on how well a particular method is

likely to solve (I.8) or (I.9). With the exception of Chapter IV, which discusses how

certain sparse Bayesian strategies relate to probability mass in a full predictive distribu-

tion, performance on unseen data is not emphasized. However, for the interested reader,

there is a known relationship between sparsity of fit and generalization performance as
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discussed in [39]. And so many sparsity-based regression schemes have demonstrated

marked success [86, 94] relative to predictive accuracy.

I.D Bayesian Methods

Directly solving (I.8) or (I.9) poses a difficult optimization challenge both

because of the sharp discontinuity at zero and the combinatorial number of local min-

ima. However, simple greedy methods offer a convenient means for providing at least

locally optimal solutions. For example, there are forward sequential selection meth-

ods based on some flavor of Matching Pursuit (MP) [61]. As the name implies, these

approaches involve the sequential (and greedy) construction of a small collection of

dictionary columns, with each new addition being ‘matched’ to the current residual. Al-

though not our focus, we will sometimes consider Orthogonal Matching Pursuit (OMP),

a popular variant of MP that can be viewed as finding a local minimum to (I.8) or (I.9)

[12].

An alternative strategy is to replace the troublesome prior p0(w) with a distri-

bution that, while still encouraging sparsity, is somehow more computationally conve-

nient. Bayesian approaches to the sparse approximation problem that follow this route

have typically been divided into two categories: (i) maximum a posteriori (MAP) es-

timation using a fixed, computationally tractable family of priors and, (ii) empirical

Bayesian approaches that employ a flexible, parameterized prior that is ‘learned’ from

the data. We discuss both techniques in turn.
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I.D.1 MAP Estimation

A natural solution to the computational difficulty associated with p0(w) is

to choose the best possible convex relaxation, which turns out to be the standardized

Laplacian distribution

p1(w) ∝ exp

(
−

M∑

i=1

|wi|
)
. (I.13)

Often referred to as Basis Pursuit (BP)[10], the LASSO [93], or `1-norm regularized

regression, MAP estimation using this prior involves solving

wBP = arg min
w

‖t− Φw‖2
2 + λ

M∑

i=1

|wi|. (I.14)

This convenient convex cost function can be globally minimized using a variety of stan-

dard optimization packages. The properties of the BP cost function and algorithms for

its minimization have been explored in [17, 79, 96]. While often effective, the BP solu-

tion sometimes fails to be sufficiently sparse in practice. This subject will be discussed

more in later sections.

A second prior that is sometimes chosen in place of the Lalpacian is the scale-

invariant Jeffreys prior given by

pJ(w) ∝
M∏

i=1

1

|wi|
. (I.15)

Although technically an improper prior [4], the heavy tails and sharp (in fact infinite)

peak at zero mirror the characteristics of a sparse distribution. The MAP estimation
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problem then becomes

wJeffreys = arg min
w

‖t− Φw‖2
2 + λ

M∑

i=1

log |wi|, (I.16)

where the regularization term here has sometimes been referred to as the Gaussian en-

tropy [78]. This Jeffreys-based cost function suffers from numerous local minima, but

when given a sufficiently good initialization, can potentially find solutions that are closer

to wgen than wBP. From an implementational standpoint, (I.16) can be solved using the

algorithms derived in [27, 34].

Thirdly, we weigh in the generalized Gaussian prior

p(w) ∝ exp

(
−

M∑

i=1

|wi|p
)
, (I.17)

where p ∈ [0, 1] is a user-defined parameter. The corresponding optimization problem,

which is sometimes called the FOCUSS algorithm, involves solving

wFOCUSS = arg min
w

‖t− Φw‖2
2 + λ

M∑

i=1

|wi|p. (I.18)

This is very similar to a procedure originally outlined in [51] based on work in [2]. If

p → 0, the FOCUSS cost function approaches (I.9). While this may appear promising,

the resultant update rule in this situation ensures (for any finite λ) that the algorithm

converges (almost surely) to a locally minimizing solution w ′ such that t = Φw′ and

‖w′‖0 ≤ N , regardless of λ. The set of initial conditions whereby we will actually
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converge tow0(λ) has measure zero. When p = 1, FOCUSS reduces to an interior point

method for implementing BP [78]. The FOCUSS framework also includes the Jeffreys

approach as a special case as shown in Appendix VI.H.1. In practice, it is sometimes

possible to jointly select values of p and λ such that the algorithm outperforms both

BP and Jeffreys. In general though, with BP, Jeffreys, and FOCUSS, λ must be tuned

with regard to a particular application. Also, in the limit as λ becomes small, we can

view each MAP algorithm as minimizing the respective diversity measure subject to the

constraint t = Φw. This is in direct analogy to (I.8).

Because the FOCUSS framework can accommodate all the the sparsity priors

mentioned above, and for later comparison purposes with other methods, we include the

FOCUSS update rules here. These rules can be derived in a variety of settings, including

the EM algorithm [70]. This requires expressing each prior in terms of a set of latent

variables γ = [γ1, . . . , γM ]T which are treated as hidden data. Details will be discussed

further in Chapter V. The E-step requires computing the expected value of γ given t

and the current weight estimate ŵ using

γi = |ŵi|2−p, ∀i, (I.19)

while the M-step updates ŵ via

ŵ = ΓΦT
(
λI + ΦΓΦT

)−1
t, (I.20)

where Γ , diag(γ). These updates are guaranteed to converge monotonically to a local
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minimum (or saddle point) of (I.18).

In the low-noise limit, i.e., as λ → 0, the M-step can be seamlessly replaced

with

ŵ = Γ1/2
(
ΦΓ1/2

)†
t, (I.21)

where (·)† denotes the Moore-Penrose pseudo-inverse. This result follows from the

general identity

lim
ε→0

UT
(
εI + UUT

)−1
= U †. (I.22)

In this manner, all of the methods from above can be used to approximate (I.8). We

observe that at each iteration ŵ is feasible, i.e., t = Φŵ. This assumes that t is in the

span of the columns of Φ associated with nonzero elements in γ, which will always be

the case if t is in the span of Φ and all elements of γ are initialized to nonzero values.

I.D.2 Empirical Bayes

All of the methods discussed in the previous section for estimatingwgen involve

searching some implicit posterior distribution for the mode by solving arg maxw p(w, t) =

arg maxw p(t|w)p(w), where p(w) is a fixed, algorithm-dependent prior. At least two

significant problems arise with such an endeavor. First, if only a moderately sparse

prior such as the Laplacian is chosen as with BP, a unimodal posterior results and mode-

finding is greatly simplified; however, the resultant posterior mode may not be suffi-

ciently sparse, and therefore wBP may be unrepresentative of wgen (or the maximally

sparse solutionw0). In contrast, if a highly sparse prior is chosen, e.g., the Jeffreys prior
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or a generalized Gaussian with p � 1, we experience a combinatorial increase in local

optima. While one or more of these optima may be sufficiently sparse and representative

of wgen, finding it can be very difficult if not impossible.

So mode-finding can be a problematic exercise when sparse priors are in-

volved. In this section, a different route to solving the sparse representation problem

is developed using the concept of automatic relevance determination (ARD), originally

proposed in the neural network literature as a quantitative means of weighing the relative

importance of network inputs, many of which may be irrelevant [57, 66]. These ideas

have also been applied to Bayesian kernel machines [94]. A key ingredient of this for-

mulation is the incorporation of an empirical prior, by which we mean a flexible prior

distribution dependent on a set of unknown hyperparameters that must be estimated

from the data.

To begin, we postulate p(t|w) to be Gaussian with noise variance λ consis-

tent with the likelihood model (I.10) and previous Bayesian methods. Generally, λ is

assumed to be known; however, the case where λ is not known will be discussed briefly

in Section VIII.A. Next, application of ARD involves assigning to each coefficent wi

the independent Gaussian prior

p(wi; γi) , N (0, γi) , (I.23)

where γi is an unknown variance parameter [94]. (In Chapter V we will address how

these γi parameters relate to those from the MAP section.) By combining each of these
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priors, we arrive at a full weight prior

p(w;γ) =
M∏

i=1

p(wi; γi), (I.24)

whose form is modulated by the hyperparameter vector γ = [γ1, . . . , γM ]T ∈ R
M
+ .

Combining likelihood and prior, the posterior density of w then becomes

p(w|t;γ) =
p(w, t;γ)∫
p(w, t;γ)dw

= N (µ,Σ), (I.25)

with mean and covariance given by

Σ , Cov[w|t;γ] = Γ − ΓΦT Σ−1
t ΦΓ,

µ , E[w|t;γ] = ΓΦT Σ−1
t t, (I.26)

where Γ , diag(γ) as before and Σt , λI + ΦΓΦT .

Since it is typically desirable to have a point estimate for wgen, we may enlist

µ, the posterior mean, for this purpose. Sparsity is naturally achieved whenever a γi

is equal to zero. This forces the posterior to satisfy Prob(wi = 0|t; γi = 0) = 1,

ensuring that the posterior mean of the i-th element, µi, will be zero as desired. Thus,

estimating the sparsity profile of some wgen is shifted to estimating a hyperparameter

vector with the correct number and location of nonzero elements. The latter can be

effectively accomplished through an iterative process discussed next.
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Hyperparameter Estimation: The SBL Algorithm

Each unique value for the hyperparameter vector γ corresponds to a different

hypothesis for the prior distribution underlying the generation of the data t. As such,

determining an appropriate γ is tantamount to a form of model selection. In this context,

the empirical Bayesian strategy for performing this task is to treat the unknown weights

w as nuisance parameters and integrate them out [56]. The marginal likelihood that

results is then maximized with respect to γ, leading to the ARD-based cost function

L(γ) , −2 log

∫
p(t|w)p(w;γ)dw = −2 log p (t;γ)

≡ log |Σt| + tT Σ−1
t t, (I.27)

where a −2 log(·) transformation has been added for simplicity.

The use of marginalization for hyperparameter optimization in this fashion

has been proposed in a variety of contexts. In the classical statistics literature, it has

been motivated as a way of compensating for the loss of degrees of freedom associated

with estimating covariance components along with unknown weights analogous to w

[36, 37]. Bayesian practitioners have also proposed this idea as a natural means of in-

corporating the principle of Occam’s razor into model selection, often using the descrip-

tion evidence maximization or type-II maximum likelihood to describe the optimization

process [4, 56, 66].

Two ways have been proposed to minimize L(γ) with respect to γ. (Section

VII.B.1 briefly discusses additional possibilities.) First, treating the unknown weights
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w as hidden data, we can minimize this expression over γ using a simple EM algorithm

as proposed in [13, 37, 94] for covariance estimation. For the E-step, this requires

computation of the posterior moments using (I.26), while the M-step is expressed via

the update rule

γ
(new)
i = µ2

i + Σii, ∀i = 1, . . . ,M. (I.28)

While benefitting from the general convergence properties of the EM algorithm, we have

observed this update rule to be very slow on some large practical applications.

Secondly, at the expense of proven convergence, we may instead optimize

(I.27) by taking the derivative with respect to γ, equating to zero, and forming a fixed-

point equation that typically leads to faster convergence [56, 94]. Effectively, this in-

volves replacing the M-step from above with

γ
(new)
i =

µ2
i

1 − γ−1
i Σii

, ∀i = 1, . . . ,M. (I.29)

We have found this alternative update rule to be extremely useful in large-scale, highly

overcomplete problems, although the results upon convergence are sometimes inferior

to those obtained using the slower update (I.28). In the context of kernel regression using

a complete dictionary (meaning N = M ), use of (I.29), along with a modified form of

(I.26),3 has been empirically shown to drive many hyperparameters to zero, allowing

the associated weights to be pruned. As such, this process has been referred to as sparse

Bayesian learning (SBL) [94]. Similar update rules have also been effectively applied

3This requires application of the matrix inversion lemma to Σ−1
t .
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to an energy prediction competition under the guise of ARD [57]. For our purposes, we

choose the label SBL (which stresses sparsity) to refer to the process of estimating γ,

using either the EM or fixed-point update rules, as well as the subsequent computation

and use of the resulting posterior.

Finally, in the event that we would like to find exact (noise-free) sparse repre-

sentations, the SBL iterations can be easily adapted to handle the limit as λ → 0 using

the modified moments

Σ =
[
I − Γ1/2

(
ΦΓ1/2

)†
Φ
]
Γ, µ = Γ1/2

(
ΦΓ1/2

)†
t, (I.30)

This is particularly useful if we wish to solve (I.8). Again we are ensured a feasible

solution will be produced at each iteration with a sparsity profile dictated by γ.

I.D.3 Summary of Algorithms

Given observation data t and a dictionary Φ, all of the MAP and SBL proce-

dures can be summarized by the following collection of steps:

1. Initialize the hyperparameters γ, e.g., γ := 1 or perhaps a non-negative random

initialization.

2. For SBL, compute Σ and µ using (I.26), or in the noiseless case, using (I.30).4

For MAP estimation, only µ need be computed, which equals the ŵ update.

4Note that off-diagonal elements of Σ need not be computed.



25

3. For SBL update γ using the EM rule (I.28) or the faster fixed-point rule (I.29).

For MAP estimation, use the update rule (I.19).

4. Iterate Steps 2 and 3 until convergence to a fixed point γ∗.

5. Assuming a point estimate is desired for the unknown weights wgen, choose µ∗,

the value of µ evaluated at γ∗.

6. Given that γ∗ is sparse, the resultant estimator µ∗ will necessarily be sparse as

well.

In practice, some arbitrarily small threshold can be set such that, when any hyperparam-

eter becomes sufficiently small (e.g., 10−16), it is pruned from the model (along with the

corresponding dictionary column).

I.E Thesis Outline

The remainder of this thesis is organized as follows. In Chapter II we pro-

vide a detailed, comparative analysis of the global and local minima of both MAP and

empirical Bayesian methods for finding sparse representations. Special focus is placed

on SBL, which is shown to have a number of attractive features. Chapter III then de-

scribes how the distribution of the nonzero weights affects the SBL algorithm’s ability

to find maximally sparse solutions and provides evidence for its superior performance

over popular competing methods.

Chapter IV switches gears and provides a more intuitive motivation for why

SBL is able to achieve sparse solutions. It also details how the SBL model relates to the
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probability mass in a full Bayesian model with a sparse prior.

The analysis thus far centers on comparing SBL with a few popular MAP-

based methods. However, recent results have shown that a rich set of latent variable

models with sparse priors can be efficiently optimized leading to alternative MAP and

empirical Bayesian approaches. Chapter V provides a theoretical examination of these

types of models and demonstrates a unique procedure, out of all the possibilities, that

satisfies two minimal performance criteria related to the recovery of sparse sources.

SBL and BP can be viewed as special cases. The distinction between factorial and non-

factorial priors is also discussed.

While the standard sparse recovery model is sufficient for many applications,

additional flexibility is needed in certain cases. The next two chapters extend this frame-

work to handle more general modelling assumptions. In Chapter VI, we assume that

multiple response vectors t are available that were putatively generated by the same un-

derlying set of features. The goal is then to assimilate the information contained in each

response so as to more reliably estimate the correct sparsity profile. An extension of

SBL for solving this problem is derived and analyzed.

Chapter VII further extends the flexibility of sparsity-based MAP and em-

pirical Bayesian methods to handle the more general problem of covariance component

estimation. This added generality is especially salient in the context of neuroelectromag-

netic source imaging, where we derive some new algorithms and point to connections

between existing source imaging approaches.

Chapter VIII addresses some practical issues that arise in the search for sparse
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representations. It also discusses the extension to dictionary learning, deriving a partic-

ularly effective algorithm for learning orthogonal transforms that encourage sparisty.

Chapter IX contains brief concluding remarks.



Chapter II

Analysis of Global and Local Minima

This chapter is primarily aimed at evaluating the properties of global and lo-

cal minima of the empirial Bayesian SBL algorithm and its relationship with more es-

tablished MAP methods. Ideally, a given method should have a global minimum that

closely coincides withwgen while maintaining as few suboptimal local minima as possi-

ble. The major result of this chapter is showing that, while the global minimum of both

SBL and certain MAP procedures are guaranteed to correspond with maximally sparse

solutions under certain conditions, the former has substantially fewer local minima. We

also derive necessary conditions for local minima to occur and quantify worst-case per-

formance at locally minimizing solutions. Several empirical results (here and in later

chapters) corroborate these findings.

Much of the analysis will focus on the exact recovery problem (I.8), i.e., find-

ing the maximally sparse solution w0 which we will assume equals wgen. The exact

recovery case is a useful starting point for comparing methods because the analysis is

28
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more straightforward and there is no ambiguity involved regarding how the trade-off pa-

rameter λ should be chosen. Moreover, many of the insights gained through this process

carry over to the case where noise is present and we are forced to accept some error

between t and the estimate Φŵ. Extensions to the noisy case are briefly addressed, but

will be explored further in Section VI.E.3 in a slightly more general context.

II.A Preliminaries

Consistent with previous discussion, we say that a dictionary Φ satisfies the

unique representation property (URP) if every subset of N columns of Φ forms a basis

in R
N . This property will be satisfied almost surely for dictionaries composed of iid

Gaussian elements, or dictionaries whose columns have be drawn uniformly from the

surface of a unit hypersphere. A basic feasible solution (BFS) is defined as a solution

vector w such that t = Φw and ‖w‖0 ≤ N . As will be explained more below, the

locally minimizing solutions for all algorithms considered are achieved at BFS. A de-

generate BFS has strictly less than N nonzero entries; however, the vast majority of

local minima are non-degenerate, containing exactly N nonzero entries.

Regarding algorithmic performance in obtaining sparse solutions, we define

two types of errors. First, a convergence error refers to the situation where an algorithm

converges to a non-global minimum of its cost function that does not equal w0. In

contrast, a structural error implies that an algorithm has reached the global minimum of

its cost function (or a local minima with lower cost than is achievable at the maximally

sparse solution w0), but this solution does not equal w0.
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II.B MAP Methods

This section discusses the properties of global and local solutions using stan-

dard MAP procedures. This leads to a discussion of what we term a local sparsity

maximization (LSM) algorithm.

II.B.1 MAP Global Minima and Maximally Sparse Solutions

The MAP methods from Section I.D.1 applied to the exact sparse problem

(I.8) reduce to solving either

min
w

M∑

i=1

log |wi| s.t. t = Φw (II.1)

assuming the Jeffreys prior, or

min
w

M∑

i=1

|wi|p s.t. t = Φw (II.2)

assuming a generalized Gaussian prior, for which the Laplacian is a special case (equiv-

alent to assuming p = 1). With regard to globally minimizing solutions, the analysis

is very simple. In the limit as p → 0, it can be shown that (II.1) is a special case of

(II.2) both in terms of the resulting cost function and the associated update rules that

result (see [78] and Appendix VI.H.1 for more discussion). Consequently, we only need

consider (II.2) without loss of generality. As described in [51], there exists a p′ suffi-

ciently small such that, for all 0 < p < p′, the global minimum of (II.2) will equal the

maximally sparse solution to t = Φw. However, this p′ is dependent on Φ and t and can
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be arbitrarily small. Moreover, there is no way to determine its value without a priori

knowledge of the global solution. But the point here is that p need not equal zero exactly

in order to be guaranteed that (II.2) producesw0 when globally optimized. Equivalently,

we can say there will always be a p sufficiently small such that no structural errors are

possible.

As p → 1, there is increasingly less likelihood that the global minimum to

(II.2) will be maximally sparse. While significant attention has been given to estab-

lishing equivalence conditions whereby the global p = 1 solution will in fact equal w0

[17, 18, 29, 35, 95], these conditions tend to be extremely restrictive, and therefore dif-

ficult to apply, in many practical situations. And so in general, structural errors can be

frequent as shown empirically in Sections II.D.2, III.D, and VI.D.

In the neuroimaging applications with which we are concerned, most existing

equivalence conditions only allow for trivial sparse recovery problems, if any, to be

solved. Appendix II.F.2 contains a brief example of a BP equivalence condition and the

associated difficulty applying it in the context of MEG/EEG source imaging. Chapter

VII evaluates neuroimaging-specific issues in greater detail.

II.B.2 Analysis of Local Minima

When p = 1, it is well known that the resulting optimization problem is con-

vex, whether λ→ 0 or not. Consequently, convergence to undesirable local solutions is

not generally an issue.1 When p < 1, things are decidedly different. Local minima pose

1It is possible, however, to have multiple globally minimizing solutions, all confined to the same basin of attrac-
tion, in certain nuanced situations.
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a clear impediment to achieving globally optimal solutions, and therefore, quantifying

the number and extent of such minima is important. While strictly deterministic results

may be evasive in general, the issue can be addressed probabilistically. To facilitate this

goal, we first present the following result (see Appendix II.F.1 for proof):

Lemma 1. If Φ satisfies the URP, then the set of BFS to t = Φw equals the set of

locally minimizing solutions to (II.2) assuming p ∈ [0, 1).

Assuming the URP holds (as is the case almost surely for dictionaries formed from iid

elements drawn from a continuous, bounded probability density), we can conclude from

Lemma 1 that we need only determine how many BFS exist when counting the number

of local minima for the case where p < 1.

The number of BFS, and therefore the number of local minima, is bounded

between
(

M−1
N

)
+ 1 and

(
M
N

)
; the exact number depends on t and Φ [34]. Given that

usually M � N , even the lower bound will be huge. The exact number can be assessed

more precisely in certain situations. For example, if we assume there exists only a single

degenerate sparse solution with D0 < N nonzero elements, then this solution is by

definition the maximally sparse solution w0. Under these circumstances, it is a simple

matter to show that the total number of BFS, denoted NBFS, is given by
(

M
N

)
−
(

M−D0

N−D0

)
+1.

But in what situations is our assumption of a single degenerate BFS valid? The following

Lemma addresses this question (see Appendix II.F.1 for the proof):

Lemma 2. Let Φ ∈ R
N×M ,M > N be constructed such that it satisfies the URP.

Additionally, let t ∈ R
N satisfy t = Φw0 for some w0 such that ‖w0)‖0 , D0 < N ,
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with non-zero entries of w0 drawn independently and identically from a continuous,

bounded density. Then there is almost surely no other solution w 6= w0 such that

t = Φw and ‖w‖0 = D < N .

Given that the conditions of Lemma 2 are satisfied, we may then conclude that,

P
[
NBFS =

(
M

N

)
−
(
M −D0

N −D0

)
+ 1

]
= 1. (II.3)

So for an arbitrary initialization w and assuming M > N , we cannot guarantee (i.e.,

with probability one) that the FOCUSS algorithm (or any other descent method) will

avoid converging to one of the NBFS − 1 suboptimal local minima (i.e., a convergence

error per our previous definition), each with suboptimal diversity given by ‖w‖0 = N .

However, while the number of local minima is the same for all p < 1, the relative sizes

of the basins of attraction for each corresponding local minima is not. As p → 1, the

basins of attraction favor solutions resembling the p = 1 case become much larger,

thereby increasing the likelihood that a random initialization will produce the minimum

`1-norm solution.

In the more general case where we would like to relax the restriction t = Φw

exactly, the analysis of global and local minima is decidedly more complex. However,

it has been shown that the corresponding MAP estimation problem

min
w

‖t− Φw‖2
2 + λ

M∑

i=1

|wi|p (II.4)
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will have at most N nonzero entries at any local minimum for any p ∈ [0, 1] and λ ∈

(0,∞) [79].

II.B.3 Discussion

The discussion in the preceding sections leads to a natural dichotomy between

two strategy extremes for obtaining sparse solutions via MAP estimation. We can either,

(a) Choose to keep a cost function whose global minimum produces the maximally

sparse solution and then deal with the local minima that ensue. This implies we will

incur no structural errors but may encounter frequent convergence errors. Or we can, (b)

Substitute a convex surrogate measure in place of the troublesome `0 norm (i.e., the `1

norm which follows from a Laplacian prior) that leads to a more tractable optimization

problem but whose global minimum often does not equal w0. This means there will be

no convergence errors but potentially many structural errors.

The first case leads to what will we call local sparsity maximization (LSM)

algorithms. We will use this label to refer to any descent algorithm that employs a cost

function whose global and local minima can be achieved by solutions that globally and

locally minimize (I.8) respectively. From the preceding analysis we know that MAP

estimation (in the noiseless limit) using the EM algorithm qualifies when either a gen-

eralized Gaussian with p sufficiently small or a Jeffreys prior is chosen. While all of

these methods are potentially very useful candidates for finding sparse solutions, their

Achilles heel is that a combinatorial number of local minima exist.

One potential advantage of using an LSM algorithm is that poor solutions
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can be thrown out and the algorithm reinitialized repeatedly until a suitable estimate is

found. This method has been shown to be somewhat successful in [78] and benefits

from the fact that many LSM methods converge rapidly, meaning that multiple runs

are feasible. In contrast, if the minimum `1-norm solution is computed and found to

be unacceptable, reinitialization is fruitless, since every starting point leads to the same

solution. This is the price we must pay for incorporating an objective function whose

global minimum need not coincide with the global minimum of (I.8), and so regardless

of initialization option (b) may fail.

II.C Sparse Bayesian Learning

In an ideal setting, we would like to experience no convergence errors or struc-

tural errors such that we would be sure of always finding maximally sparse solutions.

While this is generally not possible given the NP-hardness of the sparse recovery prob-

lem, perhaps there is a better way to manage the trade-off than is currently available

using the MAP framework. In this section, we prove that SBL is also a LSM algorithm

when λ → 0, implying that it will never produce structural errors. This may come as

somewhat of a surprise since the SBL objective function is seemingly unrelated to (I.8).

We then show that it maintains provably fewer local minima and therefore, displays

vastly fewer convergence errors than previous LSM algorithms. The net result is fewer

total errors than any of the MAP procedures discussed above.
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II.C.1 SBL Global Minima and Maximally Sparse Solutions

To qualify as an LSM, we must first show how global minima of the SBL cost

function

L(γ;λ = ε) = log
∣∣εI + ΦΓΦT

∣∣+ tT
(
εI + ΦΓΦT

)−1
t (II.5)

relate to maximally sparse solutions in the limit as ε approaches zero.2 Since SBL

operates in hyperparameter space, the connection is less transparent than in the MAP

case, but no less viable. The following theorem quantifies this relationship.

Theorem 1. Let W0 denote the set of weight vectors that globally minimize (I.8) with

Φ satisfying the URP. Furthermore, let W(ε) be defined as the set of weight vectors

{
w∗∗ : w∗∗ = Γ∗∗Φ

T
(
εI + ΦΓ∗∗Φ

T
)−1

t, γ∗∗ = arg min
γ

L(γ;λ = ε)

}
. (II.6)

Then in the limit as ε→ 0, if w ∈ W(ε), then w ∈ W0.

The weight estimator used for w∗∗ is just the posterior mean derived in Section I.D.2.

A full proof of this result is available in Appendix II.F.3; however, we provide a brief

sketch here. First, as shown in the next section, every local minimum of L(γ;λ = ε) is

achieved at a basic feasible solution γ∗, i.e., a solution with N or fewer nonzero entries,

regardless of ε. Therefore, in our search for the global minimum, we only need examine

the space of basic feasible solutions. As we allow ε to become sufficiently small, we

2When convenient, we will use L(γ; λ) to denote the SBL cost function when λ > 0 and reserve L(γ) for the
specific case where λ = 0.
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show that

L(γ∗;λ = ε) = (N − ‖γ∗‖0) log(ε) + O(1) (II.7)

at any such solution. This result is minimized when ‖γ∗‖0 is as small as possible. A

maximally sparse basic feasible solution, which we denote γ∗∗, can only occur with

nonzero elements aligned with the nonzero elements of some w ∈ W0. In the limit as

ε→ 0,w∗∗ becomes feasible while maintaining the same sparsity profile as γ∗∗, leading

to the stated result.

This result demonstrates that the SBL framework can provide an effective

proxy to direct `0-norm minimization. More importantly, in the next section we will

show that the limiting SBL cost function, which we will henceforth denote

L(γ) , lim
ε→0

L(γ;λ = ε) = log
∣∣ΦΓΦT

∣∣+ tT
(
ΦΓΦT

)−1
t, (II.8)

often maintains a much more attractive local minima profile than comparable MAP

methods.

II.C.2 Analysis of Local Minima

Like the MAP approaches, we will now show that SBL local minima are

achieved at BFS which, when combined with Theorem 1, ensures that SBL is also an

LSM algorithm per our definition. But not all LSM algorithms are created equal. We

will also show that the converse is not true: Every BFS need not represent an SBL lo-

cal minimum. Necessary conditions are derived for local minima to occur leading to a
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simple geometric example of how SBL can have many fewer than previous MAP-based

LSM methods. This is a key factor in SBL’s superior performance as demonstrated later

in Section II.D.2. Additionally, we show that even when noise is present, SBL local

minima produce solutions with at most N nonzero elements.

Local Minima and BFS

This section proves that all local minima of L(γ;λ) are achieved at solutions

with at most N nonzero elements, regardless of the value of λ. This leads to a simple

bound on the number of local minima and demonstrates that SBL is also an LSM. First

we introduce two lemmas that are necessary for the main result.

Lemma 3. log |Σt| is concave with respect to Γ (or equivalently γ).

Proof : In the space of psd matrices (such as Σt), log | · | is a concave function (see

e.g., [41]). Furthermore, based on Theorem 5.7 in [85], if a function f(·) is concave

on R
m and A is an affine transformation from R

n to R
m, then f(A(·)) is also concave.

Therefore, by defining

f(X) , log |X| (II.9)

A(Γ) , λI + ΦΓΦT , (II.10)

we achieve the desired result. �
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Lemma 4. The term tT Σ−1
t t equals a constant C over all γ satisfying the N linear

constraints b = Aγ where

b , t− λu (II.11)

A , Φdiag(ΦTu) (II.12)

and u is any fixed vector such that tTu = C.

Proof : By construction, the constraint tT (λI + ΦΓΦT )−1t = C is subsumed by the

constraint (λI + ΦΓΦT )−1t = u. By rearranging the later, we get t− λu = ΦΓΦTu or

equivalently

t− λu = Φdiag(ΦTu)γ, (II.13)

completing the proof. �

Theorem 2. Every local minimum of L(γ;λ) is achieved at a solution with at most N

nonzero elements, regardless of the value of λ.3

Proof : Consider the optimization problem

min : f(γ)

subject to: Aγ = b, γ ≥ 0, (II.14)

3This does not rule out the possibility that another γ will also obtain the same local minimum, i.e., a given basin
could potentially include multiple minimizing γ at the bottom if certain conditions are met. However, included in
this local minimizing set, will be a solution with at most N nonzero elements.
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where b and A are defined as in (II.11) and (II.12) and f(γ) = log |Σt|. From Lemma 4,

the above constraints hold tT Σ−1
t t constant on a closed, bounded convex polytope (i.e.,

we are minimizing the first term of L(γ;λ) while holding the second term constant to

some C). Also, Lemma 3 dictates that the objective function f(γ) is concave.

Clearly, any local minimum of L(γ;λ), e.g., Γ∗, must also be a local minima

of (II.14) with

C = tTu = tT (λI + ΦΓ∗Φ
T )−1t. (II.15)

However, based on [55] Theorem 6.5.3, a minimum of (II.14) is achieved at an extreme

point and additionally, Theorem 2.5 establishes the equivalence between extreme points

and BFS. Consequently, all local minima must be achievable at BFS or a solution with

‖γ‖0 ≤ N . �

Corollary 1. If λ = 0 and Φ satisfies the URP, then every local minimum of L(γ) is

achieved at a solution γ∗ = w2
∗ wherew∗ is some BFS to t = Φw and the (·)2 operator

is understood to apply elementwise.

Proof : Assume some local minima γ∗ is obtained such that ‖γ∗‖0 = N . Define γ̃ to

be the vector of nonzero elements in γ∗ and Φ̃ to be the associated dictionary columns.

Let w̃ , Φ̃−1t, and so w̃ represents the nonzero elements of some BFS. Then if γ∗ is a

local minimum to L(γ), γ̃ must (locally) minimize the constrained cost function

L(γ̃) = log
∣∣∣Φ̃Γ̃Φ̃T

∣∣∣+ tT
(
Φ̃Γ̃Φ̃T

)−1

t
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=
N∑

i=1

(
log γ̃i +

w̃2
i

γ̃i

)
. (II.16)

The unique minimum is easily seen to be γ̃i = w̃2
i for all i. Upon padding with the

appropriate zeros, we obtain the desired result. Finally, the case where ‖γ∗‖0 < N can

be handled in a similar manner by arbitrarily adding N − ‖γ∗‖0 columns to Φ̃ and pro-

ceeding as before. �

Corollary 2. If λ = 0 and Φ satisfies the URP, then

1 ≤ # of SBL
Local Minima

≤ # of BFS to
t = Φw

∈
[(
M − 1

N

)
+ 1,

(
M

N

)]
. (II.17)

Proof : From Corollary 1, there can be at most one SBL local minimum associated with

each BFS to t = Φw. It follows then that the total number of SBL local minima4 cannot

be greater than the number of BFS. The lower bound is of course trivial. �

Along with Theorem 1, these results imply that SBL is also an LSM, assum-

ing a proper descent method is used to optimize its cost function. However, in the

remainder of this chapter we will show that the actual number of SBL local minima can

be well below the upper bound of (II.17) in many practical situations (unlike previous

LSM methods). In fact, only in particularly nuanced situations will the upper bound be

4By local minima here, we implicitly mean separate basins (which could potentially have multiple minimizing so-
lutions at the bottom). Of course the relative sizes of these basins, as well as the relative proximity of any initialization
point to the basin containing the global minimum are very important factors.
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reached. Later, Chapter III will demonstrate conditions whereby the lower bound can

be reached.

Eliminating Local Minimum

Thus far, we have demonstrated that there is a close affiliation between the

limiting SBL framework and the the minimization problem posed by (I.8). We have not,

however, provided any concrete reason why SBL should be preferred over current MAP

methods of finding sparse solutions. In fact, this preference is not established until we

more carefully explore the problem of convergence to local minima.

As discussed in Section II.B, the problem with MAP-based LSM methods is

that every BFS, of which there exist a combinatorial number, unavoidably becomes a

local minimum. However, what if we could somehow eliminate all or most of these ex-

trema? For example, consider the alternate objective function f(w) , min(‖w‖0, N),

leading to the optimization problem

min
w

f(w), s.t. t = Φw. (II.18)

While the global minimum remains unchanged, we observe that all local minima occur-

ring at non-degenerate BFS have been effectively removed. In other words, at any solu-

tion w∗ with N nonzero entries, we can always add a small component αw ′ ∈ Null(Φ)

and maintain feasibility without increasing f(w), since f(w) can never be greater than

N . Therefore, we are free to move from BFS to BFS without increasing f(w). Also,
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the rare degenerate BFS that do remain, even if suboptimal, are sparser by definition.

Therefore, locally minimizing our new problem (II.18) is clearly superior to locally

minimizing (I.8). But how can we implement such a minimization procedure, even ap-

proximately, in practice?

Although we cannot remove all non-degenerate local minima and still retain

computational feasibility, it is possible to remove many of them, providing some mea-

sure of approximation to (II.18). This is effectively what is accomplished using SBL as

will be demonstrated below. (Chapter V deals indirectly with this issue as well when we

talk about non-factorial priors such as exp [−f(w)].) Specifically, we will derive nec-

essary conditions required for a non-degenerate BFS to represent a local minimum to

L(γ). We will then show that these conditions are frequently not satisfied, implying that

there are potentially many fewer local minima. Thus, locally minimizing L(γ) comes

closer to (locally) minimizing (II.18) than traditional MAP-based LSM methods, which

in turn, is closer to globally minimizing ‖w‖0.

Necessary Conditions for Local Minima

As previously stated, all local minima to L(γ) must occur at BFS γ∗ (in the

sense described in the previous section). Now suppose that we have found a (non-

degenerate) γ∗ with associated w∗ computed using (I.30) and we would like to assess

whether or not it is a local minimum to our SBL cost function. For convenience, let

w̃ again denote the N nonzero elements of w∗ and Φ̃ the associated columns of Φ

(therefore, t = Φ̃w̃ and w̃ = Φ̃−1t). Intuitively, it would seem likely that if we are not
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at a true local minimum, then there must exist at least one additional column of Φ not in

Φ̃, e.g., some x, that is somehow aligned with or in some respect similar to t. Moreover,

the significance of this potential alignment must be assessed relative to Φ̃. But how do

we quantify this relationship for the purposes of analyzing local minima?

As it turns out, a useful metric for comparison is realized when we decompose

xwith respect to Φ̃, which forms a basis in R
N under the URP assumption. For example,

we may form the decomposition x = Φ̃ṽ, where ṽ is a vector of weights analogous

to w̃. As will be shown below, the similarity required between x and t (needed for

establishing the existence of a local minimum) may then be realized by comparing the

respective weights ṽ and w̃. In more familiar terms, this is analogous to suggesting

that similar signals have similar Fourier expansions. Loosely, we may expect that if ṽ

is ‘close enough’ to w̃, then x is sufficiently close to t (relative to all other columns in

Φ̃) such that we are not at a local minimum. We formalize this idea via the following

theorem:

Theorem 3. Let Φ satisfy the URP and let γ∗ represent a vector of hyperparameters

with N and only N nonzero entries and associated basic feasible solution w̃ = Φ̃−1t.

Let X denote the set of M −N columns of Φ not included in Φ̃ and V the set of weights

given by
{
ṽ : ṽ = Φ̃−1x,x ∈ X

}
. Then γ∗ is a local minimum of L(γ) only if

∑

i6=j

ṽiṽj

w̃iw̃j

≤ 0 ∀ṽ ∈ V . (II.19)

Proof : If γ∗ truly represents a local minimum of our cost function, then the following
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condition must hold for all x ∈ X :

∂L(γ∗)

∂γx

≥ 0, (II.20)

where γx denotes the hyperparameter corresponding to the basis vector x. In words,

we cannot reduce L(γ∗) along a positive gradient because this would push γx below

zero. Using the matrix inversion lemma, the determinant identity, and some algebraic

manipulations, we arrive at the expression

∂L(γ∗)

∂γx

=
xTBx

1 + γxxTBx
−
(

tTBx

1 + γxxTBx

)2

, (II.21)

where B , (Φ̃Γ̃Φ̃T )−1. Since we have assumed that we are at a local minimum, it is

straightforward to show that Γ̃ = diag(w̃)2 leading to the expression

B = Φ̃−T diag(w̃)−2Φ̃−1. (II.22)

Substituting this expression into (II.21) and evaluating at the point γx = 0, the above

gradient reduces to

∂L(γ∗)

∂γx

= ṽT
(
diag(w̃−1w̃−T ) − w̃−1w̃−T

)
ṽ, (II.23)

where w̃−1 , [w̃−1
1 , . . . , w̃−1

N ]T . This leads directly to the stated theorem. �
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This theorem provides a useful picture of what is required for local minima to exist and

more importantly, why many BFS are not local minima. Moreover, there are several

convenient ways in which we can interpret this result to accommodate a more intuitive

perspective.

A Simple Geometric Interpretation

In general terms, if the signs of each of the elements in a given ṽ match up with

w̃, then the specified condition will be violated and we cannot be at a local minimum.

We can illustrate this geometrically as follows.

To begin, we note that our cost function L(γ) is invariant with respect to

reflections of any basis vectors about the origin, i.e., we can multiply any column of

Φ by −1 and the cost function does not change. Returning to a candidate local min-

imum with associated Φ̃, we may therefore assume, without loss of generality, that

Φ̃ ≡ Φ̃diag (sgn(w)), giving us the decomposition t = Φ̃w, w > 0. Under this as-

sumption, we see that t is located in the convex cone formed by the columns of Φ̃. We

can infer that if any x ∈ X (i.e., any column of Φ not in Φ̃) lies in this convex cone,

then the associated coefficients ṽ must all be positive by definition (likewise, by a simi-

lar argument, any x in the convex cone of −Φ̃ leads to the same result). Consequently,

Theorem 3 ensures that we are not at a local minimum. The simple 2D example shown

in Figure II.1 helps to illustrate this point.

Alternatively, we can cast this geometric perspective in terms of relative cone

sizes. For example, let CeΦ represent the convex cone (and its reflection) formed by Φ̃.
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Figure II.1: 2D example with a 2 × 3 dictionary Φ (i.e., N = 2 and M = 3) and a basic
feasible solution using the columns Φ̃ = [φ1 φ2]. Left: In this case, x = φ3 does not
penetrate the convex cone containing t, and we do not satisfy the conditions of Theorem
3. This configuration does represent a minimizing basic feasible solution. Right: Now
x is in the cone and therefore, we know that we are not at a SBL local minimum; but
this configuration does represent a local minimum to current LSM methods.

Then we are not at a local minimum to L(γ) if there exists a second convex cone C

formed from a subset of columns of Φ such that t ∈ C ⊂ CeΦ, i.e., C is a tighter cone

containing t. In Figure II.1(right), we obtain a tighter cone by swapping x for φ2.

While certainly useful, we must emphasize that in higher dimensions, these

geometric conditions are much weaker than (II.19), e.g., if all x are not in the convex

cone of Φ̃, we still may not be at a local minimum. In fact, to guarantee a local min-

imum, all x must be reasonably far from this cone as quantified by (II.19). Of course

the ultimate reduction in local minima from the
(

M−1
N

)
+ 1 to

(
M
N

)
bounds is dependent

on the distribution of basis vectors in t-space. In general, it is difficult to quantify this

reduction except in a few special cases. For example, in the special case where t is pro-

portional to a single column of Φ, the number of BFS, and therefore the number of local

minima to standard LSM algorithms, equals
(

M−1
N

)
+ 1 (this assumes Φ satisfies the

URP). In contrast, SBL is unimodal under these conditions, with the unique minimum
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producingw0. The proof of this claim follows as a special case of Corollary 3 discussed

in Section III.B, which addresses criteria whereby SBL has a unique minimum.5 While

detailed theoretical analysis is difficult in more general situations, the next section em-

pirically demonstrates that the overall reduction in local minima can be very substantial,

ultimately leading to a higher probability of recovering w0.

II.D Empirical Results

This section serves to empirically substantiate many of the theoretical ideas of

this chapter.

II.D.1 Local Minima Comparison

To show that the potential reduction in local minima derived previously trans-

lates into concrete results, we conducted a simulation study using randomized dictio-

naries, with columns drawn uniformly from the surface of a unit hypersphere. Ran-

domized dictionaries are of particular interest in signal processing and other disciplines

[11, 17, 22, 80, 102]. Moreover, basis vectors from many real world measurements can

often be modelled as random. In any event, randomized dictionaries capture a wide

range of phenomena and therefore represent a viable benchmark for testing sparse re-

covery methods. At least we would not generally expect an algorithm to perform well

with a random dictionary and poorly on everything else. Additionally, this particular

mechanism for generating dictionaries is advocated in [18] as a useful benchmark and

5It can also be viewed as a special case of Theorem 9 presented in Section VI.E.1.
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is exactly what is required in compressed sensing applications [20, 102]. Regardless,

related experiments with other dictionary types, e.g., pairs of orthobases, yield similar

results.

Our goal was to demonstrate that MAP-based LSM algorithms often converge

to local minima that do not exist in the SBL cost function. To accomplish this, we

repeated the following procedure for dictionaries of various sizes. First, we generate a

random N × M dictionary Φ whose columns are each drawn uniformly from a unit

sphere. Sparse weight vectors wgen are randomly generated with ‖wgen‖0 = 7 (and

uniformly distributed amplitudes on the nonzero components). The vector of target

values is then computed as t = Φwgen. The LSM algorithm is then presented with t and

Φ and attempts to learn the minimum `0-norm solutions. The experiment is repeated a

sufficient number of times such that we collect 1000 examples where the LSM algorithm

converges to a local minimum. In all these cases, we check if the condition stipulated by

Theorem 3 applies, allowing us to determine if the given solution is a local minimum to

the SBL algorithm or not. The results are contained in Table II.1 for the FOCUSS LSM

algorithm assuming p → 0. We note that, the larger the overcompleteness ratio M/N ,

the larger the total number of LSM local minima (via the bounds presented earlier).

However, there also appears to be a greater probability that SBL can avoid any given

one.

In many cases where we found that SBL was not locally minimized, we ini-

tialized the SBL algorithm in this location and observed whether or not it converged to

the optimal solution. In roughly 50% of these cases, it escaped to find the maximally
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Table II.1: Given 1000 trials where FOCUSS (with p → 0) has converged to a sub-
optimal local minimum, we tabulate the percentage of times the local minimum is also
a local minimum to SBL. M/N refers to the overcompleteness ratio of the dictionary
used, with N fixed at 20.

M/N 1.3 1.6 2.0 2.4 3.0

SBL Local Minimum % 4.9% 4.0% 3.2% 2.3% 1.6%

sparse solution. The remaining times, it did escape in accordance with theory; how-

ever, it converged to another local minimum. In contrast, when we initialize other LSM

algorithms at an SBL local minima, we always remain trapped as expected.

II.D.2 Performance Comparisons

While we have shown SBL has potentially many fewer local minima, we have

not yet shown exactly to what degree this translates into improved performance finding

wgen over standard MAP methods, both LSM algorithms and BP. This section provides

such a comparison. As before, we employ Monte Carlo simulations using randomized

dictionaries for this purpose. We also use more structured dictionaries composed of pairs

of orthobases as a further means of evaluation. For simplicity, noiseless tests were per-

formed first, which facilitates direct comparisons because discrepancies in results cannot

be attributed to poor selection of the trade-off parameter λ. Moreover, we have found

that relative performance with the inclusion of noise remains essentially unchanged (see

below). More extensive simulation results involving similar types of problems can be

found in Sections III.D and VI.D.
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Random Dictionaries

The experimental setup here is similar to that of the previous section, although

here we used the fixed valuesN = 20 andM = 40 (related results using other dictionary

sizes and sparsity levels can be found in Section III.D). 1000 independent trials were

performed, each with a randomly generated dictionary and wgen. For every trial, three

different MAP algorithms were compared with SBL; each method is presented with t

and Φ and attempts to learn wgen, with a minimum `2-norm initialization being used in

each case. An error is recorded whenever the estimate ŵ does not equal wgen.

Under the conditions set forth for the generation of Φ and t, spark(Φ) = N+1

and (I.7) is in force. Therefore, we can be sure that wgen = w0 with probability one.

Additionally, we can be certain that when an algorithm fails to find wgen, it has not been

lured astray by an even sparser representation.

The purpose of this study was to examine the relative frequency of cases where

each algorithm failed to uncover the generating sparse weights. Also, we would like

to elucidate the cause of failure, i.e., convergence to a standard local minimum (i.e.,

convergence error) or convergence to a minimum (possibly global) that is not maximally

sparse and yet has a lower cost function value than the generating solution (i.e., structural

error). To this end, for each trial we compared cost function values at convergence with

the ‘ideal’ cost function value at w0. Results are presented in the Table II.2.

Several items are worth noting with respect to these results. First, we see that

with BP, only structural errors occur. This is expected since the BP cost function has no
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Table II.2: Comparative results from simulation study over 1000 independent trials us-
ing randomly generated dictionaries. Convergence errors are defined as cases where the
algorithm converged to a local minimum with cost function value above (i.e., inferior
to) the value at the maximally sparse solution w0. Structural errors refer to situations
where the algorithm converged to a minimum (possibly global) with cost function value
below the value at w0.

FOCUSS FOCUSS Basis Pursuit SBL
(p = 0.001) (p = 0.9) (p = 1.0)

Convergence Errors 34.1% 18.1% 0.0% 11.9%
Structural Errors 0.0% 5.7% 22.3% 0.0%

Total Errors 34.1% 23.8% 22.3% 11.9%

local minima.6 However, there is essentially a 22.3% chance that the minimum `1-norm

solution of BP does not correspond with the generating sparse solution.

In contrast, FOCUSS(p = 0.001) is functionally similar to the `0-norm min-

imization as mentioned previously. Thus, we experience no structural errors but are

frequently trapped by local minima. When p is raised to 0.9, the number of local min-

ima does not change, but the relative basin sizes becomes skewed toward the `1-norm

solution. Consequently, FOCUSS(p = 0.9) exhibits both types of errors.

On the other hand, we see that SBL failure is strictly the result of convergence

errors as with FOCUSS(p = 0.001), although we observe a much superior error rate

because of the fewer number of local minima. Also, these results were obtained using

the fast (fixed-point) SBL update rules (see Section I.D.2). When the slower EM version

of SBL is used, the error rate is reduced still further.

6And so these results hold whether we use interior-point or Simplex methods for BP.
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Pairs of Orthobases

Lest we attribute the superior performance of SBL to the restricted domain

of randomized dictionaries, we performed an analysis similar to the preceding section

using dictionaries formed by concatenating two orthobases, i.e.,

Φ = [Θ,Ψ], (II.24)

where Θ and Ψ represent two 20 × 20 orthonormal bases. Candidates for Θ and Ψ

include Hadamard-Walsh functions, DCT bases, identity matrices, and Karhunen-Loève

expansions among many others. The idea is that, while a signal may not be compactly

represented using a single orthobasis, it may become feasible after we concatenate two

or more such dictionaries. For example, a sinusoid with a few random spikes would be

amenable to such a representation. Additionally, in [16, 17] much attention is placed on

such dictionaries.

For comparison purposes, t and w0 were generated in an identical fashion as

before. Θ and Ψ were selected to be Hadamard and K-L bases respectively (other ex-

amples have been explored as well). Unfortunately, by applying the results in [17], we

cannot a priori guarantee that w0 is the sparsest solution as we could with randomized

dictionaries. More concretely, it is not difficult to show that even given the most favor-

able conditions for pairs of 20 × 20 orthobases, we cannot guarantee w0 is the sparsest

possible solution unless ‖w0‖0 < 5. Nevertheless, we did find that in all cases where

an algorithm failed, it converged to a solutionw with ‖w‖0 = N > ‖w0‖0. Results are
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Table II.3: Comparative results from simulation study over 1000 independent trials us-
ing pairs of orthobases. Convergence errors and structural errors are defined as before.

FOCUSS FOCUSS Basis Pursuit SBL
(p = 0.001) (p = 0.9) (p = 1.0)

Convergence Errors 31.8% 17.1% 0.0% 11.8%
Structural Errors 0.0% 6.0% 21.8% 0.0%

Total Errors 31.8% 23.1% 21.8% 11.8%

displayed in Table II.3.

The results are remarkably similar to the randomized dictionary case, strength-

ening our premise that SBL represents a viable alternative regardless of the dictionary

type. Likewise, when SBL was initialized at the FOCUSS local minima as before, we

observed a similar escape percentage. FOCUSS could still not escape from any SBL

local minima as expected.

Experiments with Noise

To conclude our collection of experiments, we performed tests analogous to

those above with the inclusion of noise. Specifically, white Gaussian noise was added to

produce an SNR of 20dB. This relatively high number was selected so as to obtain

reasonable results with limited signal dimension (t is only N = 20 samples). For

example, if we double N and M , retaining an overcompleteness ratio of 2.0, we can

produce similar results at a much lower SNR.

With the inclusion of noise, we do not expect to reproduce t exactly and so

some criteria must be adopted for choosing the trade-off parameter λ, which balances
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Table II.4: Comparative results from simulation study over 1000 independent trials us-
ing randomly generated dictionaries and the inclusion of additive white Gaussian noise
to 20dB.

FOCUSS FOCUSS Basis Pursuit SBL
(p = 0.001) (p = 0.9) (p = 1.0)

Total Errors 52.2% 43.1% 45.5% 21.1%

sparsity with data fit. For all algorithms, λ was selected to roughly optimize the proba-

bility of recovering the generative weights per the criteria described below. In contrast,

Section VI.D.1 contains related results plotted as λ is varied across a wide range of

values.

Results are presented in Table II.4. Note that we have no longer partitioned

the error rates into categories since the distinction between structural and convergence

errors becomes muddied with the inclusion of noise. Furthermore, we now classify a

trial as successful if the magnitude of each weight associated with a nonzero element

of w0 is greater than the magnitudes of all other weights associated with zero-valued

elements of w0.

Again, SBL displays a much higher probability of recovering the generative

basis vectors. These results corroborate our earlier theoretical and empirical findings

suggesting the superiority of SBL in many situations.

II.D.3 Discussion

We have motivated the SBL cost function as a vehicle for finding sparse rep-

resentations of signals from overcomplete dictionaries. We have also proven several
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results that complement existing theoretical work with FOCUSS and Basis Pursuit,

clearly favoring the application of SBL to sparse recovery problems. Specifically, we

have shown that SBL retains a desirable property of the `0-norm diversity measure (i.e.,

no structural errors as occur with Basis Pursuit) while often possessing a more limited

constellation of local minima (i.e., fewer convergence errors than with FOCUSS using

p � 1). We have also demonstrated that the local minima that do exist are achieved

at sparse solutions. Moreover, our simulation studies indicate that these theoretical in-

sights translate directly into improved performance with both randomized dictionaries

and pairs of orthobases. The next chapter will extend these ideas by examining criteria

whereby all troublesome local minima are removed.
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II.F Appendix

II.F.1 Proof of Lemmas 1 and 2

Proof of Lemma 1: That local minima are only achieved at BFS has been shown in [78].

We will now handle the converse. A vectorw∗ is a constrained local minimizer of ‖w‖p

(s.t. t = Φw) if for every vector w′ ∈ Null(Φ), there is a δ > 0 such that

‖w∗‖p < ‖w∗ + εw′‖p ∀ε ∈ (0, δ]. (II.25)

We will now show that all BFS satisfy this condition. We first handle the case where

p > 0 by defining g(ε) , ‖w∗ + εw′‖p and then computing the gradient of g(ε) at a

feasible point in the neighborhood of g(0) = ‖w∗‖p. We then note that at any feasible

point w = w∗ + εw′ we have

∂g(ε)

∂ε
=

(
∂‖w‖p

∂w

)T
∂w

∂ε
=

M∑

i=1

∂‖w‖p

∂(wi)
w′

i

=
M∑

i=1

sgn(w∗
i + εw′

i)p|w∗
i + εw′

i|p−1w′
i. (II.26)

Since we have assumed we are at a BFS, we know that at least M −N entries ofw∗ are

equal to zero. Furthermore, let us assume without loss of generality that the first M −N

elements of w∗ equal zero. This allows us to reexpress (II.26) as

∂g(ε)

∂ε
=

M−N∑

i=1

sgn(w′
i)p|εw′

i|p−1w′
i + O(1)
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= p
M−N∑

i=1

|w′
i|p
(

1

ε

)1−p

+ O(1). (II.27)

At this point we observe that any w′ ∈ Null(Φ) must have a nonzero element corre-

sponding to a zero element inw∗. This is a direct consequence of the URP assumption.

Therefore, at least one w′
i, i ∈ [1,M −N ] must be nonzero. As such, with ε sufficiently

small, we can ignore terms of order O(1) (since (1/ε)1−p is unbounded for ε sufficiently

small and p < 1) and we are left in (II.27) with a summation that must be positive.

Consequently, we see that for all ε ∈ (0, δ], ∂g(ε)/∂ε > 0. By the Mean Value

Theorem, this requires that g(δ) > g(0) or more explicitly,

‖w∗ + δw′‖p > ‖w∗‖p. (II.28)

Since w′ is an arbitrary feasible vector, this completes the proof.

Finally, in the special case of p = 0, it is immediately apparent that all BFS

must be local minima since ‖w∗‖0 < ‖w∗ + εw′‖0, ∀ε ∈ (0, δ]. �

Proof of Lemma 2: Let w′
0 be a vector containing the amplitudes of the nonzero en-

tries in w0 and Φ1 the associated columns of Φ. Now let us suppose that there does

exist a second solution w satisfying the conditions given above, with w ′ and Φ2 being

analogously defined. This implies that for some w′,

t = Φ1w
′
0 = Φ2w

′, (II.29)
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or equivalently, that t lies in both the span of Φ1 and the span of Φ2, both of which are

full column rank by the URP assumption. Let us define this intersection as

A = span(Φ1) ∩ span(Φ2), (II.30)

where we know by construction that

dim (A) = dim (Null ([Φ1 Φ2]))

= max(0, D +D0 −N)

< D0. (II.31)

Note that the latter inequality follows since D < N by assumption. At this point there

are two possibilities. First, if D ≤ N − D0, then dim (A) = 0 and no solution w′

(or w with ‖w‖0 = D) can exist. Conversely, if D > N − D0, the existence of a

solution w′ requires that Φ1w
′
0 resides in a (D + D0 − N)-dimensional subspace of

the D0-dimensional space Range(Φ1). However, we know that with the entries of w′
0

independently drawn from a continuous, bounded density function, Φ1w0 also has a

continuous and bounded density in Range(Φ1) and the set {w′
0 : Φ1w

′
0 ∈ A} is of

probability measure zero (see [83] for a discussion of probability measures). Therefore,

we know that

P(w 6= w0 exists s.t. ‖w‖0 < N) = P(Φ1w
′
0 ∈ A) = 0, (II.32)
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completing the proof. �

II.F.2 Performance Analysis with p = 1

As previously mentioned, when p = 1, a single minimum exists that may

or may not correspond with the maximally sparse solution w0. However, in [17], a

substantial result is derived that dictates when the minimum ‖w‖1 solution is sufficient.

Theorem 4. (Equivalence Theorem [17]) Given an arbitrary dictionary Φ with columns

φi normalized such that φT
i φi = 1,∀i = 1, . . . ,M , and given G , ΦT Φ and κ ,

maxi6=j |Gi,j|, if the sparsest representation of a signal by t = Φw0 satisfies

‖w0‖0 < 1/2(1 + 1/κ), (II.33)

then the BP solution (which minimizes the p = 1 case) is guaranteed to equal w0.

This is a potentially powerful result since it specifies a computable condition

by which the minimum ‖w‖1-norm solution is guaranteed to producew0. While elegant

in theory, in practice it may be very difficult to apply. For example, the dictionaries

required for MEG/EEG source localization (when suitably normalized as required by

the theorem) typically have κ ≈ 1. This implies that only sparse solutions with at most

one nonzero element are guaranteed to be found. However, BP can still work effectively

when the conditions of this theorem are violated.
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As another consideration related to MEG/EEG, it may sometimes be desir-

able to leave the dictionary unnormalized or normalize with a metric other than the `2

norm, which can potentially mean that not even one nonzero element will be found with

BP. In contrast, the SBL cost function is invariant to column normalization schemes,

which only affect the implicit initialization used by the algorithm. More discussion

of MEG/EEG related issues can be found in Chapter VII. Further analysis of general

equivalence conditions and performance bounds for BP are derived in [18, 19, 96]. How-

ever, these are all more applicable to applications such as compressed sensing than to

MEG/EEG source localization.

II.F.3 Proof of Theorem 1

In Section II.C.2 we demonstrate that every local minimum of L(γ;λ) is

achieved at a γ with at most N nonzero entries. Consequently, we know that for any ε,

the global minimum must occur at such a solution. At any such candidate local mini-

mum, we only need be concerned with a subset of N basis vectors, denoted Φ̃ and the

corresponding weights w̃ such that

t = Φw = Φ̃w̃. (II.34)

Of course some of the elements of w̃ may be zero if we are at a degenerate basic feasible

solution. Let us rewrite our cost function at this presumed local minimum (with ε treated
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as a fixed parameter) as

L(Γ̃;λ = ε) = log |εI + Φ̃Γ̃Φ̃T | + tT
(
εI + Φ̃Γ̃Φ̃T

)−1

t, (II.35)

where Γ̃ is the diagonal matrix of hyperpriors associated with w̃. We now decompose

each term as follows. First, we have

tT
(
εI + Φ̃Γ̃Φ̃T

)−1

t = tT
[
Φ̃
(
εΦ̃−1Φ̃−T + Γ̃

)
Φ̃T
]−1

t

= w̃T ΦT Φ̃−T

[
ε
(
Φ̃T Φ̃

)−1

+ Γ̃

]−1

Φ̃−1Φ̃w̃

= w̃T
[
εS + Γ̃

]−1

w̃, (II.36)

where S , (Φ̃T Φ̃)−1 and the required inverse exists by the URP assumption. At this

point we allow, without loss of generality, for w̃ to be expressed as w̃ = [w̃(D); 0(N−D)]

where w̃(D) is a vector containing the D ≤ N nonzero entries in w̃ and 0(N−D) is a

vector of N −D zeros.

Defining A , εS + Γ̃ and we can partition A as

A =
[
A11A12;A21A22

]
, (II.37)

where A11 is a D ×D block, A22 is (N −D) × (N −D), and so on.

Using the expression for the inverse of a partitioned matrix, we can expand (II.36) as
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w̃TA−1w̃ = w̃T
(D)

(
A−1

)11
w̃T

(D)

= w̃T
(D)

[
A11 − A12

(
A22
)−1

A21
]−1

w̃(D)

= w̃T
(D)

[
εS11 + Γ̃11 − εS12

(
S22 + Γ̃22

)−1

S21ε

]−1

w̃(D)

= w̃T
(D)

[
εΨ11 + Γ̃11

]−1

w̃(D), (II.38)

where we have defined

Ψ11 , S11 − S12

(
S22 +

Γ̃22

ε

)−1

S21. (II.39)

Also, we observe that because S represents a non-degenerate (i.e., full-rank) covariance

matrix, Ψ11 is full rank for all ε ≥ 0 and all Γ̃22 ≥ 0.

We now turn to the second term in our cost function using

log |εIN + Φ̃Γ̃Φ̃T | = log |Φ̃||εΦ̃−1Φ̃−T + Γ̃||Φ̃T |

≡ log |εS + Γ̃|

= log |εS11 + Γ̃11| + log |εS22 + Γ̃22 − εS21
(

S11 + Γ̃11
)−1

S12ε|

= log
∣∣∣εS11 + Γ̃11

∣∣∣+ log
∣∣∣εΨ22 + Γ̃22

∣∣∣ , (II.40)

where Ψ22 is defined in an analogous fashion as Ψ11 and likewise, is full-rank for all ε

and Γ̃11. Combining terms, we have established that at an arbitrary local minimum, our
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cost function is given by

L(Γ, ε) = log
∣∣∣εS11 + Γ̃11

∣∣∣+ log
∣∣∣εΨ22 + Γ̃22

∣∣∣+ w̃T
(D)

[
εΨ11 + Γ̃11

]−1

w̃(D). (II.41)

At this point, we are poised to demonstrate two properties that hold for all ε ∈ (0, δ],

where δ is sufficiently small yet greater than zero:

Lemma 5. There exists a constant C > δ such that γi > C for all i ∈ {1, . . . , D} (i.e.,

the diagonal elements in Γ̃11 are all greater than C).

Proof : We observe that, for C sufficiently small (yet greater than δ), i ∈ {1, . . . , D},

and γi ≤ C, an upper bound for the gradient of (II.41) with respect to γi is given by

∂L(Γ; ε < δ)

∂γi

≤ O

(
1

C

)
+ O (1) − O

(
1

C2

)
= −O

(
1

C2

)
. (II.42)

Since this gradient is necessarily negative for all γi ≤ C, by the Mean Value Theorem,

our local minimum must have γi greater than C. �

Lemma 6. For all i ∈ {D+ 1, . . . , N}, γi = 0 (i.e., the diagonal elements in Γ̃22 are all

equal to zero).

Proof : First, we observe that the minimum of L(γ;λ = ε), excluding the second term,

is given by

min
eΓ11,eΓ22

log
∣∣∣εS11 + Γ̃11

∣∣∣+ w̃T
(D)

[
εΨ11 + Γ̃11

]−1

w̃(D) = O (1) , (II.43)
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regardless of the value of Γ̃22. In contrast,

min
eΓ11,eΓ22

log
∣∣∣Ψ22 + Γ̃22

∣∣∣ = log O
(
εN−D

)
. (II.44)

with the minimum occurring with γi ≤ O(ε) for all i ∈ {D + 1, . . . , N}, regardless of

Γ̃11. But how do we know if these γi actually go to zero? If we compute the gradient of

our cost function with respect to these γi, we obtain,

∂L(Γ, ε)

∂γi

≤ O

(
1

γi

)
− O (1) = O

(
1

γi

)
. (II.45)

This result is positive for all γi ≤ O(ε) and therefore, at the local minimum, all must go

to zero. �

In conclusion, we can achieve an overall minimum of order (N−D) log εwith

Γ̃11 > 0 and Γ̃22 = 0. Or more explicitly, at each local minimum, ‖γ‖0 = D. Of course,

the global minimum occurs when D is smallest. Therefore, at a solution achieving the

global minimum γ∗∗, we must have ‖γ∗∗‖0 = ‖w0‖0 for all ε ∈ (0, δ].

Without loss of generality, by Lemma 6 we can then write

w∗∗ = Γ∗∗Φ
T
(
εI + ΦΓ∗∗Φ

T
)−1

t

=
(
ΦT Φ + εΓ−1

∗∗
)−1

ΦT t

=

[(
ΦT

(w0)Φ(w0) + ε
(
Γ11
∗∗
)−1
)−1

ΦT
(w0)t; 0(N−‖w0‖0)

]
, (II.46)
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where Φ(w0) denotes the columns of Φ associated with nonzero elements in w0. Using

Lemma 5, as ε→ 0 we have

w∗∗ =
[(

ΦT
(w0)Φ(w0)

)−1
ΦT

(w0)t; 0(N−‖w0‖0)

]

= w0, (II.47)

completing the proof.



Chapter III

Comparing the Effects of Different

Weight Distributions

Previously, we have argued that the sparse Bayesian learning (SBL) frame-

work is particularly well-suited for finding maximally sparse representations, showing

that it has far fewer local minima than many other Bayesian-inspired strategies. In

this Chapter, we provide further evidence for this claim by proving a restricted equiv-

alence condition, based on the distribution of the nonzero generating model weights,

whereby the SBL cost function is unimodal and will achieve the maximally sparse rep-

resentation at the global minimum (in a noiseless setting). We also prove that if these

nonzero weights are drawn from an approximate Jeffreys prior, then with probability

approaching one, our equivalence condition is satisfied. Finally, we motivate the worst-

case scenario for SBL and demonstrate that it is still better than the most widely used

sparse representation algorithms. These include Basis Pursuit (BP), which is based on

67
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a convex relaxation of the `0 (quasi)-norm, and Orthogonal Matching Pursuit (OMP), a

simple greedy strategy that iteratively selects basis vectors most aligned with the current

residual.

III.A Introduction

To review, the canonical form of the noiseless (exact) sparse recovery problem

is given by,

min
w

‖w‖0, s.t. t = Φw, (III.1)

where Φ ∈ R
N×M is a matrix whose columns represent an overcomplete or redundant

basis (i.e., rank(Φ) = N and M > N ), w ∈ R
M is the vector of weights to be learned,

and t is the signal vector. The cost function being minimized represents the `0 (quasi)-

norm of w (i.e., a count of the nonzero elements in w). The solution to (III.1) has been

considered in [17, 18, 29, 35, 95].

Unfortunately, an exhaustive search for the optimal representation requires the

solution of up to
(

M
N

)
linear systems of size N × N , a prohibitively expensive proce-

dure for even modest values of M and N . Consequently, in practical situations there

is a need for approximate procedures that efficiently solve (III.1) with high probability.

To date, the two most widely used choices are Basis Pursuit (BP) [17] and Orthogonal

Matching Pursuit (OMP) [95]. (Note that the later can be viewed as an LSM algo-

rithm.) BP is based on a convex relaxation of the `0 norm, i.e., replacing ‖w‖0 with

‖w‖1, which leads to an attractive, unimodal optimization problem that can be read-
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ily solved via linear programming or the EM algorithm. In contrast, OMP is a greedy

strategy that iteratively selects the basis vector most aligned with the current signal

residual. At each step, a new approximant is formed by projecting t onto the range of

all the selected dictionary atoms. In the previous chapter, we demonstrated that SBL

can be also be used to effectively solve (III.1) while maintaining several significant ad-

vantages over other, Bayesian-inspired strategies for finding sparse solutions (notably

MAP-based LSM methods [27, 34]).

To compare BP, OMP, and SBL, we would ultimately like to know in what

situations a particular algorithm is likely to find the maximally sparse solution. A va-

riety of results stipulate rigorous conditions whereby BP and OMP are guaranteed to

solve (III.1) [17, 29, 95]. All of these conditions depend explicitly on the number of

nonzero elements contained in the optimal solution. Essentially, if this number is less

than some Φ-dependent constant κ, the BP/OMP solution is proven to be equivalent to

the minimum `0-norm solution. Unfortunately however, κ turns out to be restrictively

small and, for a fixed redundancy ratio M/N , grows very slowly as N becomes large

[18]. But in practice, both approaches still perform well even when these equivalence

conditions have been grossly violated. To address this issue, a much looser bound has

recently been produced for BP, dependent only on M/N . This bound holds for “most"

dictionaries in the limit as N becomes large [18], where “most" is with respect to dic-

tionaries composed of columns drawn uniformly from the surface of an N -dimensional

unit hypersphere. For example, withM/N = 2, it is argued that BP is capable of resolv-

ing sparse solutions with roughly 0.3N nonzero elements with probability approaching
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one as N → ∞.

Turning to SBL, we have neither a convenient convex cost function (as with

BP) nor a simple, transparent update rule (as with OMP); however, we can nonethe-

less come up with an alternative type of equivalence result that is neither unequivocally

stronger nor weaker than those existing results for BP and OMP. This condition is depen-

dent on the relative magnitudes of the nonzero elements embedded in optimal solutions

to (III.1). Additionally, we can leverage these ideas to motivate which sparse solutions

are the most difficult to find. Later, we provide empirical evidence that SBL, even in

this worst-case scenario, can still outperform both BP and OMP.

III.B Equivalence Conditions for SBL

From Section I.D.2, we know that SBL can be used to solve (III.1) using the

update rules

γ(new) = diag
(
ŵ(old)ŵ

T
(old) +

[
I − Γ

1/2
(old)

(
ΦΓ

1/2
(old)

)†
Φ

]
Γ(old)

)

ŵ(new) = Γ
1/2
(new)

(
ΦΓ

1/2
(new)

)†
t, (III.2)

where (·)† denotes the Moore-Penrose pseudo-inverse and Γ , diag(γ). Based on EM

convergence properties, these rules are guaranteed to reduce the SBL cost function at

each iteration until a fixed point is reached. For the remainder of this chapter, wSBL will
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refer to a stable fixed point of (III.2), and therefore also a local minimum of

L(γ) = log
∣∣ΦΓΦT

∣∣+ tT
(
ΦΓΦT

)−1
t. (III.3)

In this section, we establish conditions whereby anywSBL will necessarily min-

imize (III.1). To state these results, we require some notation. First, we formally define

a dictionary Φ = [φ1, . . . ,φM ] as a set of M unit `2-norm vectors (atoms) in R
N , with

M > N and rank(Φ) = N . We say that a dictionary satisfies the unique representa-

tion property (URP) if every subset of N atoms forms a basis in R
N . We define w(i)

as the i-th largest weight magnitude and w̃ as the ‖w‖0-dimensional vector containing

all the nonzero weight magnitudes of w. The set of optimal solutions to (III.1) is W ∗

with cardinality |W∗|. The diversity (or anti-sparsity) of each w∗ ∈ W∗ is defined as

D∗ , ‖w∗‖0.

Theorem 5. For a fixed dictionary Φ that satisfies the URP, there exists a set of M − 1

scaling constants νi ∈ (0, 1] (i.e., strictly greater than zero) such that, for any t = Φw ′

generated with

w′
(i+1) ≤ νiw

′
(i) i = 1, . . . ,M − 1, (III.4)

any wSBL must satisfy ‖wSBL‖0 = min(N, ‖w′‖0) and wSBL ∈ W∗.

The proof has been deferred to Appendix III.G.1. The basic idea is that, as the magnitude

differences between weights increase, at any given scale, the covariance Σt embedded

in the SBL cost function is dominated by a single dictionary atom such that problematic

local minimum are removed. The unique, global minimum in turn achieves the stated
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result.1 The most interesting case occurs when ‖w′‖0 < N , leading to the following:

Corollary 3. Given the additional restriction ‖w′‖0 < N , then wSBL = w′ ∈ W∗ and

|W∗| = 1, i.e., SBL has a unique stable fixed point that equals the unique, maximally

sparse representation of the signal t.

See the Appendix III.G.1 for the proof. These results are restrictive in the sense that the

dictionary dependent constants νi significantly confine the class of signals t that we may

represent. Moreover, we have not provided any convenient means of computing what

the different scaling constants might be. But we have nonetheless solidified the notion

that SBL is most capable of recovering weights of different scales (and it must still find

all D∗ nonzero weights no matter how small some of them may be). Additionally, we

have specified conditions whereby we will find the unique w∗ even when the diversity

is as large as D∗ = N − 1. The tighter BP/OMP bound from [17, 29, 95] scales as

O
(
N−1/2

)
, although this latter bound is much more general in that it is independent of

the magnitudes of the nonzero weights.

In contrast, neither BP or OMP satisfy a comparable result; in both cases, sim-

ple 3D counter examples suffice to illustrate this point.2 We begin with OMP. Assume

the following:

1Because we have effectively shown that the SBL cost function must be unimodal, etc., any proven descent method
could likely be applied in place of (III.2) to achieve the same result.

2While these examples might seem slightly nuanced, the situations being illustrated can occur frequently in prac-
tice and the requisite column normalization introduces some complexity.
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w∗ =




1

ε

0

0




Φ =




0 1√
2

0 1√
1.01

0 0 1 0.1√
1.01

1 1√
2

0 0




t = Φw∗ =




ε√
2

0

1 + ε√
2



, (III.5)

where Φ satisfies the URP and has columns φi of unit `2 norm. Given any ε ∈ (0, 1),

we will now show that OMP will necessarily fail to findw∗. Provided ε < 1, at the first

iteration OMP will select φ1, which solves maxi |tTφi|, leaving the residual vector

r1 =
(
I − φ1φ

T
1

)
t = [ ε/

√
2 0 0 ]T . (III.6)

Next, φ4 will be chosen since it has the largest value in the top position, thus solving

maxi |rT
1 φi|. The residual is then updated to become

r2 =

(
I − [ φ1 φ4

][ φ1 φ4
]T
)
t =

ε

101
√

2
[ 1 −10 0 ]T . (III.7)

From the remaining two columns, r2 is most highly correlated with φ3. Once φ3 is

selected, we obtain zero residual error, yet we did not find w∗, which involves only φ1

and φ2. So for all ε ∈ (0, 1), the algorithm fails. As such, there can be no fixed constant

ν > 0 such that if w∗
(2) ≡ ε ≤ νw∗

(1) ≡ ν, we are guaranteed to obtain w∗ (unlike with

SBL).

We now give an analogous example for BP, where we present a feasible solu-
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tion with smaller `1 norm than the maximally sparse solution. Given

w∗ =




1

ε

0

0




Φ =




0 1 0.1√
1.02

0.1√
1.02

0 0 −0.1√
1.02

0.1√
1.02

1 0 1√
1.02

1√
1.02




t = Φw∗ =




ε

0

1



, (III.8)

it is clear that ‖w∗‖1 = 1 + ε. However, for all ε ∈ (0, 0.1), if we form a feasible

solution using only φ1, φ3, and φ4, we obtain the alternate solution

w =

[
(1 − 10ε) 0 5

√
1.02ε 5

√
1.02ε

]T

(III.9)

with ‖w‖1 ≈ 1 + 0.1ε. Since this has a smaller `1 norm for all ε in the specified range,

BP will necessarily fail and so again, we cannot reproduce the result for a similar reason

as before.

At this point, it remains unclear what probability distributions are likely to

produce weights that satisfy the conditions of Theorem 5. It turns out that the Jeffreys

prior, given by p(x) ∝ 1/x, is appropriate for this task. This distribution has the unique

property that the probability mass assigned to any given scaling is equal. More explic-

itly, for any s ≥ 1,

P
(
x ∈

[
si, si+1

])
∝ log(s) ∀i ∈ Z. (III.10)

For example, the probability that x is between 1 and 10 equals the probability that it lies

between 10 and 100 or between 0.01 and 0.1. Because this is an improper density, we
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define an approximate Jeffreys prior with range parameter a ∈ (0, 1]. Specifically, we

say that x ∼ J(a) if

p(x) =
−1

2 log(a)x
for x ∈ [a, 1/a]. (III.11)

With this definition in mind, we present the following result.

Theorem 6. For a fixed Φ that satisfies the URP, let t be generated by t = Φw ′, where

w′ has magnitudes drawn iid from J(a). Then as a approaches zero, the probability that

we obtain a w′ such that the conditions of Theorem 5 are satisfied approaches unity.

Appendix III.G.2 contains the proof. However, on a conceptual level this result can

be understood by considering the distribution of order statistics. For example, given

M samples from a uniform distribution between zero and some θ, with probability ap-

proaching one, the distance between the k-th and (k + 1)-th order statistic can be made

arbitrarily large as θ moves towards infinity. Likewise, with the J(a) distribution, the

relative scaling between order statistics can be increased without bound as a decreases

towards zero, leading to the stated result.

Corollary 4. Assume that D′ < N randomly selected elements of w′ are set to zero.

Then as a approaches zero, the probability that we satisfy the conditions of Corollary 3

approaches unity.

In conclusion, we have shown that a simple, (approximate) noninformative

Jeffreys prior leads to sparse inverse problems that are optimally solved via SBL with

high probability. Interestingly, it is this same Jeffreys prior that forms the implicit weight



76

prior of SBL (see [94], Section 5.1). However, it is worth mentioning that other Jeffreys

prior-based techniques, e.g., direct minimization of p(w) =
∏

i
1

|wi| subject to t = Φw,

do not provide any SBL-like guarantees. Although several algorithms do exist that can

perform such a minimization task (e.g., [27, 34]), they perform poorly with respect

to (III.1) because of convergence to local minimum as shown in Chapter II. This is

especially true if the weights are highly scaled, and no nontrivial equivalence results are

known to exist for these procedures.

III.C Worst-Case Scenario

If the best-case scenario occurs when the nonzero weights are all of very dif-

ferent scales, it seems reasonable that the most difficult sparse inverse problem may

involve weights of the same or even identical scale, e.g., w̃∗
1 = w̃∗

2 = . . . w̃∗
D∗ . This no-

tion can be formalized somewhat by considering the w̃∗ distribution that is furthest from

the Jeffreys prior. First, we note that both the SBL cost function and update rules are

independent of the overall scaling of the generating weights, meaning αw̃∗ is function-

ally equivalent to w̃∗ provided α is nonzero. This invariance must be taken into account

in our analysis. Therefore, we assume the weights are rescaled such that
∑

i w̃
∗
i = 1.

Given this restriction, we will find the distribution of weight magnitudes that is most

different from the Jeffreys prior.

Using the standard procedure for changing the parameterization of a probabil-
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ity density, the joint density of the constrained variables can be computed simply as

p(w̃∗
1, . . . , w̃

∗
D∗) ∝ 1

∏D∗

i=1 w̃
∗
i

for
D∗∑

i=1

w̃∗
i = 1, w̃∗

i ≥ 0,∀i. (III.12)

From this expression, it is easily shown that w̃∗
1 = w̃∗

2 = . . . = w̃∗
D∗ achieves the global

minimum. Consequently, equal weights are the absolute least likely to occur from the

Jeffreys prior. Hence, we may argue that the distribution that assigns w̃∗
i = 1/D∗ with

probability one is furthest from the constrained Jeffreys prior.

Nevertheless, because of the complexity of the SBL framework, it is difficult

to prove axiomatically that w̃∗ ∼ 1 is overall the most problematic distribution with

respect to sparse recovery. We can however provide additional motivation for why we

should expect it to be unwieldy. As proven in Section II.C.1, the global minimum of

the SBL cost function is guaranteed to produce some w∗ ∈ W∗. This minimum is

achieved with the hyperparameters γ∗
i = (w∗

i )
2, ∀i. We can think of this solution as

forming a collapsed, or degenerate covariance Σ∗
t = ΦΓ∗ΦT that occupies a proper D∗-

dimensional subspace of N -dimensional signal space. Moreover, this subspace must

necessarily contain the signal vector t. Essentially, Σ∗
t proscribes infinite density to t,

leading to the globally minimizing solution.

Now consider an alternative covariance Σ�
t that, although still full rank, is

nonetheless ill-conditioned (flattened), containing t within its high density region. Fur-

thermore, assume that Σ�
t is not well aligned with the subspace formed by Σ∗

t . The

mixture of two flattened, yet misaligned covariances naturally leads to a more volu-
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minous (less dense) form as measured by the determinant |αΣ∗
t + βΣ�

t |. Thus, as we

transition from Σ�
t to Σ∗

t , we necessarily reduce the density at t, thereby increasing the

cost function L(γ). So if SBL converges to Σ�
t it has fallen into a local minimum.

So the question remains, what values of w̃∗ are likely to create the most sit-

uations where this type of local minima occurs? The issue is resolved when we again

consider the D∗-dimensional subspace determined by Σ∗
t . The volume of the covariance

within this subspace is given by
∣∣∣Φ̃Γ̃∗Φ̃∗T

∣∣∣, where Φ̃∗ and Γ̃∗ are the basis vectors and

hyperparameters associated with w̃∗. The larger this volume, the higher the probability

that other basis vectors will be suitably positioned so as to both (i), contain t within the

high density portion and (ii), maintain a sufficient component that is misaligned with the

optimal covariance.

The maximum volume of
∣∣∣Φ̃∗Γ̃∗Φ̃∗T

∣∣∣ under the constraints
∑

i w̃
∗
i = 1 and

γ̃∗i = (w̃∗)2
i occurs with γ̃∗i = 1/(D∗)2, i.e., all the w̃∗

i are equal. Consequently, geo-

metric considerations support the notion that deviance from the Jeffreys prior leads to

difficulty recovering w∗. Moreover, empirical analysis (not shown) of the relationship

between volume and local minimum avoidance provide further corroboration of this

hypothesis.

III.D Empirical Comparisons

The central purpose of this section is to present empirical evidence that sup-

ports our theoretical analysis and illustrates the improved performance afforded by SBL.

As previously mentioned, others have established deterministic equivalence conditions,
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dependent onD∗, whereby BP and OMP are guaranteed to find the uniquew∗. Unfortu-

nately, the relevant theorems are of little value in assessing practical differences between

algorithms. This is because, in the cases we have tested where BP/OMP equivalence is

provably known to hold (e.g., via results in [17, 29, 95]), SBL always converges to w∗

as well.

As such, we will focuss our attention on the insights provided by Sections III.B

and III.C as well as probabilistic comparisons with [18]. Given a fixed distribution for

the nonzero elements ofw∗, we will assess which algorithm is best (at least empirically)

for most dictionaries relative to a uniform measure on the unit sphere as discussed.

To this effect, a number of monte-carlo simulations were conducted, each con-

sisting of the following: First, a random, overcomplete N ×M dictionary Φ is created

whose columns are each drawn uniformly from the surface of an N -dimensional hy-

persphere. Next, sparse weight vectors w∗ are randomly generated with D∗ nonzero

entries. Nonzero amplitudes w̃∗ are drawn iid from an experiment-dependent distribu-

tion. Response values are then computed as t = Φw∗. Each algorithm is presented with

t and Φ and attempts to estimate w∗. In all cases, we ran 1000 independent trials and

compared the number of times each algorithm failed to recoverw∗. Under the specified

conditions for the generation of Φ and t, all other feasible solutions w almost surely

have a diversity greater than D∗, so our synthetically generated w∗ must be maximally

sparse. Moreover, Φ will almost surely satisfy the URP.

With regard to particulars, there are essentially four variables with which to

experiment: (i) the distribution of w̃∗, (ii) the diversityD∗, (iii)N , and (iv)M . In Figure
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III.1, we display results from an array of testing conditions. In each row of the figure,

w̃∗
i is drawn iid from a fixed distribution for all i; the first row uses w̃∗

i = 1, the second

has w̃∗
i ∼ J(a = 0.001), and the third uses w̃∗

i ∼ N(0, 1), i.e., a unit Gaussian. In all

cases, the signs of the nonzero weights are irrelevant due to the randomness inherent in

the basis vectors.

The columns of Figure III.1 are organized as follows: The first column is based

on the values N = 50, D∗ = 16, while M is varied from N to 5N , testing the effects

of an increasing level of dictionary redundancy, M/N . The second fixes N = 50 and

M = 100 while D∗ is varied from 10 to 30, exploring the ability of each algorithm

to resolve an increasing number of nonzero weights. Finally, the third column fixes

M/N = 2 and D∗/N ≈ 0.3 while N , M , and D∗ are increased proportionally. This

demonstrates how performance scales with larger problem sizes.

The first row of plots essentially represents the worst-case scenario for SBL

per our previous analysis, and yet performance is still consistently better than both BP

and OMP. In contrast, the second row of plots approximates the best-case performance

for SBL, where we see that SBL is almost infallible. The handful of failure events that

do occur are because a is not sufficiently small and therefore, J(a) was not sufficiently

close to a true Jeffreys prior to achieve perfect equivalence (see center plot). Although

OMP also does well here, the parameter a can generally never be adjusted such that

OMP always succeeds. Finally, the last row of plots, based on Gaussian distributed

weight amplitudes, reflects a balance between these two extremes. Nonetheless, SBL

still holds a substantial advantage.
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Figure III.1: Empirical results comparing the probability that OMP, BP, and SBL fail to
findw∗ under various testing conditions. Each data point is based on 1000 independent
trials. The distribution of the nonzero weight amplitudes is labeled on the far left for
each row, while the values for N , M , and D∗ are included on the top of each column.
Independent variables are labeled along the bottom of the figure.

In general, we observe that SBL is capable of handling more redundant dic-

tionaries (column one) and resolving a larger number of nonzero weights (column two).

Also, column three illustrates that both BP and SBL are able to resolve a number of

weights that grows linearly in the signal dimension (≈ 0.3N ), consistent with the analy-

sis in [18] (which applies only to BP). In contrast, OMP performance begins to degrade

in some cases (see the upper right plot), a potential limitation of this approach. Of course

additional study is necessary to fully compare the relative performance of these methods

on large-scale problems.
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Finally, by comparing row one, two and three, we observe that the perfor-

mance of BP is independent of the weight distribution (consistent with results from

[59]), with performance slightly below the worst-case SBL performance. Like SBL,

OMP results are highly dependent on the distribution; however, as the weight distri-

bution approaches unity, performance is unsatisfactory. In summary, while the relative

proficiency between OMP and BP is contingent on experimental particulars, SBL is uni-

formly superior in the cases we have tested (including examples not shown, e.g., results

with other dictionary types).

III.E Conclusions

In this chapter, we have related the ability to find maximally sparse solutions

using SBL to the particular distribution of amplitudes that compose the nonzero ele-

ments. At first glance, it may seem reasonable that the most difficult sparse inverse

problems occur when some of the nonzero weights are extremely small, making them

difficult to estimate. Perhaps surprisingly then, we have shown that the exact opposite is

true with SBL: The more diverse the weight magnitudes, the better the chances we have

of learning the optimal solution. In contrast, unit weights offer the most challenging task

for SBL. Nonetheless, even in this worst-case scenario, we have shown that SBL outper-

forms the current state-of-the-art; the overall assumption here being that, if worst-case

performance is superior, then it is likely to perform better in a variety of situations.

Unlike SBL, it has been shown that under very mild conditions BP perfor-

mance is provably independent of the nonzero weight magnitudes [59]. While this inde-
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pendence is compelling, it also ensures that there is no alternative distribution that can

improve BP performance beyond what we have shown above, which is inferior to the

worse-case SBL results in the situations we have tested thus far.

For a fixed dictionary and diversity D∗, successful recovery of unit weights

does not absolutely guarantee that any alternative weighting scheme will necessarily be

recovered as well. However, a weaker result does appear to be feasible: For fixed values

of N , M , and D∗, if the success rate recovering unity weights approaches one for most

dictionaries, where most is defined as in Section III.A, then the success rate recovering

weights of any other distribution (assuming they are distributed independently of the

dictionary) will also approach one. While a formal proof of this conjecture is beyond

the scope of this paper, it seems to be a very reasonable result that is certainly born

out by experimental evidence, geometric considerations, and the arguments presented in

Section III.C. Nonetheless, this remains a fruitful area for further inquiry.
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III.G Appendix

III.G.1 Proof of Theorem 5 and Corollary 3

In the most general setting, the constants νi may all be unique, leading to

the most flexible set of allowable weighting schemes. However, for simplicity we will

assume that ν1 = ν2 = . . . = νM−1 = ε, where ε is a constant in the interval (0, 1]. The

extension to the more general setting is straightforward.

Every local minimum of L(γ), the SBL cost function, is achieved at a basic

feasible solution (BFS) (see Section II.C.2). By this we mean that every local minimum

is achieved at a solution with γi = w2
i (for all i) such that,

w ∈ WBFS , {w : t = Φw, ‖w‖0 ≤ N}. (III.13)

Interestingly, the converse is not true; that is, every element of W BFS need not correspond

with a minimum to L(γ). In fact, for a suitable selection of ε, we will show that this

reduced set of minima naturally leads to a proof of Theorem 5.

We begin with a set of weightsw′ such that w′
(i+1) ≤ εw′

(i) and ‖w′‖0 , D′ ∈

{1, . . . ,M}. For convenience, we will also assume that w′
(i) = |w′

i| for all i. In other

words, the first element of w′ has the largest magnitude, the second element has the

second largest magnitude, and so on. To avoid any loss of generality, we incorporate

an M ×M permutation matrix P into our generative model, giving us the signal t =

ΦPw′ = Φ′w′. Because Φ′ , ΦP is nothing more than Φ with reordered columns, it

will necessarily satisfy the URP for all P given that Φ does.
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We now examine the properties of an arbitrary BFS with nonzero weights w̃

and associated dictionary atoms Φ̃, i.e., t = Φ̃w̃. There exist two possibilities for a

candidate BFS:

• Case I: The columns of Φ′ associated with the largest (in magnitude) min(N,D′)

nonzero weights of w′ are contained in Φ̃. By virtue of the URP, no other ba-

sis vectors will be present even if D′ < N , so we may conclude that Φ̃ =

[φ′
1,φ

′
2, . . . ,φ

′
min(N,D′)].

• Case II: At least one of the columns associated with the largest min(N,D ′)

weights is missing from Φ̃.

Given this distinction, we would like to determine when a candidate BFS, particularly a

Case II BFS of which there are many, is a local minimum.

To accomplish this, we let r ∈ {1, . . . ,min(N,D′)} denote the index of the of

the largest weight for which the respective dictionary atom, φ′
r is not in Φ̃. Therefore,

by assumption the first r − 1 columns of Φ̃ equal [φ′
1,φ

′
2, . . . ,φ

′
r−1]. The remaining

columns of Φ̃ are arbitrary (provided of course that φ′
r is not included). This allows us

to express any Case II BFS as

w̃ = Φ̃−1t = Φ̃−1Φ′w′ =
r−1∑

k=1

w′
kek + Φ̃−1

D′∑

k=r

w′
kφ

′
k, (III.14)

where ek is a zero vector with a one in the k-th element and we have assumed that every

Case II BFS utilizes exactly N columns of Φ′ (i.e., Φ̃ is N ×N and therefore invertible

via the URP). This assumption is not restrictive provided we allow for zero-padding of
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BFS with less than N nonzero weights (this implies that some elements of w̃ will be

equal to zero if we have to add dummy columns to Φ̃).

Since SBL is invariant to the overall scaling of model weights, without loss of

generality we will assume that w′
r = 1. We also define ṽ , Φ̃−1φ′

r, giving us

w̃ = Φ̃−1t =
r−1∑

k=1

w′
kek + ṽ + Φ̃−1

D′∑

k=r+1

w′
kφ

′
k. (III.15)

By virtue of the stipulated ε-dependent weight scaling, we know that

Φ̃−1

D′∑

k=r+1

w′
kφ

′
k =

D′∑

k=r+1

O
(
εk−r

)
· 1N = O (ε) · 1N , (III.16)

where we have used the notation f(x) = O(g(x)) to indicate that |f(x)| < C1|g(x)| for

all x < C2, with C1 and C2 constants independent of x. Also, O(x) · 1N refers to an

N -dimensional vector with all elements of order O(x). Combining (III.15) and (III.16),

we can express the i-th element of w̃ as

w̃i = w′
iI [i < r] + ṽi + O (ε) . (III.17)

Provided ε is chosen suitably small, we can ensure that all w̃i are necessarily nonzero (so

in fact no zero-padding is ever necessary). When i ≥ r, this occurs because all elements

of ṽ must be strictly nonzero or we violate the URP assumption. For the i < r case,

a sufficiently small ε means that the w′
i term (which is of order O (1/εr−i) by virtue of

(III.4)) will dominate, leading to a nonzero w̃i. This allows us to apply Theorem 3, from
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which we can conclude that a candidate BFS with N nonzero weights will represent a

local minimum only if
∑

i6=j

ṽiṽj

w̃iw̃j

≤ 0. (III.18)

Substituting (III.17) into this criterion, we obtain

∑

i6=j

(
ṽi

w′
iI [i < r] + ṽi + O(ε)

)(
ṽj

w′
jI [j < r] + ṽj + O(ε)

)
= (III.19)

O(ε) +
∑

i6=j; i,j≥r

(
ṽi

ṽi + O(ε)

)(
ṽj

ṽj + O(ε)

)
.

If D′ < N , then r < N by definition and so there will always be at least one set of

indices i and j that satisfy the above summation constraints. This then implies that

∑

i6=j

ṽiṽj

w̃iw̃j

≈
∑

i6=j; i,j≥r

1 > 0, (III.20)

since each ṽi is a nonzero constant independent of ε. So we have violated a necessary

condition for the existence of a local minimum.

In contrast, If D′ ≥ N , then it will always be possible to choose r = N such

that there are no allowable terms that satisfy the index constraints, meaning that this

Case II BFS could potentially satisfy (III.18) and therefore be a local minimum with N

nonzero elements.

In summary, we have shown two properties of an arbitrary Case II BFS, pro-

vided that ε is small enough: We have shown that it will have exactly N nonzero el-

ements and that it will not represent a local minimum to SBL if D ′ < N . The exact
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value of this ε will depend on the particular BFS and permutation matrix P ; however,

we can simply choose the smallest ε across all possibilities. From these two properties,

it follows that D∗ = min(N,D′), meaning that the maximally sparse solution can only

have diversity less than D′ if D′ > N .

These results are sufficient to complete the proof of Theorem 5 as follows.

Any stable fixed point of the SBL update rules (III.2) must necessarily correspond with a

local minima to L(γ) and a particular BFS. IfD′ ≥ N , thenD∗ = N and so any BFS is a

member of W∗ (although all BFS need not be local minima of SBL). In contrast, ifD ′ <

N then no Case II BFS are local minima. The unique minimum (and therefore stable

fixed point) that remains is the Case I BFS which satisfies D′ = D∗. This completes the

proof. Also, because the maximally sparse solution is necessarily unique whenD ′ < N ,

Corollary 3 naturally follows.

It is important to stress that these results specify sufficient conditions for find-

ing maximally sparse representations via SBL, but these conditions are by no means

necessary, and SBL performs quite well even when the weights are not highly scaled.

This is desirable from a practical standpoint, especially since it is not generally feasible

to determine the value of ε for an arbitrary dictionary of reasonable size. Moreover, even

if ε where easily computable it will typically be prohibitively small in all but the most

simple cases.
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III.G.2 Proof of Theorem 6 and Corollary 4

Again, for convenience will assume that ν1 = ν2 = . . . = νM−1 = ε; extension

to the more general case is straightforward. Theorem 5 is predicated on the existence of

a sufficiently small ε > 0 such that wSBL is guaranteed to be in the set W∗. The actual

value of this ε is dependent on Φ. However, we will show that the J(a) distribution is

capable of producing weights that satisfy w′
(i+1) ≤ εw′

(i) with high probability no matter

how small ε may be. Thus, we can fulfill the conditions of Theorem 5 with probability

approaching one for any Φ.

The distribution of the ordered weight magnitudes is given by

p
(
w′

(1), . . . , w
′
(M)

)
=

M !

(−2 log a)M

M∏

i=1

1

w′
(i)

for a ≤ w′
(M) ≤ . . . ≤ w′

(1) ≤
1

a
.

(III.21)

However, we would like to calculate the probability mass contained within the restricted

weight space

Ω(ε) , {w′ : a ≤ w′
(M) ≤ εw′

(M−1) ≤ . . . εw′
(1) ≤ 1/a} (III.22)

for an arbitrary ε. This is readily computed via the integral

P (w′ ∈ Ω(ε)) =

∫

Ω(ε)

p(w′)dw′

=

∫ εw′

(M−1)

a

· · ·
∫ εw′

(1)

a

∫ 1
a

a

p
(
w′

(1), . . . , w
′
(M)

)
dw′

(M) · · · dw′
(2)dw

′
(1)

=

(
2 log a+ (M − 1) log ε

2 log a

)M

− O
(
(log a)−2

)
, (III.23)
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where O(·) is defined as before. For any fixed ε ∈ (0, 1], as a → 0, the righthand term

can be ignored while the lefthand term converges to one, giving us

lim
a→0

P (w′ ∈ Ω(ε)) = 1. (III.24)

Therefore, as a becomes small, the probability that we satisfy the conditions of Theorem

5 approaches unity.

The proof of Corollary 4 follows directly from the arguments presented above.



Chapter IV

Perspectives on Sparse Bayesian

Learning

Upon inspection of the SBL cost function and associated algorithms for its

optimization, it is appropriate to ponder intuitive explanations for the sparsity that is so

often achieved in practice. This is an especially salient task in light of the considerable

differences between the SBL framework and MAP paradigms such as FOCUSS and BP.

As a step in this direction, this chapter will demonstrate that SBL can be recast using

duality theory, where the hyperparameters γ can be interpreted as a set of variational

parameters. The end result of this analysis is a generalized evidence maximization pro-

cedure that is equivalent to the one originally formulated in [94]. The difference is that,

where before we were optimizing over a somewhat arbitrary model parameterization, we

now see that it is actually evidence maximization over the space of variational approx-

imations to a full Bayesian model with a sparse, well-motivated prior. Moreover, from

91
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the vantage point afforded by this new perspective, we can better understand the spar-

sity properties of SBL and the relationship between sparse priors and approximations to

sparse priors.

Unlike previous Chapters, here we take some consideration of the regression

problem where, from a fully Bayesian perspective, the ultimate goal is accurately form-

ing the predictive distribution p(t∗|t), where t∗ is an unknown response value not in-

cluded in the training set t. When p(t∗|t) is not feasible to obtain, approximate methods

are often used that, ideally should capture the mass in the full model [56]. The mate-

rial contained in this Chapter quantifies exactly how SBL models the mass in the full

predictive distribution, thus supporting heuristic claims made in [94].

IV.A Introduction

In an archetypical regression situation, we are presented with a collection of

N regressor/target pairs {φi ∈ R
M , ti ∈ R}N

i=1 and the goal is to find a vector of weights

w such that, in some sense,

ti ≈ φT
i w, ∀i or t ≈ Φw, (IV.1)

where t , [t1, . . . , tN ]T and Φ , [φ1, . . . ,φN ]T ∈ R
N×M . Ideally, we would like to

learn this relationship such that, given a new training vector φ∗, we can make accurate

predictions of t∗, i.e., we would like to avoid overfitting. In practice, this requires some

form of regularization, or a penalty on overly complex models.
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The sparse Bayesian learning (SBL) framework was originally derived to find

robust solutions to regression problems. When Φ is square and formed from a positive-

definite kernel function, we obtain the relevance vector machine (RVM), a Bayesian

competitor of SVMs with several significant advantages [23, 94].

IV.A.1 Sparse Bayesian Learning for Regression

Given a new regressor vectorφ∗, the full Bayesian treatment of (IV.1) involves

finding the predictive distribution p(t∗|t).1 We typically compute this distribution by

marginalizing over the model weights, i.e.,

p(t∗|t) =
1

p(t)

∫
p(t∗|w)p(w, t)dw, (IV.2)

where the joint density p(w, t) = p(t|w)p(w) combines all relevant information from

the training data (likelihood principle) with our prior beliefs about the model weights.

The likelihood term p(t|w) is assumed to be Gaussian,

p(t|w) = (2πλ)−N/2 exp

(
− 1

2λ
‖t− Φw‖2

)
, (IV.3)

where for now we assume that the noise variance λ is known. For sparse priors p(w)

(possibly improper), the required integrations, including the computation of the nor-

malizing term p(t), are typically intractable, and we are forced to accept some form of

approximation to p(w, t).

1For simplicity, we omit explicit conditioning on Φ and φ∗, i.e., p(t∗|t) ≡ p(t∗|t, Φ, φ∗).
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Sparse Bayesian learning addresses this issue by introducing a set of hyperpa-

rameters into the specification of the problematic weight prior p(w) before adopting a

particular approximation. The key assumption is that p(w) can be expressed as

p(w) =
M∏

i=1

p(wi) =
M∏

i=1

∫
p(wi|γi)p(γi)dγi, (IV.4)

where γ = [γ1, . . . , γM ]T represents a vector of hyperparameters, (one for each weight).

The implicit SBL derivation presented in [94] can then be reformulated as follows,

p(t∗|t) =
1

p(t)

∫
p(t∗|w)p(t|w)p(w)dw

=
1

p(t)

∫ ∫
p(t∗|w)p(t|w)p(w|γ)p(γ)dwdγ. (IV.5)

Proceeding further, by applying Bayes’ rule to this expression, we can exploit the plugin

rule [21] via,

p(t∗|t) =

∫ ∫
p(t∗|w)p(t|w)p(w|γ)

p(γ|t)
p(t|γ)

dwdγ

≈
∫ ∫

p(t∗|w)p(t|w)p(w|γ)
δ(γMAP )

p(t|γ)
dwdγ

=
1

p(t;γMAP )

∫
p(t∗|w)p(w, t;γMAP )dw. (IV.6)

The essential difference from (IV.2) is that we have replaced p(w, t) with the approx-

imate distribution p(w, t;γMAP ) = p(t|w)p(w;γMAP ). Also, the normalizing term

becomes
∫
p(w, t;γMAP )dw and we assume that all required integrations can now be

handled in closed form. Of course the question remains, how do we structure this new
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set of parameters γ to accomplish this goal? The answer is that the hyperparameters

enter as weight prior variances of the form,

p(wi|γi) = N (0, γi). (IV.7)

The hyperpriors are given by,

p(γ−1
i ) ∝ γ1−a

i exp(−b/γi), (IV.8)

where a, b > 0 are constants. The crux of the actual learning procedure presented in [94]

is to find some MAP estimate of γ (or more accurately, a function of γ). In practice,

we find that many of the estimated γi’s converge to zero, leading to sparse solutions

since the corresponding weights, and therefore columns of Φ, can effectively be pruned

from the model. The Gaussian assumptions, both on p(t|w) and p(w;γ), then facilitate

direct, analytic computation of (IV.6).

IV.A.2 Ambiguities in Current SBL Derivation

Modern Bayesian analysis is primarily concerned with finding distributions

and locations of significant probability mass, not just modes of distributions, which can

be very misleading in many cases [56]. With SBL, the justification for the additional

level of sophistication (i.e., the inclusion of hyperparameters) is that the adoption of the

plugin rule (i.e., the approximation p(w, t) ≈ p(w, t;γMAP )) is reflective of the true

mass, at least sufficiently so for predictive purposes. However, no rigorous motivation



96

for this particular claim is currently available nor is it immediately obvious exactly how

the mass of this approximate distribution relates to the true mass.

A more subtle difficulty arises because MAP estimation, and hence the plugin

rule, is not invariant under a change in parameterization. Specifically, for an invertible

function f(·),

[f(γ)]MAP 6= f(γMAP ). (IV.9)

Different transformations lead to different modes and ultimately, different approxima-

tions to p(w, t) and therefore p(t∗|t). So how do we decide which one to use? The

canonical form of SBL, and the one that has displayed remarkable success in the litera-

ture, does not in fact find a mode of p(γ|t), but a mode of p(− log γ|t). But again, why

should this mode necessarily be more reflective of the desired mass than any other?

As already mentioned, SBL often leads to sparse results in practice, namely,

the approximation p(w, t;γMAP ) is typically nonzero only on a small subspace of M -

dimensional w space. The question remains, however, why should an approximation to

the full Bayesian treatment necessarily lead to sparse results in practice?

To address all of these ambiguities, we will herein demonstrate that the sparse

Bayesian learning procedure outlined above can be recast as the application of a rigorous

variational approximation to the distribution p(w, t).2 This will allow us to quantify the

exact relationship between the true mass and the approximate mass of this distribution.

In effect, we will demonstrate that SBL is attempting to directly capture significant por-

2We note that the analysis in this paper is different from [5], which provides an alternative SBL derivation using
a factorial approximation to minimize a Kullback-Leibler divergence-based cost function. The connection between
these two types of variational methods can be found in [70].
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tions of the probability mass of p(w, t), while still allowing us to perform the required

integrations. This framework also obviates the necessity of assuming any hyperprior

p(γ) and is independent of the (subjective) parameterization (e.g., γ or − log γ, etc.).

Moreover, this perspective leads to natural, intuitive explanations of why sparsity is ob-

served in practice and why, in general, this need not be the case. Chapter V will consider

this issue in greater detail.

IV.B A Variational Interpretation of Sparse Bayesian Learning

To begin, we review that the ultimate goal of this analysis is to find a well-

motivated approximation to the distribution

p(t∗|t;H) ∝
∫
p(t∗|w)p(w, t;H)dw =

∫
p(t∗|w)p(t|w)p(w;H)dw, (IV.10)

where we have explicitly noted the hypothesis of a model with a sparsity inducing (pos-

sibly improper) weight prior by H. As already mentioned, the integration required by

this form is analytically intractable and we must resort to some form of approximation.

To accomplish this, we appeal to variational methods to find a viable approximation

to p(w, t;H) [47]. We may then substitute this approximation into (IV.10), leading to

tractable integrations and analytic posterior distributions. To find a class of suitable

approximations, we first express p(w;H) in its dual form by introducing a set of vari-

ational parameters. This is similar to a procedure outlined in [31] in the context of

independent component analysis.
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IV.B.1 Dual Form Representation of p(w;H)

At the heart of this methodology is the ability to represent a convex function

in its dual form. For example, given a convex function f(y) : R → R, the dual form is

given by

f(y) = sup
υ

[υy − f ∗(υ)] , (IV.11)

where f ∗(υ) denotes the conjugate function. Geometrically, this can be interpreted as

representing f(y) as the upper envelope or supremum of a set of lines parameterized by

υ. The selection of f ∗(υ) as the intercept term ensures that each line is tangent to f(y).

If we drop the maximization in (IV.11), we obtain the bound

f(y) ≥ υy − f ∗(υ). (IV.12)

Thus, for any given υ, we have a lower bound on f(y); we may then optimize over υ to

find the optimal or tightest bound in a region of interest.

To apply this theory to the problem at hand, we specify the form for our sparse

prior p(w;H) =
∏M

i=1 p(wi;H). Using (IV.7) and (IV.8), we obtain the prior

p(wi;H) =

∫
p(wi|γi)p(γi)dγi = C

(
b+

w2
i

2

)−(a+1/2)

, (IV.13)

which for a, b > 0 is proportional to a Student-t density. The constant C is not chosen

to enforce proper normalization; rather, it is chosen to facilitate the variational analysis

below. Also, this density function can be seen to encourage sparsity since it has heavy
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tails and a sharp peak at zero. Clearly p(wi;H) is not convex in wi; however, if we let

yi , w2
i as suggested in [47] and define

f(yi) , log p(wi;H) = −(a+ 1/2) log
(
b+

yi

2

)
+ logC, (IV.14)

we see that we now have a convex function in yi amenable to dual representation. By

computing the conjugate function f ∗(yi), constructing the dual, and then transforming

back to p(wi;H), we obtain the representation (see Appendix for details)

p(wi;H) = max
γi≥0

[
(2πγi)

−1/2 exp

(
−w2

i

2γi

)
exp

(
− b

γi

)
γ−a

i

]
. (IV.15)

As a, b → 0, it is readily apparent from (IV.15) that what were straight lines in the

yi domain are now Gaussian functions with variance γi in the wi domain. Figure IV.1

illustrates this connection. When we drop the maximization, we obtain a lower bound

on p(wi;H) of the form

p(wi;H) ≥ p(wi; Ĥ) , (2πγi)
−1/2 exp

(
−w2

i

2γi

)
exp

(
− b

γi

)
γ−a

i , (IV.16)

which serves as our approximate prior to p(w;H). From this relationship, we see that

p(wi; Ĥ) does not integrate to one, except in the special case when a, b → 0. We will

now incorporate these results into an algorithm for finding a good Ĥ, or more accurately

Ĥ(γ), since each candidate hypothesis is characterized by a different set of variational

parameters.
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Figure IV.1: Variational approximation example in both yi space and wi space for
a, b → 0. Left: Dual forms in yi space. The solid line represents the plot of f(yi)
while the dotted lines represent variational lower bounds in the dual representation for
three different values of υi. Right: Dual forms in wi space. The solid line represents
the plot of p(wi;H) while the dotted lines represent Gaussian distributions with three
different variances.

IV.B.2 Variational Approximation to p(w, t;H)

So now that we have a variational approximation to the problematic weight

prior, we must return to our original problem of estimating p(t∗|t;H). Since the integra-

tion is intractable under model hypothesis H, we will instead compute p(t∗|t; Ĥ) using

p(w, t; Ĥ) = p(t|w)p(w; Ĥ), with p(w; Ĥ) defined as in (IV.16). How do we choose

this approximate model? In other words, given that different Ĥ are distinguished by

a different set of variational parameters γ, how do we choose the most appropriate γ?

Consistent with modern Bayesian analysis, we concern ourselves not with matching

modes of distributions, but with aligning regions of significant probability mass. In

choosing p(w, t; Ĥ), we would therefore like to match, where possible, significant re-

gions of probability mass in the true model p(w, t;H). For a given t, an obvious way
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to do this is to select Ĥ by minimizing the sum of the misaligned mass, i.e.,

Ĥ = arg min
Ĥ

∫ ∣∣∣p(w, t;H) − p(w, t; Ĥ)
∣∣∣ dw

= arg max
Ĥ

∫
p(t|w)p(w; Ĥ)dw, (IV.17)

where the variational assumptions have allowed us to remove the absolute value (since

the argument must always be positive). Also, we note that (IV.17) is tantamount to

selecting the variational approximation with maximal Bayesian evidence [56]. In other

words, we are selecting the Ĥ, out of a class of variational approximations to H, that

most probably explains the training data t, marginalized over the weights.

From an implementational standpoint, (IV.17) can be reexpressed using (IV.16)

as,

γ = arg max
γ

log

∫
p(t|w)

M∏

i=1

p
(
wi; Ĥ(γi)

)
dw

= arg max
γ

−1

2

[
log |Σt| + tT Σ−1

t t
]
+

M∑

i=1

(
− b

γi

− a log γi

)
, (IV.18)

where Σt , λI + Φdiag(γ)ΦT . This is the same cost function as in [94] only without

terms resulting from a prior on λ, which we will address later. Thus, the end result

of this analysis is an evidence maximization procedure equivalent to the one in [94].

The difference is that, where before we were optimizing over a somewhat arbitrary

model parameterization, now we see that it is actually optimization over the space of

variational approximations to a model with a sparse, regularizing prior. Also, we know
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from (IV.17) that this procedure is effectively matching, as much as possible, the mass

of the full model p(w, t; Ĥ).

IV.C Analysis

While the variational perspective is interesting, two pertinent questions still

remain:

1. Why should it be that approximating a sparse prior p(w;H) leads to sparse repre-

sentations in practice?

2. How do we extend these results to handle an unknown, random variance λ?

We first treat Question (1). In Figure IV.2 below, we have illustrated a 2D

example of evidence maximization within the context of variational approximations to

the sparse prior p(w;H). For now, we will assume a, b → 0, which from (IV.13),

implies that p(wi;H) ∝ 1/|wi| for each i. On the left, the shaded area represents the

region of w space where both p(w;H) and p(t|w) (and therefore p(w, t;H)) have

significant probability mass. Maximization of (IV.17) involves finding an approximate

distribution p(w, t; Ĥ) with a substantial percentage of its mass in this region.

In the plot on the right, we have graphed two approximate priors that satisfy

the variational bounds, i.e., they must lie within the contours of p(w;H). We see that

the narrow prior that aligns with the horizontal spine of p(w;H) places the largest per-

centage of its mass (and therefore the mass of p(w, t; Ĥa)) in the shaded region. This
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Figure IV.2: Comparison between full model and approximate models with a, b → 0.
Left: Contours of equiprobability density for p(w;H) and constant likelihood p(t|w);
the prominent density and likelihood lie within each region respectively. The shaded
region represents the area where both have significant mass. Right: Here we have added
the contours of p(w; Ĥ) for two different values of γ, i.e., two approximate hypotheses
denoted Ĥa and Ĥb. The shaded region represents the area where both the likelihood
and the approximate prior Ĥa have significant mass. Note that by the variational bound,
each p(w; Ĥ) must lie within the contours of p(w;H).

corresponds with a prior of

p(w; Ĥa) = p(w1, w2; γ1 � 0, γ2 ≈ 0). (IV.19)

This creates a long narrow prior since there is minimal variance along the w2 axis. In

fact, it can be shown that owing to the infinite density of the variational constraint along

each axis (which is allowed as a and b go to zero), the maximum evidence is obtained

when γ2 is strictly equal to zero, giving the approximate prior infinite density along this

axis as well. This implies that w2 also equals zero and can be pruned from the model.

In contrast, a model with significant prior variance along both axes, Ĥb, is hampered

because it cannot extend directly out (due to the dotted variational boundary) along the

spine to penetrate the likelihood.
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Similar effective weight pruning occurs in higher dimensional problems as

evidenced by simulation studies and the analysis in [23]. In higher dimensions, the al-

gorithm only retains those weights associated with the prior spines that span a subspace

penetrating the most prominent portion of the likelihood mass (i.e., a higher-dimensional

analog to the shaded region already mentioned). The prior p(w; Ĥ) navigates the vari-

ational constraints, placing as much as possible of its mass in this region, driving many

of the γi’s to zero.

In contrast, when a, b > 0, the situation is somewhat different. It is not dif-

ficult to show that, assuming a noise variance λ > 0, the variational approximation to

p(w, t;H) with maximal evidence cannot have any γi = wi = 0. Intuitively, this oc-

curs because the now finite spines of the prior p(w;H), which bound the variational

approximation, do not allow us to place infinite prior density in any region of weight

space (as occurred previously when any γi → 0). Consequently, if any γi goes to zero

with a, b > 0, the associated approximate prior mass, and therefore the approximate

evidence, must also fall to zero by (IV.16). As such, models with all non-zero weights

will be now be favored when we form the variational approximation. We therefore can-

not assume an approximation to a sparse prior will necessarily give us sparse results in

practice.

We now address Question (2). Thus far, we have considered a known, fixed

noise variance λ; however, what if λ is unknown? SBL assumes it is unknown and ran-

dom with prior distribution p(1/λ) ∝ (λ)1−c exp(−d/λ), and c, d > 0. After integrating



105

out the unknown λ, we arrive at the implicit likelihood equation,

p(t|w) =

∫
p(t|w, λ)p(λ)dλ ∝

(
d+

1

2
‖t− Φw‖2

)−(c̄+1/2)

, (IV.20)

where c̄ , c + (N − 1)/2. We may then form a variational approximation to the

likelihood in a similar manner as before (with wi being replaced by ‖t − Φw‖) giving

us,

p(t|w) ≥ (2π)−N/2(λ)−1/2 exp

(
− 1

2λ
‖t− Φw‖2

)
exp

(
−d
λ

)
(λ)−c̄

= (2πλ)−N/2 exp

(
− 1

2λ
‖t− Φw‖2

)
exp

(
−d
λ

)
(λ)−c, (IV.21)

where the second step follows by substituting back in for c̄. By replacing p(t|w) with

the lower bound from (IV.21), we then maximize over the variational parameters γ and

λ via

γ, λ = arg max
γ,λ

−1

2

[
log |Σt| + tT Σ−1

t t
]
+

M∑

i=1

(
− b

γi

− a log γi

)
− d

λ
− c log λ,

(IV.22)

the exact SBL optimization procedure. Thus, we see that the entire SBL framework,

including noise variance estimation, can be seen in variational terms. However, as dis-

cussed in Section VIII.A, care should be exercised when jointly estimating γ and λ.
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IV.D Conclusions

The end result of this analysis is an evidence maximization procedure that is

equivalent to the generalized SBL framework originally formulated in [94]. The differ-

ence is that, where before we were optimizing over a somewhat arbitrary model param-

eterization, we now see that SBL is actually searching a space of variational approxi-

mations to find an alternative distribution that captures the significant mass of the full

model. Additionally, this formulation obviates the necessity of assuming any subjective

hyperpriors and leads to natural, intuitive explanations of why sparsity is achieved in

practice. This topic will be taken up in more detail in the next Chapter, where the gen-

eral relationship between sparse priors and approximations to sparse priors is discussed.
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IV.F Appendix: Derivation of the Dual Form of p(wi;H)

To accommodate the variational analysis of Sec. IV.B.1, we require the dual

representation of p(wi;H). As an intermediate step, we must find the dual representation
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of f(yi), where yi , w2
i and

f(yi) , log p(wi;H) = log

[
C
(
b+

yi

2

)−(a+1/2)
]
. (IV.23)

To accomplish this, we find the conjugate function f ∗(υi) using the duality relation

f ∗(υi) = max
yi

[υiyi − f(yi)] = max
yi

[
υiyi − logC +

(
a+

1

2

)
log
(
b+

yi

2

)]
.(IV.24)

To find the maximizing yi, we take the gradient of the left side and set it to zero, giving

us,

ymax
i = − a

υi

− 1

2υi

− 2b. (IV.25)

Substituting this value into the expression for f ∗(υi) and selecting

C = (2π)−1/2 exp

[
−
(
a+

1

2

)](
a+

1

2

)(a+1/2)

, (IV.26)

we arrive at

f ∗(υi) =

(
a+

1

2

)
log

(−1

2υi

)
+

1

2
log 2π − 2bυi. (IV.27)

We are now ready to represent f(yi) in its dual form, observing first that we only need

consider maximization over υi ≤ 0 since f(yi) is a monotonically decreasing function

(i.e., all tangent lines will have negative slope). Proceeding forward, we have

f(yi) = max
υi≤0

[υiyi − f ∗(υi)] = max
γi≥0

[−yi

2γi

−
(
a+

1

2

)
log γi −

1

2
log 2π − b

γi

]
,(IV.28)
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where we have used the monotonically increasing transformation υi = −1/(2γi), γi ≥

0. The attendant dual representation of p(wi;H) can then be obtained by exponentiating

both sides of (IV.28) and substituting yi = w2
i ,

p(wi;H) = max
γi≥0

[
1√
2πγi

exp

(
−w2

i

2γi

)
exp

(
− b

γi

)
γ−a

i

]
. (IV.29)



Chapter V

A General Framework for Latent

Variable Models with Sparse Priors

A variety of general Bayesian methods, some of which have been discussed

in previous chapters, have recently been introduced for finding sparse representations

from overcomplete dictionaries of candidate features. These methods often capitalize

on latent structure inherent in sparse distributions to perform standard MAP estimation,

variational Bayes, approximation using convex duality, or evidence maximization. De-

spite their reliance on sparsity-inducing priors however, these approaches may or may

not actually lead to sparse representations in practice, and so it is a challenging task

to determine which algorithm and sparse prior is appropriate. Rather than justifying

prior selections and modelling assumptions based on the credibility of the full Bayesian

model as is commonly done, this chapter bases evaluations on the actual cost functions

that emerge from each method. Two minimal conditions are postulated that ideally any

109
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sparse learning objective should satisfy. Out of all possible cost functions that can be

obtained from the methods described above using (virtually) any sparse prior, a unique

function is derived that satisfies these conditions. Both sparse Bayesian learning (SBL)

and basis pursuit (BP) are special cases.

These results elucidate connections between methods and suggests new sparse

learning cost functions. For example, we demonstrate that all of the above sparse learn-

ing procedures can be viewed as simple MAP estimation giving the appropriate prior.

However, where as traditional MAP methods for sparse recovery (e.g., BP, LASSO,

FOCUSS, etc.) employ a factorial (separable) prior, SBL and other empirical Bayesian

methods do not.

V.A Introduction

Here we will again be concerned with the generative model

t = Φw + ε, (V.1)

where Φ ∈ R
N×M is a dictionary of unit `2-norm basis vectors or features,w is a vector

of unknown weights, t is the observation vector, and ε is uncorrelated noise distributed

as N (0, λI). In many practical situations, this dictionary will be overcomplete, meaning

M > N and rank(Φ) = N . When large numbers of features are present relative to

the signal dimension, the estimation problem is fundamentally ill-posed. A Bayesian

framework is intuitively appealing for formulating these types of problems because prior
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assumptions must be incorporated, whether explicitly or implicitly, to regularize the

solution space.

Recently, there has been a growing interest in models that employ sparse priors

to encourage solutions with mostly zero-valued coefficients. For purposes of optimiza-

tion, approximation, and inference, these models can be conveniently framed in terms of

a collection of latent variables γ , [γ1, . . . , γM ]T . The latent variables dictate the struc-

ture of the sparse prior in one of two ways. First, in the integral-type representation, the

prior is formed as a scale mixture of Gaussians via

p(w) =
M∏

i=1

p(wi), p(wi) =

∫
N (0, γi)p(γi)dγi. (V.2)

In contrast, the convex-type representation takes the form1

p(wi) = sup
γi≥0

N (0, γi)p(γi), (V.3)

whose form is rooted in convex analysis and duality theory. As shown in [70], virtually

all sparse priors of interest can be decomposed using both (V.2) and (V.3), including

the popular Laplacian, Jeffreys, Student’s t, and generalized Gaussian priors.2 The key

requirement is that p(wi) is strongly supergaussian, which requires that

p(wi) ∝ exp[−g(w2
i )], (V.4)

1Here we use a slight abuse of notation, in that p(γi) need not be a proper probability distribution.
2The convex-type representation is slightly more general than (V.2).
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with g(·) a concave and non-decreasing function.

In the context of regression and model selection, the fully Bayesian treatment

would involve integration (or maximization for the convex representation) over both

the latent variables and the unknown weights. With sparse priors, however, this is in-

tractable. Moreover, in applications where sparsity is important, often a sparse point

estimate ŵ is all that is required, rather than merely a good estimate of p(t) or the con-

ditional distribution of new data-points t∗, i.e., p(t∗|t). As such, nearly all models with

sparse priors are handled in one of two ways, both of which can be viewed as approxi-

mations to the full model.

First, the latent structure afforded by (V.2) and (V.3) offers a very convenient

means of obtaining (local) MAP estimates of w using generalized EM procedures that

iteratively solve

ŵ = arg max
w

p(t|w)p(w). (V.5)

Henceforth referred to as Type I methods, common examples include minimum `p-quasi-

norm approaches [50, 79], Jeffreys prior-based methods sometimes called FOCUSS [24,

27, 34], and algorithms for computing the basis pursuit (BP) or Lasso solution [27, 54,

79].

Secondly, instead of integrating out (or maximizing out) the hyperparameters,

Type II methods instead integrate out the unknown w and then solve

γ̂ = arg max
γ

p(γ|t) = arg max
γ

∫
p(t|w)N (0,γ)p(γ)dw. (V.6)
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Once γ̂ is obtained, a point estimate for w naturally emerges as

ŵ = E [w|t; γ̂] = Γ̂ΦT
(
λI + ΦΓ̂ΦT

)−1

t, (V.7)

where Γ , diag(γ). Relevant examples include sparse Bayesian learning (SBL) [94],

automatic relevance determination (ARD) [66], evidence maximization [86], and meth-

ods for learning overcomplete dictionaries [31]. Perhaps surprisingly, even the popular

variational mean-field approximations, which optimize a factorial posterior distribution

such that p(w,γ|t) ≈ q(w|t)q(γ|t), are equivalent to the Type II methods in the con-

text of strongly supergaussian priors [70]. A specific example of this can be found in

[5].

In applying all of these methods in practice, the performance achieving sparse

solutions can be highly varied. Results can be highly dependent on the (subjective)

parameterization used in forming the latent variables. This occurs because the decom-

position of p(w) is generally not unique. In some cases, these methods lead to identical

results, in others, they may perform poorly or even lead to provably non-sparse represen-

tations, despite their foundation on a sparse prior-based generative model. In still other

cases, they may be very successful. As such, sorting out the meaningful differences

between these methods remains an important issue.

In the past, sparse models have sometimes been justified solely based on their

ostensible affiliation with a sparse prior. However, a more thorough means of evaluation

involves looking at the actual cost function that results from various prior and modelling



114

assumptions. We would argue that models should be justified based on this lower level,

not the plausibility of the full model, which may be irrelevant and/or non-unique.

In this paper, we will begin by examining the cost functions that emerge from

all possible Type I and Type II methods, demonstrating that the former is actually a

special case of the latter, with a common underlying set of objective functions uniting

both methods. However, it still remains unclear how to reliably select from this class

of algorithms when sparsity is the foremost concern. To this effect, we postulate two

minimal conditions that ideally any sparse approximation cost function should satisfy.

We then select, out of all the possible Type I and II methods discussed above, the unique

function that satisfies these two conditions. Interestingly, both BP and SBL are special

cases. In general, we would argue that these results significantly compress the space of

‘useful’ sparse algorithms and provides a more rigorous justification for using a partic-

ular method consistent with observed empirical results. We conclude by discussing an

important distinguishing factor between candidate algorithms that suggests avenues for

improvement.

V.B A Unified Cost Function

Given the significant discrepancies between the various latent variable sparse

approximation methods, it would seem that the respective cost functions should be very

different. However, this section demonstrates that they all can be viewed as special cases

of a single underlying objective function. We start with two intermediate results before

presenting the main idea.
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Lemma 7. Given a sparse prior expressible using (V.2) or (V.3), the resulting posterior

mode over w (as is sought by Type I methods) can be obtained by minimizing the cost

function

L(I)(γ;λ, f) , tT Σ−1
t t+

M∑

i=1

f(γi) (V.8)

over the latent variables γ, where Σt , λI+ΦΓΦT and f(·) is a suitably chosen function

on [0,∞).

Proof : From basic linear algebra, we have

tT Σ−1
t t = min

w

1

λ
‖t− Φw‖2

2 +wT Γ−1w. (V.9)

The minimizing w is given by (V.7). If we choose f(γi) = −g∗
(
γ−1

i

)
, where g∗(·)

denotes the concave conjugate of g(·), then the optimization problem becomes

min
γ

L(I)(γ;λ, f) =

min
γ

min
w

1

λ
‖t− Φw‖2

2 +wT Γ−1w +
∑

i

−g∗(γ−1
i ). (V.10)

When we switch the order of minimization (allowable) and optimize over γ first, we get

min
γ
wT Γ−1w +

∑

i

−g∗(γ−1
i ) =

M∑

i=1

g(w2
i ), (V.11)

which follows from the representation (V.3) and its assumption that g(·) is concave in
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w2
i [70]. Since the posterior mode is given by the minimum of

L(I)(w;λ, f) , − log p(t|w)p(w) ≡ ‖t− Φw‖2
2 + λ

M∑

i=1

g(w2
i ), (V.12)

this completes the proof. Additionally, local minima are preserved as well, meaning

there is a one-to-one correspondence between local minima of (V.8) and local minima

of (V.12). Note that this analysis is valid even for priors constructed via the integral

representation (V.2), since such priors are a subset of those built upon (V.3). �

Lemma 8. All of the Type II methods can be obtained by minimizing the cost function

L(II)(γ;λ, f) , tT Σ−1
t t+ log |Σt| +

∑

i

f(γi). (V.13)

Proof : This result can be obtained by computing the integral in (V.6) and applying a

− log(·) transformation. The value of f(·) will depend on the prior representation that

is assumed. �

Theorem 7. Up to an inconsequential scaling factor, both the Type I and Type II cost

functions can be reduced to (V.13) with the appropriate selection of f(·).

Proof : It only remains to show that (V.8) is a special case of (V.13). This is very

straightforward because we can always reparameterize things such that the log |Σt| term
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vanishes. Let

f̄ (·) , αf [α(·)] , λ̄ , α−1λ, (V.14)

where α ≥ 0 is a constant. Note that f̄(·) represents a valid selection for either Type I

or Type II methods. Under these definitions, (V.13) can be expressed as

L(II)(γ; λ̄, f̄) = tT
(
λ̄I + ΦΓΦT

)−1
t+ log

∣∣λ̄I + ΦΓΦT
∣∣+

M∑

i=1

f̄(γi)

= tT
[
α−1

(
λI + αΦΓΦT

)]−1
t+ log

∣∣α−1
(
λI + αΦΓΦT

)∣∣

+
M∑

i=1

αf(αγi) (V.15)

≡ tT
[
λI + αΦΓΦT

]−1
t+ α−1 log

∣∣λI + αΦΓΦT
∣∣+

M∑

i=1

f(αγi)

As α becomes large, we have

L(II)(γ; λ̄, f̄) → t
[
λI + Φ (αΓ) ΦT

]−1
t+

M∑

i=1

f(αγi). (V.16)

This is equivalent to (V.8) with the exception of the scaling factor of α on γ. However,

this factor is irrelevant in that the weight estimates ŵ so obtained will be identical.

To make this explicit, let γ(I) denote a minimum to (V.8) while γ(II) is a minimum of

(V.16), where if follows that γ(I) = αγ(II). The corresponding weight estimates ŵ(I)

and ŵ(II) will be identical since

ŵ(I) = Γ(I)Φ
T
(
λI + ΦΓ(I)Φ

T
)−1

t

= αΓ(II)Φ
T
[
αλ̄I + Φ

(
αΓ(II)

)
ΦT
]−1

t
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= Γ(II)Φ
T
(
λ̄I + ΦΓ(II)Φ

T
)−1

t

= ŵ(II). (V.17)

This completes the proof. �

In summary, by choosing the appropriate sparse prior, and therefore the function f(·),

any Type I method can be reduced to a special case of Type II. As will be discussed in

Section V.E, the real distinction between the two is that Type I methods are restricted to

separable (i.e., factorial) effective priors while Type II approaches are not. Additionally,

we will drop explicit use of the subscripts (I) and (II), using L(γ;λ, f) to denote the cost

function for all methods.

V.C Minimal Performance Conditions

In the past, different methods have been justified based on the plausibility of

the full model and the full prior p(w), or in terms of how well a particular approxima-

tion resembles the full model. But this can be problematic since, as already mentioned,

sparse priors need not lead to sparsity-promoting cost functions when using Type I or

Type II methods, even when well-motivated priors are in service. As such, we base

our evaluation solely on two minimal performance criteria that we would argue a cost

function should ideally satisfy if sparsity is the overall objective. While certainly there

are different notions of sparsity, here we are concerned with cost functions that encour-

age sparsity in the `0-norm sense, meaning most weights go to exactly zero, not merely
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small values. This notion of sparsity is often crucial, because with large numbers of

features, it is very desirable for a variety of reasons that many may be pruned from the

model.

Condition 1. Every local minimum is achieved at a solution with at most N nonzero

elements.

In the noiseless case, this requirement is equivalent to stating that every local minima

is achieved at a basic feasible solution (BFS). Many of the MAP algorithms satisfy this

condition (e.g., using a generalized Gaussian prior with p ≤ 1 or a Jeffreys prior). This

ensures that an algorithm is guaranteed to prune at leastM−N unnecessary coefficients,

a minimal sparsity condition.

Condition 2. Given that t = ωφi for some ω ∈ R and unique dictionary column φi,

then there is a unique, minimizing solution characterized by ŵ = ωei, where ei is the

canonical unit vector.

This can be viewed as a minimal recoverability criteria: if a method maintains trou-

blesome local minima even when only a single, nonzero element need be found, then

serious difficulties may arise for more challenging problems. In the context of source

localization for neuroimaging, this is sufficient to ensure zero localization bias [90].
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V.D Performance Analysis

Rather than directly considering each possible sparse prior and its attendant

latent variable structure, we can instead analyze the general cost function L(γ;λ, f)

that encompasses all possibilities. This leads to a much more straightforward means

of assessing the different Type I and Type II methods. Here we will begin with the

assumption that f(·) is an arbitrary differentiable function on [0,∞). Note that there

is some indeterminacy between the specification of the prior and the cost function that

results. In other words, a given prior p(w) can be decomposed using multiple latent

parameterizations, leading to different effective values of f(·).

We begin with some preliminary definitions and results. We will say that the

function f(·) is strictly convex on some (possibly open) interval [a, b] if f (εa+ (1 − ε)b) <

εf(a)+(1−ε)f(b) for all ε ∈ (0, 1).3 Strict concavity is defined in an analogous manner.

Lemma 9. To satisfy Condition 1, f(·) must be a nondecreasing function on [0,∞).

This result is very straightforward to show.

Lemma 10. Let f(·) be strictly convex in some (possibly open) interval. Then L(γ;λ, f)

violates Condition 1.

It is not difficult to create examples that illustrate this result. In general, if a large subset

of hyperparameters maintain similar values in the specified convex region, then certain

dictionaries with redundant means of achieving nearly the same covariance Σt will lead

to locally minimizing solutions with more than N nonzero elements.

3Here we assume a slightly nonstandard (and weaker) definition of strict convexity.
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Lemma 11. Let f(·) be a strictly concave function on [0,∞). Then L(γ;λ, f) violates

Condition 2.

The proof has been deferred to Appendix V.G.1. Only the class of non-decreasing affine

functions satisfy the above three lemma, which constitute necessary conditions. For

sufficiency we have the following result:

Lemma 12. L(γ;λ, f) satisfies Conditions 1 and 2 if f(z) ∝ αz, where α ≥ 0.

See the Appendix V.G.2 for the proof. Combining all of the above, we arrive at the

following conclusion:

Theorem 8. L(γ;λ, f) satisfies Conditions 1 and 2 if and only if f(z) ∝ αz, where

α ≥ 0.

A couple of things are worth noting with respect to this result. First, the implicit prior

associated with f(z) ∝ αz depends on which representation of the latent variables is

assumed. For example, using the integral representation from (V.2) to perform MAP

estimation of γ, we find that p(w) is Laplacian, but using the convex representation

(or when using the equivalent variational Bayes formulation), p(w) becomes a kind of

Jeffreys prior-like distribution with an infinite peak at zero. Both lead to the exact same

algorithm and cost function, but a very different interpretation of the prior. In contrast,

if a Laplacian prior is decomposed using (V.3) as in done in [31], a provably non-sparse

cost function results. This underscores the difficulty in choosing a model based on the

plausibility of the starting prior rather than performance criteria directly linked to the

actual cost function that ensues.
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Secondly, both the SBL and BP cost functions can be viewed as special lim-

iting cases of L(γ;λ, f) when using f(z) = αz. SBL is obtained with α → 0, while

BP results from the assumption α → ∞, with λ → λ/α1/2. The general case is eas-

ily implemented using EM updates, where the E-step involves computing the posterior

moments

E
[
wwT |t;γ

]
= ΓΦT Σ−1

t tt
T Σ−1

t ΦΓ + Γ − ΓΦT Σ−1
t ΦΓ, (V.18)

while the M-step reduces to

γi =
−1 +

(
1 + 4αE

[
wwT |t;γ

]
ii

)1/2

2α
. (V.19)

Consistent with the above observations, when α → 0, these expressions reduce to the

exact SBL updates (EM version), while the assumptions α → ∞, with λ → λ/α1/2

produce an interior point method for computing the BP solution. For all other α, the

algorithm is very effective in empirical tests (not shown), although the optimal value is

likely application dependent.

V.E Discussion

Bayesian algorithms for promoting sparsity have been derived using a variety

of assumptions, from standard MAP estimation, to variational Bayes, to convex lower-

bounding, to evidence maximization, etc. These methods capitalize on latent structure

inherent to sparse distributions in one of two ways, leading to the distinction between

Type I and Type II methods, all of which can be optimized using a general EM frame-
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work [70]. However, despite their reliance on a sparsity-inducing prior, these approaches

may or may not actually lead to sparse representations in practice.

Rather than subjectively evaluating different methods based on the plausibility

of the particular prior or approximation strategy that is used, in this paper we have cho-

sen to take a step back and evaluate each model with respect to how well the underlying

cost function encourages sparsity. To accomplish this, we have described a general class

of objective functions that encompasses all Type I and II approaches using results from

[70]. From this family, we then demonstrated that only a single function satisfies two

broad criteria directly tied to performance in finding sparse representations. Both SBL

and BP objectives are special cases of this function. Perhaps not coincidentally then,

SBL and BP were respectively the first and second best Bayesian approaches to solving

extremely large sparse inverse problems tied to neuroelectromagnetic source imaging

using 400+ times overcomplete dictionaries [75].

A final point is worth exploring regarding the difference between Type I and

Type II approaches. In the past, Type I methods, being labelled as MAP estimates

for w, have been distinguished from Type II methods, which can be viewed as MAP

estimates for the hyperparameters γ. In specific cases, arguments have been made for

the merits of one over the other based on intuition or heuristic arguments [58, 94]. But

we would argue that this distinction is somewhat tenuous. In fact, all Type II methods

can equivalently be viewed as standard MAP estimation in w-space using the prior

p(w) ∝ exp

[
−1

2
min

γ

(
wT Γ−1w + log |Σt| +

∑

i

f(γi)

)]
. (V.20)
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Although not generally available in closed form, this prior is necessarily concave in w2

in the same sense as the priors (V.2) and (V.3). Unlike the previous prior expressions

however, (V.20) is non-separable, meaning p(w) 6= ∑
i p(wi). This we believe is the

key distinction between Type I and Type II; both are finding MAP estimates of w, but

the former is restricted to factorial priors while the latter is not (this is consistent with

the notion that Type I is a special case of Type II).

This distinction between factorial and non-factorial priors appears both in w-

space and in hyperparameter γ-space and is readily illustrated by comparing SBL and

FOCUSS in the latter. Using a determinant identity and results from Section V.B, the

SBL cost can be expressed as

LSBL(γ;λ) = tT Σ−1
t t+ log |Γ| + log

∣∣Γ−1 + λ−1ΦT Φ
∣∣

= LFOCUSS(γ;λ) + log
∣∣Γ−1 + λ−1ΦT Φ

∣∣ . (V.21)

Thus, the two cost functions differ only with respect to the non-separable log-determinant

term. In fact, it is this term that allows SBL to satisfy Condition 2 while FOCUSS does

not. Again, this reinforces the notion that cost-function-based evaluations can be more

direct and meaningful than other critiques.

These issues raise a key question. If we do not limit ourselves to separable

regularization terms (i.e., priors), then what is the optimal selection for p(w)? Perhaps

there is a better choice that does not neatly fit into current frameworks that are linked to

the Gaussian distribution. This remains an interesting area for further research.
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V.G Appendix

V.G.1 Proof of Lemma 11

Preliminaries

Assume a dictionary Φ with M > N that satisfies the URP. Condition 2 ap-

plies to the scenario where one column of Φ is proportional to t. We denote the hyper-

parameter associated with this column as γt. Let γ∗ be a hyperparameter vector such

that ‖γ∗‖0 = N and γt = 0, with w∗ = Γ
1/2
∗ (ΦΓ

1/2
∗ )†.

Define γ̃ and w̃ to be the N nonzero elements in and γ∗ and w∗ respectively,

and Φ̃ the corresponding columns of Φ. Note that this implies that w̃ = Φ̃−1t. We will

later make use of the simple inequality

tT t = w̃T Φ̃T Φ̃w̃ ≤ |w̃|T1(N×N)|w̃| =

(
N∑

i=1

|w̃i|
)2

, (V.22)
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where 1(N×N) denotes an N × N matrix of ones and the | · | is understood to apply

element-wise. Note that equality can only be achieved when every column of Φ̃ is

identical up to a factor of −1, which violates the URP assumption. However, we can

get arbitrarily close to this bound, while still satisfying the URP, by adding a small

perturbation to each column. Finally, we define

ai ,
∂f(γ)

∂γ

∣∣∣∣
γ=eγi

a0 ,
∂f(γ)

∂γ

∣∣∣∣
γ=0

. (V.23)

Sufficient Conditions for Local Minima

With a little effort, it can be shown that the following two conditions are suf-

ficient for γ∗ to be a local minimum of L(γ;λ = 0, f).

Condition (A): γ̃ is the unique minimizer of the reduced cost function

L(γ̃;λ = 0, f) , log |Γ̃| + tT
(
Φ̃Γ̃Φ̃T

)−1

t+
N∑

i=1

f(γ̃i)

=
N∑

i=1

(
log γ̃i +

w̃2
i

γ̃i

+ f(γ̃i)

)
. (V.24)

Condition (B):

∂L(γ;λ = 0, f)

∂γt

∣∣∣∣
γ=γ∗

> 0. (V.25)

This condition can be motivated as follows. If γ∗ is a local minima to L(γ;λ = 0, f),

then the gradient with respect to all zero-valued hyperparameters cannot be negative
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(as discussed in Section II.C.2 in the case where f(·) equals zero). Otherwise the cost

function can be reduced by increasing a particular hyperparameter above zero. By the

URP assumption, γt will be zero-valued when γ = γ∗, moreover, the gradient with

respect to γt will always be less than the gradient with respect to any other zero-valued

hyperparameter, so if (B) holds, no other gradients need be checked.

The proof which follows is a demonstration that these conditions, which together are

sufficient for the existence of a local minimum, can always be made to hold for f(·)

strictly concave and non-decreasing.

Satisfying Condition (A)

Using simple calculus and some algebraic manipulations, it can be shown that

if each γ̃i satisfies

γ̃i =
−1 +

√
1 + 4aiw̃2

i

2ai

, (V.26)

then γ̃ is the unique minimizer of (V.24). Note that ai is a function of w̃i. The γ̃i

that satisfies (V.26) will increase monotonically as w̃i increases, while ai will decrease

monotonically from a0 due to the assumed concavity of f(·).

Satisfying Condition (B)

(B) can be reduced to

∂L(γt;λ = 0, f)

∂γt

∣∣∣∣
γt=0

> 0, (V.27)
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where, excluding terms without γt, the relevant cost is

L(γt;λ = 0, f) , log
(
1 +

γt

tT t
β
)

+
β

1 + γt

tT t
β

+ f(γt), (V.28)

where

β ,

N∑

i=1

w̃2
i

γ̃i

=
N∑

i=1

2aiw̃
2
i

−1 +
√

1 + 4aiw̃2
i

. (V.29)

The later equality follows from satisfying (A). The required gradient can be analytically

computed leading to

β − β2 + a0t
T t > 0. (V.30)

Substituting (V.22) gives the weaker sufficient condition

β − β2 + a0

(
N∑

i=1

|w̃i|
)2

≥ 0. (V.31)

To show that there will always exist cases where (V.31) holds, we allow t, and therefore

each w̃i, to grow arbitrarily large. This permits the reduction4

β =
∑

i

a
1/2
i |w̃i| + O(1), (V.32)

which reduces (V.31) to

(
N∑

i=1

a
1/2
0 |w̃i|

)2

−
(
∑

i

a
1/2
i |w̃i|

)2

+ O

(
∑

i

a
1/2
i |w̃i|

)
> 0. (V.33)

4We assume here that ai > 0; otherwise, the condition obviously holds.
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Since f(·) is strictly concave and nondecreasing, there will always be some w̃ with

elements sufficiently large such that a0 > ai for all i. Consequently, we can ignore

the lower-order terms and satisfy the sufficient condition for some w̃ sufficiently large,

implying that there will always be cases where local minima exist using such an f(·).

V.G.2 Proof of Lemma 12

Assume f(z) = αz, with α ≥ 0. Condition 1 is satisfied as a natural con-

sequence of Theorem 2, which implicitly assumes f(z) = 0 but is easily extended to

include any concave, nondecreasing function. So the only work is to show that it also

fulfills Condition 2. For this purpose, we will assume Φ satisfies the URP; this assump-

tion can be relaxed, but it makes the presentation more straightforward.

Using the above we can assume, without loss of generality, that any local

minimum is achievable with a solution γ∗ such that ‖γ∗‖0 ≤ N . We can be more

specific; either ‖γ∗‖0 = 1 if γt is the lone nonzero hyperparameter, or ‖γ∗‖0 = N

(a non-degenerate BFS per the parlance of Section II.A). No intermediate solution is

possible. This occurs as a consequence of the URP assumption and [34, Theorem 1].

So to satisfy Condition 2, we only need show that no solutions with `0 norm equal to N

are local minima. The only remaining possibility will then represent the unique, global

minimizer, i.e., w∗ = Γ
1/2
∗
(
ΦΓ1/2

)†
= w0.

If we relax the strict inequality in (V.25) to allow for equality, then the suf-

ficiency conditions from the previous proof become necessary conditions for a local

minimum to occur at a BFS. Following the analysis from Section V.G.1 leads to the
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necessary condition

β − β2 + α

(
N∑

i=1

|w̃i|
)2

≥ 0, (V.34)

where we note that ai = a0 = α given our assumptions on f(·). Using the definition

Ci(α) ,
2|wi|α1/2

−1 +
√

1 + 4αw2
i

, (V.35)

it follows that

β =
∑

i

α1/2|wi|Ci(α) (V.36)

and therefore (V.34) becomes

∑

i

α1/2|wi|Ci(α) −
(
∑

i

α1/2|wi|Ci(α)

)2

+

(
∑

i

α1/2|wi|
)2

≥ 0. (V.37)

To check if (V.37) holds, we note that

∑

i

α1/2|wi|Ci(α) −
∑

i

αw2
iCi(α)2 +

∑

i

α|wi|2 = 0 (V.38)

and that

−
∑

i6=j

α|wi||wj|Ci(α)Ci(α) +
∑

i6=j

α|wi||wj| ≤ 0. (V.39)

The later inequality follows because Ci(α) ≥ 1, with equality only in the limit as α →

∞. Together (V.38) and (V.39) dictate that (V.37) can never be true (except in the special

case where α → 0, which will be discussed below). Since a necessary condition has

been violated, no BFS with N nonzero elements can be a local minimum. That leaves
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only the solution with ‖γ∗‖0 = 1 as the unique global minimum.

Note that (V.37) cannot hold even in the limit as α → 0. Because Φ satisfies

the URP, tT t will always be strictly less than
(∑N

i=1 |w̃i|
)2

. This fact, when propa-

gated through the various inequalities above, imply that (V.37) will even fail when α is

unbounded.



Chapter VI

Solving the Simultaneous Sparse

Approximation Problem

Given a large overcomplete dictionary of basis vectors, the goal is to simul-

taneously represent L > 1 signal vectors using coefficient expansions marked by a

common sparsity profile. This generalizes the standard sparse representation problem to

the case where multiple responses exist that were putatively generated by the same small

subset of features. Ideally, the associated sparse generating weights should be recovered,

which can have physical significance in many applications (e.g., source localization).

The generic solution to this problem is intractable and therefore approximate proce-

dures are sought. Based on the concept of automatic relevance determination (ARD),

this chapter uses an empirical Bayesian prior to estimate a convenient posterior distri-

bution over candidate basis vectors. This particular approximation enforces a common

sparsity profile and consistently places its prominent posterior mass on the appropriate

132
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region of weight-space necessary for simultaneous sparse recovery. The resultant algo-

rithm is then compared with multiple response extensions of Matching Pursuit, Basis

Pursuit, FOCUSS, and Jeffreys prior-based Bayesian methods, finding that it often out-

performs the others. Additional motivation for this particular choice of cost function is

also provided, including the analysis of global and local minima and a variational deriva-

tion that highlights the similarities and differences between the proposed algorithm and

previous approaches.

VI.A Introduction

Previous chapters have focused on what we will refer to as the single response

problem, meaning that estimation of the unknown weights wgen is based on a single

observed t. But suppose instead that multiple response vectors (e.g., t1, t2, . . . ) have

been collected from different locations or under different conditions (e.g., spatial, tem-

poral, etc.) characterized by different underlying parameter vectorsw1,w2, . . ., but with

an equivalent design matrix Φ. Assume also that while the weight amplitudes may be

changing, the indexes of the nonzero weights, or the sparsity profile, does not. In other

words, we are assuming that a common subset of basis vectors are relevant in gener-

ating each response. Such a situation arises in many diverse application domains such

as neuroelectromagnetic imaging [33, 40, 73, 74, 75], communications [12, 25], signal

processing [45, 92], and source localization [60]. Other examples that directly comply

with this formulation include compressed sensing [8, 20, 102] and landmark point selec-

tion for sparse manifold learning [91]. In all of these applications, it would be valuable
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to have a principled approach for merging the information contained in each response

so that we may uncover the underlying sparsity profile. This in turn provides a useful

mechanism for solving what is otherwise an ill-posed inverse problem.

Given L single response models of the standard form t = Φw+ε, the multiple

response model with which we are concerned becomes

T = ΦW + E , (VI.1)

where T = [t·1, . . . , t·L], and W = [w·1, . . . ,w·L]. Note that to facilitate later analysis,

we adopt the notation that x·j represents the j-th column of X while xi· represents the

i-th row of X . Likewise, xij refers the i-th element in the j-th column of X . In the

statistics literature, (VI.1) represents a multiple response model [46] or multiple output

model [38]. In accordance with our prior belief that a basis vector (and its correspond-

ing weight) that is utilized in creating one response will likely be used by another, we

assume that the weight matrix W has a minimal number of nonzero rows. The inference

goal then becomes the simultaneous approximation of each weight vectorw·j under the

assumption of a common sparsity profile.

VI.A.1 Problem Statement

To simplify matters, it is useful to introduce the notation

d(W ) ,

M∑

i=1

I [‖wi·‖ > 0] , (VI.2)
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where I[·] denotes the indicator function and ‖ · ‖ is an arbitrary vector norm. d(·) is a

row-diversity measure since it counts the number of rows inW that are not equal to zero.

This is in contrast to row sparsity, which measures the number of rows that contain all

elements strictly equal to zero. Also, for the column vectorw, it is immediately apparent

that d(w) = ‖w‖0, and so d(·) is a natural extension of the `0 quasi-norm to matrices.

The nonzero rows of any weight matrix are referred to as active sources.

To reiterate some definitions, we define the spark of a dictionary Φ as the

smallest number of linearly dependent columns [17]. By definition then, 2 ≤ spark(Φ) ≤

N+1. As a special case, the condition spark(Φ) = N+1 is equivalent to the unique rep-

resentation property from [34], which states that every subset of N columns is linearly

independent. Finally, we say that Φ is overcomplete if M > N and rank(Φ) = N .

Turning to the simultaneous sparse recovery problem, we begin with the most

straightforward case where E = 0. If Φ is overcomplete, then we are presented with

an ill-posed inverse problem unless further assumptions are made. For example, by

extending [12, Lemma 1], if a matrix of generating weights Wgen satisfies

d(Wgen) < (spark(Φ) + rank(T ) − 1) /2 ≤ (spark(Φ) + min(L, d(Wgen)) − 1) /2,

(VI.3)

then no other solution W can exist such that T = ΦW and d(W ) ≤ d(Wgen). Further-

more, if we assume suitable randomness on the nonzero entries of Wgen, then this result
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also holds under the alternative inequality

d(Wgen) < spark(Φ) − 1, (VI.4)

which follows from the analysis in Section II.B.2. Given that one or both of these

conditions hold, then recovering Wgen is tantamount to solving

Wgen = W0 , arg min
W

d(W ), s.t. T = ΦW. (VI.5)

In general, this problem is NP-hard so approximate procedures are in order. In Section

VI.E.1 we will examine the solution of (VI.5) in further detail. The single response

(L = 1) reduction of (VI.5) has been studied exhaustively [17, 29, 35, 95]. For the

remainder of this paper, whenever E = 0, we will assume that Wgen satisfies (VI.3) or

(VI.4), and so W0 and Wgen can be used interchangeably.

When E 6= 0, things are decidedly more nebulous. Because noise is present,

we typically do not expect to represent T exactly, suggesting the relaxed optimization

problem

W0(λ) , arg min
W

‖T − ΦW‖2
F + λd(W ), (VI.6)

where λ is a trade-off parameter balancing estimation quality with row sparsity. An

essential feature of using d(W ) as the regularization term is that whenever a single

element in a given row of W is nonzero, there is no further penalty in making other

elements in the same row nonzero, promoting a common sparsity profile as desired. Un-
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fortunately, solving (VI.6) is also NP-hard, nor is it clear how to select λ. Furthermore,

there is no guarantee that the global solution, even if available for the optimal value of

λ, is necessarily the best estimator of Wgen, or perhaps more importantly, is the most

likely to at least have a matching sparsity profile. This latter condition is often crucial,

since it dictates which columns of Φ are relevant, a notion that can often have physical

significance.1

From a conceptual standpoint, (VI.6) can be recast in Bayesian terms by ap-

plying a exp[−(·)] transformation. This leads to a Gaussian likelihood function p(T |W )

with λ-dependent variance and a prior distribution given by p(W ) ∝ exp [−d(W )]. In

weight space, this improper prior maintains a sharp peak wherever a row norm equals

zero and heavy (in fact uniform) ‘tails’ everywhere else. The optimization problem from

(VI.6) can equivalently be written as

W0(λ) ≡ arg max
W

p(T |W )p(W ) = arg max
W

p(T |W )p(W )

p(T )
= arg max

W
p(W |T )

(VI.7)

Therefore, (VI.6) can be viewed as a challenging MAP estimation task, with a posterior

characterized by numerous locally optimal solutions.

VI.A.2 Summary

In Section VI.B, we discuss current methods for solving the simultaneous

sparse approximation problem, all of which can be understood, either implicity or ex-

1Although not our focus, if the ultimate goal is compression of T , then the solution of (VI.6) may trump other
concerns.
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plicitly, as MAP-estimation procedures using a prior that encourages row sparsity. These

methods are distinguished by the selection of the sparsity-inducing prior and the opti-

mization strategy used to search for the posterior mode. The difficulty with these pro-

cedures is two-fold: either the prior is not sufficiently sparsity-inducing (supergaussian)

and the MAP estimates sometimes fail to be sparse enough, or we must deal with a

combinatorial number of suboptimal local solutions.

In this paper, we will also explore a Bayesian model based on a prior that

ultimately encourages sparsity. However, rather than embarking on a problematic mode-

finding expedition, we instead enlist an empirical Bayesian strategy that draws on the

concept of automatic relevance determination (ARD) [57, 66]. Starting in Section VI.C,

we posit a prior distribution modulated by a vector of hyperparameters controlling the

prior variance of each row of W , the values of which are learned from the data using

an evidence maximization procedure [56]. This particular approximation enforces a

common sparsity profile and consistently places its prominent posterior mass on the

appropriate region of W -space necessary for sparse recovery. The resultant algorithm is

called M-SBL because it can be posed as a multiple response extension of the standard

sparse Bayesian learning (SBL) paradigm [94], a more descriptive title than ARD for

our purposes. Additionally, it is easily extensible to the complex domain as required in

many source localization problems. The per-iteration complexity relative to the other

algorithms is also considered.

In Section VI.D, we assess M-SBL relative to other methods using empirical

tests. First, we constrain the columns of Φ to be uniformly distributed on the surface of
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anN -dimensional hypersphere, consistent with the analysis in [18] and the requirements

of compressed sensing applications [102]. In a variety of testing scenarios, we show that

M-SBL outperforms other methods by a significant margin. These results also hold up

when Φ is instead formed by concatenating pairs of orthobases [16].

In Section VI.E, we examine some properties of M-SBL and draw compar-

isons with the other methods. First, we discuss how the correlation between the active

sources affects the simultaneous sparse approximation problem. For example, we show

that if the active sources maintain zero sample correlation, then all (sub-optimal) lo-

cal minima are removed and we are guaranteed to solve (VI.5) using M-SBL. We later

show that none of the other algorithms satisfy this condition. In a more restricted setting

(assuming ΦT Φ = I), we also tackle related issues with the inclusion of noise, demon-

strating that M-SBL can be viewed as a form of robust, sparse shrinkage operator, with

no local minima, that uses an average across responses to modulate the shrinkage mech-

anism.

Next we present an alternative derivation of M-SBL using variational methods

that elucidates its connection with MAP-based algorithms and helps to explain its su-

perior performance. More importantly, this perspective quantifies the means by which

ARD methods are able to capture significant posterior mass when sparse priors are in-

volved. The methodology is based on the variational perspective of Chapter IV that

applies to the single response (L = 1) case. Finally, Section VI.F contains concluding

remarks as well as a brief discussion of recent results applying M-SBL to large-scale

neuroimaging applications.
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VI.B Existing MAP Approaches

The simultaneous sparse approximation problem has received a lot of attention

recently and several computationally feasible methods have been presented for estimat-

ing the sparse, underlying weights [9, 12, 60, 77, 81, 98, 97]. First, there are forward

sequential selection methods based on some flavor of Matching Pursuit (MP) [61]. As

the name implies, these approaches involve the sequential (and greedy) construction of

a small collection of dictionary columns, with each new addition being ‘matched’ to the

current residual. In this paper, we will consider M-OMP, for Multiple response model

Orthogonal Matching Pursuit, a multiple response variant of MP that can be viewed as

finding a local minimum to (VI.6) [12]. A similar algorithm is analyzed in [97].

An alternative strategy is to replace the troublesome diversity measure d(W )

with a penalty (or prior) that, while still encouraging row sparsity, is somehow more

computationally convenient. The first algorithm in this category is a natural extension

of Basis Pursuit [10] or the LASSO [38]. Essentially, we construct a convex relaxation

of (VI.6) and attempt to solve

WM-BP = arg min
W

‖T − ΦW‖2
F + λ

M∑

i=1

‖wi·‖2. (VI.8)

This convex cost function can be globally minimized using a variety of standard opti-

mization packages. In keeping with a Bayesian perspective, (VI.8) is equivalent to MAP

estimation using a Laplacian prior on the `2 norm of each row (after applying a exp[−(·)]

transformation as before). We will refer to procedures that solve (VI.8) as M-BP, con-
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sistent with previous notation. The properties of the M-BP cost function and algorithms

for its minimization have been explored in [12, 60]. Other variants involve replacing the

row-wise `2 norm with the `∞ norm [98, 99] and the `1 norm [9]. However, when the `1

norm is used across rows, the problem decouples and we are left with L single response

problems. As such, this method is inconsistent with our goal of simultaneously using

all responses to encourage row sparsity.

Secondly, we consider what may be termed the M-Jeffreys algorithm, where

the `1-norm-based penalty from above is substituted with a regularization term based on

the negative logarithm of a Jeffreys prior on the row norms.2 The optimization problem

then becomes

WM-Jeffreys = arg min
W

‖T − ΦW‖2
F + λ

M∑

i=1

log ‖wi·‖2. (VI.9)

The M-Jeffreys cost function suffers from numerous local minima, but when given a

sufficiently good initialization, can potentially find solutions that are closer to Wgen than

WM-BP. From an implementational standpoint, M-Jeffreys can be solved using natural,

multiple response extensions of the algorithms derived in [27, 34].

Thirdly, we weigh in the M-FOCUSS algorithm derived in [12, 77, 81] based

on the generalized FOCUSS algorithm of [79]. This approach employs an `p-norm-like

diversity measure [14], where p ∈ [0, 1] is a user-defined parameter, to discourage mod-

els with many nonzero rows. In the context of MAP estimation, this method can be

2The Jeffreys prior is an improper prior of the form p(x) = 1/x [4].



142

derived using a generalized Gaussian prior on the row norms, analogous to the Lapla-

cian and Jeffreys priors assumed above. The M-FOCUSS update rule is guaranteed to

converge monotonically to a local minimum of

WM-FOCUSS = arg min
W

‖T − ΦW‖2
F + λ

M∑

i=1

(‖wi·‖2)
p . (VI.10)

If p → 0, the M-FOCUSS cost function approaches (VI.6). While this may appear

promising, the resultant update rule in this situation ensures (for any finite λ) that the

algorithm converges (almost surely) to a locally minimizing solution W ′ such that T =

ΦW ′ and d(W ′) ≤ N , regardless of λ. The set of initial conditions whereby we will

actually converge to W0(λ) has measure zero. When p = 1, M-FOCUSS reduces to an

interior point method of implementing M-BP. The M-FOCUSS framework also includes

M-Jeffreys as a special case as shown in Appendix VI.H.1. In practice, it is sometimes

possible to jointly select values of p and λ such that the algorithm outperforms both M-

BP and M-Jeffreys. In general though, with M-BP, M-Jeffreys, and M-FOCUSS, λmust

be tuned with regard to a particular application. Also, in the limit as λ becomes small,

we can view each multiple response algorithm as minimizing the respective diversity

measure subject to the constraint T = ΦW . This is in direct analogy to (VI.5).

VI.C An Empirical Bayesian Algorithm

All of the methods discussed in the previous section for estimating Wgen in-

volve searching some implicit posterior distribution for the mode by solving arg maxW p(W,T ) =
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arg maxW p(T |W )p(W ), where p(W ) is a fixed, algorithm-dependent prior. At least

two significant problems arise with such an endeavor. First, if only a moderately sparse

prior such as the Laplacian is chosen for the row norms (as with M-BP), a unimodal

posterior results and mode-finding is greatly simplified; however, the resultant posterior

mode may not be sufficiently sparse, and therefore WM-BP may be unrepresentative of

Wgen. In contrast, if a highly sparse prior is chosen, e.g., the Jeffreys prior or a gener-

alized Gaussian with p � 1, we experience a combinatorial increase in local optima.

While one or more of these optima may be sufficiently sparse and representative ofWgen,

finding it can be very difficult if not impossible.

So mode-finding can be a problematic exercise when sparse priors are in-

volved. In this section, a different route to solving the simultaneous sparse approxi-

mation problem is developed using the concept of automatic relevance determination

(ARD), originally proposed in the neural network literature as a quantitative means of

weighing the relative importance of network inputs, many of which may be irrelevant

[57, 66]. These ideas have also been applied to Bayesian kernel machines [94]. A key

ingredient of this formulation is the incorporation of an empirical prior, by which we

mean a flexible prior distribution dependent on a set of unknown hyperparameters that

must be estimated from the data.

To begin, we postulate p(T |W ) to be Gaussian with noise variance λ that is

assumed to be known (the case where λ is not known is discussed briefly in Section
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VIII.A). Thus, for each t·j , w·j pair, we have,

p(t·j|w·j) = (2πλ)−N/2 exp

(
− 1

2λ
‖t·j − Φw·j‖2

2

)
, (VI.11)

which is consistent with the likelihood model implied by (VI.6) and previous Bayesian

methods. Next, application of ARD involves assigning to the i-th row of W an L-

dimensional Gaussian prior:

p(wi·; γi) , N (0, γiI) , (VI.12)

where γi is an unknown variance parameter. By combining each of these row priors, we

arrive at a full weight prior

p(W ;γ) =
M∏

i=1

p(wi·; γi), (VI.13)

whose form is modulated by the hyperparameter vector γ = [γ1, . . . , γM ]T ∈ R
M
+ .

Combining likelihood and prior, the posterior density of the j-th column of W then

becomes

p(w·j|t·j;γ) =
p(w·j, t·j;γ)∫
p(w·j, t·j;γ)dw·j

= N (µ·j,Σ), (VI.14)
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with mean and covariance given by

Σ , Cov[w·j|t·j;γ] = Γ − ΓΦT Σ−1
t ΦΓ, ∀j = 1, . . . , L,

M = [µ·1, . . . ,µ·L] , E[W |T ;γ] = ΓΦT Σ−1
t T, (VI.15)

where Γ , diag(γ) and Σt , λI + ΦΓΦT .

Since it is typically desirable to have a point estimate for Wgen, we may enlist

M, the posterior mean, for this purpose. Row sparsity is naturally achieved whenever

a γi is equal to zero. This forces the posterior to satisfy Prob(wi· = 0|T ; γi = 0) = 1,

ensuring that the posterior mean of the i-th row, µi·, will be zero as desired. Thus, esti-

mating the sparsity profile of some Wgen is conveniently shifted to estimating a hyperpa-

rameter vector with the correct number and location of nonzero elements. The latter can

be effectively accomplished through an iterative process discussed next. Later, Sections

VI.D and VI.E provide empirical and analytical support for this claim.

VI.C.1 Hyperparameter Estimation: The M-SBL Algorithm

Each unique value for the hyperparameter vector γ corresponds to a different

hypothesis for the prior distribution underlying the generation of the data T . As such,

determining an appropriate γ is tantamount to a form of model selection. In this context,

the empirical Bayesian strategy for performing this task is to treat the unknown weights

W as nuisance parameters and integrate them out [56]. The marginal likelihood that
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results is then maximized with respect to γ, leading to the ARD-based cost function

L(γ) , −2 log

∫
p(T |W )p(W ;γ)dW

= −2 log p (T ;γ)

≡ L log |Σt| +
L∑

j=1

tT·jΣ
−1
t t·j, (VI.16)

where a −2 log(·) transformation has been added for simplicity.

The use of marginalization for hyperparameter optimization in this fashion

has been proposed in a variety of contexts. In the classical statistics literature, it has

been motivated as a way of compensating for the loss of degrees of freedom associated

with estimating covariance components along with unknown weights analogous to W

[36, 37]. Bayesian practitioners have also proposed this idea as a natural means of incor-

porating the principle of Occam’s razor into model selection, often using the description

evidence maximization or type-II maximum likelihood to describe the optimization pro-

cess [4, 56, 66].

There are (at least) two ways to minimize L(γ) with respect to γ. (Section

VII.B.1 briefly discusses additional possibilities.) First, treating the unknown weights

W as hidden data, we can minimize this expression over γ using a simple EM algo-

rithm as proposed in [13, 37] for covariance estimation. For the E-step, this requires

computation of the posterior moments using (VI.15), while the M-step is expressed via

the update rule

γ
(new)
i =

1

L
‖µi·‖2

2 + Σii, ∀i = 1, . . . ,M. (VI.17)
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While benefitting from the general convergence properties of the EM algorithm, we have

observed this update rule to be very slow on large practical applications.

Secondly, at the expense of proven convergence, we may instead optimize

(VI.16) by taking the derivative with respect to γ, equating to zero, and forming a fixed-

point equation that typically leads to faster convergence [56, 94]. Effectively, this in-

volves replacing the M-step from above with

γ
(new)
i =

1
L
‖µi·‖2

2

1 − γ−1
i Σii

, ∀i = 1, . . . ,M. (VI.18)

We have found this alternative update rule to be extremely useful in large-scale, highly

overcomplete problems, although the results upon convergence are sometimes inferior

to those obtained using the slower update (VI.17). In the context of kernel regression

using a complete dictionary (meaning N = M ) and L = 1, use of (VI.18), along with a

modified form of (VI.15),3 has been empirically shown to drive many hyperparameters

to zero, allowing the associated weights to be pruned. As such, this process has been

referred to as sparse Bayesian learning (SBL) [94]. Similar update rules have also been

effectively applied to an energy prediction competition under the guise of ARD [57].

For application to the simultaneous sparse approximation problem, we choose the label

M-SBL (which stresses sparsity) to refer to the process of estimating γ, using either the

EM or fixed-point update rules, as well as the subsequent computation and use of the

resulting posterior.

3This requires application of the matrix inversion lemma to Σ−1
t .
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Finally, in the event that we would like to find exact (noise-free) sparse rep-

resentations, the M-SBL iterations can be easily adapted to handle the limit as λ → 0

using the modified moments

Σ =
[
I − Γ1/2

(
ΦΓ1/2

)†
Φ
]
Γ, M = Γ1/2

(
ΦΓ1/2

)†
T, (VI.19)

where (·)† denotes the Moore-Penrose pseudo-inverse. This is particularly useful if we

wish to solve (VI.5).

VI.C.2 Algorithm Summary

Given observation data T and a dictionary Φ, the M-SBL procedure can be

summarized by the following collection of steps:

1. Initialize γ, e.g., γ := 1 or perhaps a non-negative random initialization.

2. Compute the posterior moments Σ and M using (VI.15), or in the noiseless case,

using (VI.19).

3. Update γ using the EM rule (VI.17) or the faster fixed-point rule (VI.18).

4. Iterate Steps 2 and 3 until convergence to a fixed point γ∗.

5. Assuming a point estimate is desired for the unknown weightsWgen, chooseWM-SBL =

M∗ ≈ Wgen, where M∗ , E[W |T ;γ∗].

6. Given that γ∗ is sparse, the resultant estimator M∗ will necessarily be row sparse.
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In practice, some arbitrarily small threshold can be set such that, when any hyperparam-

eter becomes sufficiently small (e.g., 10−16), it is pruned from the model (along with the

corresponding dictionary column and row of W ).

VI.C.3 Extension to the Complex Case

The use of complex-valued dictionaries, responses, and weights expands the

relevance of the multiple response framework to many useful signal processing disci-

plines. Fortunately, this extension turns out to be very natural and straightforward. We

start by replacing the likelihood model for each t·j with a multivariate complex Gaussian

distribution [49]

p(t·j|w·j) = (πλ)−N exp

(
−1

λ
‖t·j − Φw·j‖2

2

)
, (VI.20)

where all quantities except λ are now complex and ‖x‖2
2 now implies xHx, with (·)H

denoting the Hermitian transpose. The row priors p(wi·;H) need not change at all

except for the associated norm. The derivation proceeds as before, leading to identical

update rules with the exception of (·)T changing to (·)H .

The resultant algorithm turns out to be quite useful in finding sparse represen-

tations of complex-valued signals, such as those that arise in the context of direction-

of-arrival (DOA) estimation. Here we are given an array of N omnidirectional sensors

and a collection of D complex signal waves impinging upon them. The goal is then

to estimate the (angular) direction of the wave sources with respect to the array. This
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source localization problem is germane to many sonar and radar applications . While

we have successfully applied complex M-SBL to DOA estimation problems, space pre-

cludes a detailed account of this application and comparative results. See [60] for a

good description of the DOA problem and its solution using a second-order cone (SOC)

implementation of M-BP. M-SBL is applied in exactly the same fashion.

VI.C.4 Complexity

With regard to computational comparisons, we assume N ≤ M . Under this

constraint, each M-SBL iteration is O(N 2M) for real or complex data. The absence of L

in this expression can be obtained using the following implementation. Because the M-

SBL update rules and cost function are ultimately only dependent on T through the outer

product TT T , we can always replace T with a matrix T̃ ∈ R
N×rank(T ) such that T̃ T̃ T =

TT T . Substituting T̃ into the M-SBL update rules, while avoiding the computation of

off-diagonal elements of Σ, leads to the stated complexity result. In a similar fashion,

each M-BP, M-FOCUSS, and M-Jeffreys iteration can also be computed in O(N 2M).

This is significant because little price is paid for adding additional responses and only a

linear penalty is incurred when adding basis vectors.

In contrast, the second-order cone (SOC) implementation of M-BP [60] is

O (M 3L3) per iteration. While the effective value of L can be reduced (beyond what we

described above) using various heuristic strategies, unlike M-SBL and other approaches,

it will still enter as a multiplicative cubic factor. This could be prohibitively expensive

if M is large, although fewer total iterations are usually possible. Nonetheless, in neu-
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roimaging applications, we can easily have N ≈ 200, L ≈ 100, and M ≈ 100,000. In

this situation, the M-SBL (or M-FOCUSS, etc.) iterations are very attractive. Of course

M-OMP is decidedly less costly than all of these methods.

VI.D Empirical Studies

This section presents comparative Monte Carlo experiments involving ran-

domized dictionaries and pairs of orthobases.

VI.D.1 Random Dictionaries

We would like to quantify the performance of M-SBL relative to other meth-

ods in recovering sparse sets of generating weights, which in many applications have

physical significance (e.g., source localization). To accommodate this objective, we

performed a series of simulation trials where by design we have access to the sparse,

underlying model coefficients. For simplicity, noiseless tests were performed first (i.e.,

solving (VI.5)); this facilitates direct comparisons because discrepancies in results can-

not be attributed to poor selection of trade-off parameters (which balance sparsity and

quality of fit) in the case of most algorithms.

Each trial consisted of the following: First, an overcomplete N ×M dictio-

nary Φ is created with columns draw uniformly from the surface of a unit hypersphere.

This particular mechanism for generating dictionaries is advocated in [18] as a useful

benchmark. Additionally, it is exactly what is required in compressed sensing applica-

tions [102]. L sparse weight vectors are randomly generated withD nonzero entries and
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a common sparsity profile. Nonzero amplitudes are drawn from a uniform distribution.

Response values are then computed as T = ΦWgen. Each algorithm is presented with

T and Φ and attempts to estimate Wgen. For all methods, we can compare Wgen with Ŵ

after each trial to see if the sparse generating weights have been recovered.

Under the conditions set forth for the generation of Φ and T , spark(Φ) = N+1

and (VI.4) is in force. Therefore, we can be sure that Wgen = W0 with probability one.

Additionally, we can be certain that when an algorithm fails to find Wgen, it has not been

lured astray by an even sparser representation. Results are shown in Figure VI.1 as L,

D, and M are varied. To create each data point, we ran 1000 independent trials and

compared the number of times each algorithm failed to recover Wgen. Based on the fig-

ures, M-SBL (a) performs better for different values of L, (b) resolves a higher number

of nonzero rows, and (c) is more capable of handling added dictionary redundancy.

We also performed analogous tests with the inclusion of noise. Specifically,

uncorrelated Gaussian noise was added to produce an SNR of 10dB. When noise is

present, we do not expect to reproduce T exactly, so we now classify a trial as successful

if the D largest estimated row-norms align with the sparsity profile of Wgen. Figure

VI.1(d) displays sparse recovery results as the trade-off parameter for each algorithm is

varied. The performance gap between M-SBL and the others is reduced when noise is

included. This is because now the issue is not so much local minima avoidance, etc.,

since D is relatively low relative to N and M , but rather proximity to the fundamental

limits of how many nonzero rows can reliably be detected in the presence of noise.4 For

4Most of the theoretical study of approximate sparse representations in noise has focused on when a simpler
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example, even an exhaustive search for the optimal solution to (VI.6) over all λ would

likely exhibit similar performance to M-SBL in this situation.
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Figure VI.1: Results comparing the empirical probability (over 1000 trials) that each
algorithm fails to find the sparse generating weights under various testing conditions.
Plots (a), (b), and (c) display results as L, D and M are varied under noiseless con-
ditions. Plot (d) shows results with 10dB AGWN for different values of the trade-off
parameter λ.

In fact, for sufficiently small values of N and M , we can test this hypothesis

directly. Using N = 8, M = 16, and D = 3, we reproduced Figure VI.1(d) with the

inclusion of the the global solution to (VI.6) for different values of λ. The exhaustive

search failed to locate the correct sparsity profile with an empirical probability similar

method, e.g., BP- or OMP-based, is guaranteed to provide a good solution to (VI.6), or at least exhibit a similar
sparsity profile. Currently, we know of no work that examines rigorous conditions whereby the minimum of (VI.6) or
any of the other proposed cost functions is guaranteed to match the sparsity profile of Wgen. When there is no noise,
this distinction effectively disappears.
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to M-SBL (about 0.10 using λopt), underscoring the overall difficulty of finding sparse

generating weights in noisy environments.5 Moreover, it demonstrates that, unlike in

the noise-free case, the NP-hard optimization problem of (VI.6) is not necessarily guar-

anteed to be the most desirable solution even if computational resources are abundant.

VI.D.2 Pairs of Orthobases

Even if M-SBL seems to perform best on “most" dictionaries relative to a

uniform measure, it is well known that many signal processing applications are based

on sets of highly structured dictionaries that may have zero measure on the unit hyper-

sphere. Although it is not feasible to examine all such scenarios, we have performed

an analysis similar to the preceding section using dictionaries formed by concatenating

two orthobases, i.e., Φ = [Θ,Ψ], where Θ and Ψ represent N × N orthonormal bases.

Candidates for Θ and Ψ include Hadamard-Walsh functions, DCT bases, identity ma-

trices, and Karhunen-Loève expansions among many others. The idea is that, while a

signal may not be compactly represented using a single orthobasis as in standard Fourier

analysis, it may become feasible after we concatenate two such dictionaries. For exam-

ple, a sinusoid with a few random spikes would be amenable to such a representation.

Additionally, much attention is placed on such dictionaries in the signal processing and

information theory communities [17, 16].

For comparison purposes, T and Wgen were generated in an identical fashion

as before. Θ was set to the identity matrix and Ψ was selected to be either a DCT or

5With no noise and D increased to 7, exhaustive subset selection yields zero error (with any λ � 1) as expected
while M-SBL fails with probability 0.24. So a high noise level is a significant performance equalizer.
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a Hadamard basis (other examples have been explored as well). Results are displayed

in Figure VI.2, strengthening our premise that M-SBL represents a viable alternative

regardless of the dictionary type. Also, while in this situation we cannot a priori guar-

antee absolutely that Wgen = W0, in all cases where an algorithm failed, it converged to

a solution with d(Ŵ ) > d(Wgen).
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Figure VI.2: Results using pairs of orthobases with L = 3 and N = 24 while D is
varied from 10 to 20. Left: Θ is an identity matrix and Ψ is an N -dimensional DCT.
Right: Θ is again identity and Ψ is a Hadamard matrix.

VI.E Analysis

This section analyzes some of the properties of M-SBL and where possible,

discusses relationships with other multiple response algorithms.

VI.E.1 Multiple Responses and Maximally Sparse Representations: Noiseless Case

Increasing the number of responses L has two primary benefits when using

M-SBL. First, and not surprisingly, it mitigates the effects of noise as will be discussed

more in Section VI.E.3. But there is also a less transparent benefit, which is equally
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important and applies even in the absence of noise: Increasing L can facilitate the avoid-

ance of suboptimal, locally minimizing solutions. Or stated differently, increasing the

number of responses increases the likelihood that M-SBL will converge to the global

minimum of L(γ). This is important because, under very reasonable conditions, this

global minimum is characterized by M∗ = W0 when E = 0 and λ→ 0. This result fol-

lows from Theorem 1, which applies to the L = 1 case but is easily generalized. So the

globally minimizing M-SBL hyperparameters are guaranteed to produce the maximally

sparse representation, and increasingL improves the chances that these hyperparameters

are found.

Of course the merits of increasing L, in the absence of noise, are highly depen-

dent on how the active sources (the nonzero rows of W0) are distributed. For example,

suppose these sources are perfectly correlated, meaning that W0 can be written as the

outer-product abT for some vectors a and b. In this situation, the problem can be re-

duced to an equivalent, single response problem with t = Φa‖b‖2, indicating that there

is no benefit to including additional responses (i.e., the local minima profile of the cost

function does not change with increasing L).

In contrast, as the (sample) correlation between active sources is reduced, the

probability that M-SBL becomes locally trapped falls off dramatically as evidenced by

empirical studies. This begs the question, is there any situation where we are guaran-

teed to reach the global minimum, without ever getting stuck at suboptimal solutions?

This is tantamount to finding conditions under which M-SBL will always produce the

maximally sparse solution W0, the solution to (VI.5).
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To address this issue, we consider the fixed points of the M-SBL iterations

using the modified moments from (VI.19). Of particular interest is the set of stable fixed

points because they must necessarily be local minima to the M-SBL cost function by

virtue of the convergence properties of the EM algorithm.6 We now establish conditions

whereby a unique stable fixed point exists that is also guaranteed to solve (VI.5).

Theorem 9. Given a dictionary Φ and a set of responses T , assume that d(W0) <

spark(Φ) − 1 ≤ N . Then if the nonzero rows of W0 are orthogonal (no sample-wise

correlation), there exists a unique, stable fixed point γ∗. Additionally, at this stable fixed

point, we have

M∗ = E [W |T ;γ∗] = Γ∗1/2
(
ΦΓ∗1/2

)†
T = W0, (VI.21)

the maximally sparse solution. All other fixed points are unstable.

See Appendix VI.H.2 for the proof.

Because only highly nuanced initializations will lead to an unstable fixed point

(and small perturbations lead to escape), this result dictates conditions whereby M-SBL

is guaranteed to solve (VI.5), and therefore find Wgen, assuming condition (VI.3) or

(VI.4) holds. Moreover, even if a non-EM-based optimization procedure is used, the M-

SBL cost function itself must be unimodal (although not necessarily convex) to satisfy

Theorem 9.

Admittedly, the required conditions for Theorem 9 to apply are highly ideal-

6The EM algorithm ensures monotonic convergence (or cost function decrease) to some fixed point. Therefore,
a stable fixed point must also be a local minimum, otherwise initializing at an appropriately perturbed solution will
lead to a different fixed point.
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Table VI.1: Verification of Theorem 9 with N = 5, M = 50, D = L = 4. Φ is
generated as in Section VI.D.1, while Wgen is generated with orthogonal active sources.
All error rates are based on 1000 independent trials.

M-OMP M-Jeffreys M-FOCUSS M-BP M-SBL
(p = 0.8)

ERROR RATE 1.000 0.471 0.371 0.356 0.000

ized. Nonetheless, this result is interesting to the extent that it elucidates the behavior

of M-SBL and distinguishes its performance from the other methods. Specifically, it

encapsulates the intuitive notion that if each active source is sufficiently diverse (or un-

correlated), then we will find W0. Perhaps more importantly, no equivalent theorem

exists for any of the other multiple response methods mentioned in Section VI.B. Con-

sequently, they will break down even with perfectly uncorrelated sources, a fact that

we have verified experimentally using Monte Carlo simulations analogous to those in

Section VI.D.1. Table VI.1 displays these results. As expected, M-SBL has zero errors

while the others are often subject to failure (convergence to suboptimal yet stable fixed

points).

In any event, the noiseless theoretical analysis of sparse learning algorithms

has become a very prolific field of late, where the goal is to establish sufficient conditions

whereby a particular algorithm will always recover the maximally sparse solution [18,

17, 29, 35, 95]. Previous results of this sort have all benefitted from the substantial

simplicity afforded by either straightforward, greedy update rules (MP-based methods)

or a manageable, convex cost function (BP-based methods). In contrast, the highly



159

complex update rules and associated non-convex cost function under consideration here

are decidedly more difficult to analyze. As such, evidence showing that good, fully

sparse solutions can be achieved using ARD has typically relied on empirical results

or heuristic arguments [57, 66, 94]. Here we have tried to make some progress in this

regard.

And while Theorem 9 provides a limited sufficient condition for establishing

equivalence between a unique, stable fixed point and W0, it is by no means necessary.

For example, because the sparse Bayesian learning framework is still quite robust in

the L = 1 regime as shown in previous chapters, we typically experience a smooth

degradation in performance as the inter-source correlation increases. Likewise, when

d(W0) > L or when noise is present, M-SBL remains highly effective as was shown in

Section VI.D.

VI.E.2 Geometric Interpretation

As discussed above, a significant utility of simultaneously incorporating mul-

tiple responses is the increased probability that we avoid suboptimal extrema, a benefit

which exists in addition to any improvement in the effective SNR (see Section VI.E.3

below). The following simple example serves to illustrate how this happens geomet-

rically from a Gaussian process perspective [82]. In [94], such a perspective is also

considered, but only to heuristically argue why standard SBL may sometimes produce

sparse representations in practice; there is no connection made to the geometry of lo-

cally minimizing solutions. In contrast, here the goal is to illustrate how a local minima
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that exists when L = 1 can be removed when L = 2 or higher.

Suppose we have a single response vector t ∈ R
3 as well as a dictionary of

five candidate basis vectors Φ = [φ·1, . . . ,φ·5]. In minimizing the SBL cost function,

we are linearly combining basis vectors to form a distribution that aligns itself with t.

As discussed in [94], SBL manipulates the covariance Σt of the Gaussian distribution

p(t;γ) anchored at mean zero to maximize the likelihood of t. In our simplified situation

(and assuming λ = 0), we can express this covariance as

Σt = ΦΓΦT =
5∑

j=1

γjφ·jφ
T
·j, (VI.22)

where increasing a particular γj causes the covariance to bulge out along the direction

of the corresponding φ·j . Figure VI.3 depicts a scenario where the global minimum

occurs with only γ4, γ5 > 0 whereas a suboptimal local minimum occurs with only

γ1, γ2, γ3 > 0. For convenience and ease of illustration, we have assumed that all vectors

(basis and response) have been normalized to lie on the surface of a unit sphere in 3D

and that there is no noise present. In (a), each dot labelled from 1 to 5 represents a

single basis vector on the surface of this sphere while the star likewise represents t. The

ellipse represents a 95% confidence region for a hypothetical covariance Σt using only

basis vectors 1, 2, and 3 (i.e., γ1, γ2, γ3 > 0 while γ4 = γ5 = 0). Note that the smaller

the ellipse, the higher the concentration of probability mass and the more probable any

t found within.

To see why (a) necessarily represents a local minimum, consider slowly in-
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creasing γ4 and/or γ5 while concurrently reducing γ1, γ2, and/or γ3. This situation is

represented in (b) where the confidence region is forced to expand, decreasing the prob-

ability density at t. However, if we continue this process sufficiently far, we achieve the

situation in (c), where we are close to the global minimum with only γ4 and γ5 signif-

icantly greater than zero. This latter solution places an extremely high density (in fact

infinite) on t since t is essentially in the span of these two basis vectors alone. Intu-

itively, the local minimum occurs because we have a set of three basis vectors defining

an ellipsoid with a sharp major axis that is roughly orthogonal to the plane defined by

φ·4 and φ·5 (i.e., compare (a) and (c)).

Figure VI.3: 3D example of local minimum occurring with a single response vector t.
(a): 95% confidence region for Σt using only basis vectors 1, 2, and 3 (i.e., there is a
hypothesized 95% chance that twill lie within this region). (b): Expansion of confidence
region as we allow contributions from basis vectors 4 and 5. (c): 95% confidence region
for Σt using only basis vectors 4 and 5. The probability density at t is high in (a) and
(c) but low in (b).

Figure VI.4 illustrates how the existence of multiple response vectors can re-

duce the possibility of such local minima. Here we have repeated the above analysis

with the inclusion of two response vectors t·1 and t·2 that are both in the span of φ·4 and
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φ·5 (we note that this is consistent with our assumption that each model should have the

same sparsity profile). In assessing local minima, we must now consider the joint prob-

ability density of T = [t·1, t·2], i.e., both t·1 and t·2 must reside in areas of significant

density. Therefore in (a), although t·1 is in a region of significant density, t·2 is not and

consequently, the likelihood of T increases from (a) to (b) and (b) to (c). In effect, the

inclusion of the additional response has removed the local minimum that existed before.

Figure VI.4: 3D example with two response vectors t·1 and t·2. (a): 95% confidence
region for Σt using only basis vectors 1, 2, and 3. (b): Expansion of confidence region
as we allow contributions from basis vectors 4 and 5. (c): 95% confidence region for Σt

using only basis vectors 4 and 5. The probability of T = [t·1, t·2] is very low in (a) since
t·2 lies outside the ellipsoid but higher in (b) and highest in (c). Thus, configuration (a)
no longer represents a local minimum.

VI.E.3 Extensions to the Noisy Case

We now briefly address the more realistic scenario where noise is present. Be-

cause of the substantially greater difficulty this entails, we restrict ourselves to complete

or undercomplete orthonormal dictionaries. Nonetheless, these results illuminate more

general application conditions and extend the analysis in [93], which compares the sin-

gle response LASSO algorithm with traditional shrinkage methods using orthonormal
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dictionaries.

Empirical and analytical results suggest that M-Jeffreys and M-FOCUSS have

more local minima than M-SBL in the noiseless case, and it is likely that this problem

persists for E > 0. As an example, assume that M ≤ N and ΦT Φ = I . Under these

constraints, the M-SBL problem conveniently decouples giving us M independent cost

functions, one for each hyperparameter of the form

L(γi) = L log (λ+ γi) +
1

λ+ γi

L∑

j=1

(
wMN

ij

)2
, (VI.23)

where W MN , Φ†T = ΦTT , i.e., W MN is the minimum `2-norm solution to T = ΦW .

Conveniently, this function is unimodal in γi. By differentiating, equating to zero, and

noting that all γi must be greater than zero, we find that the unique minimizing solution

occurs at

γ∗i =

(
1

L

L∑

j=1

(
wMN

ij

)2 − λ

)+

, (VI.24)

where the operator (x)+ equals x if x > 0 and zero otherwise. Additionally, by comput-

ing the associated M∗, we obtain the representation,

µ∗
i· = wMN

i·

(
1 − Lλ

‖wMN
i· ‖2

2

)+

, (VI.25)

Interestingly, these weights represent a direct, multiple-response extension of those ob-

tained using the nonnegative garrote estimator [7, 30, 93]. Consequently, in this setting

M-SBL can be interpreted as a sort of generalized shrinkage method, truncating rows
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with small norm to zero and shrinking others by a factor that decreases as the norm

grows. Also, with the inclusion of multiple responses, the truncation operator is much

more robust to noise because the threshold is moderated by an average across responses,

i.e., 1/L
∑L

j=1(w
MN
ij )2. So for a given noise variance, there is considerably less chance

that a spurious value will exceed the threshold. While obviously (VI.25) can be com-

puted directly without resorting to the iterative M-SBL procedure, it is nonetheless im-

portant to note that this is the actual solution M-SBL will always converge to since the

cost function has no (non-global) local minima.

Turning to the M-Jeffreys approach, we again obtain a decoupled cost function

resulting in M row-wise minimization problems of the form

min
wi·

‖wMN
i· ‖2

2 − 2wT
i·w

MN
i· + ‖wi·‖2

2 + λ log ‖wi·‖2. (VI.26)

For any fixed ‖wi·‖2, the direction of the optimal wi· is always given by wMN
i· /‖wMN

i· ‖2,

effectively reducing (VI.26) to

min
‖wi·‖2

‖wMN
i· ‖2

2 − 2‖wi·‖2‖wMN
i· ‖2 + ‖wi·‖2

2 + λ log ‖wi·‖2 (VI.27)

If ‖wMN
i· ‖2

2 ≤ 2λ, then for each row i, there is a single minimum with wi· = 0. In

contrast, for ‖wMN
i· ‖2

2 > 2λ, there are two minima, one at zero and the other with

‖wi·‖2 = 1
2

(
‖wMN

i· ‖2 +
√
‖wMN

i· ‖2
2 − 2λ

)
. Unlike M-SBL, this ensures that the M-

Jeffreys cost function will have 2(
P

i I[‖wMN
i· ‖2

2>2λ]) local minimum, although we can ob-

tain a useful alternative shrinkage operator (that closely resembles a hard threshold)
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with an appropriate initialization and selection of λ. However, while it may be transpar-

ent how to avoid unattractive local minima in the orthonormal case, in a more general

setting, this poses a significant problem.

M-FOCUSS is more difficult to analyze for arbitrary values of p, since we

cannot provide an analytic solution for locally minimizing values of ‖wi·‖2. But the

optimal solution does entail a threshold and asymptotic results are obtained (for the

single response case) as ‖wi·‖2 → ∞ in [63]. Also, as p → 0, we converge to a gen-

eralized hard-threshold operator, which truncates small rows to zero and leaves others

unchanged. Unfortunately however, the actual algorithm will always produce the non-

truncated solution W MN (one of the 2M possible local minima) because the basins of

attraction of all other local minima have zero measure in W space. As p is steadily in-

creased from zero to one, the number of local minima gradually drops from 2M to one.7

When p = 1, we obtain an analogous soft-threshold operator, as discussed in [93] for

the single response case. Since each row-wise cost function is convex, we also observe

no local minimum as with M-SBL.

In summary, we need not actually run the M-SBL algorithm (or M-Jeffreys,

etc.) in practice when using an orthonormal dictionary Φ; we could just compute our

weights analytically using the appropriate shrinkage mechanism. Nonetheless, it is en-

couraging to see a well motivated cost function devoid of local minima in the case of

M-SBL (and M-BP). This provides further evidence that alternatives to standard mode-

finding may be a successful route to handling the simultaneous sparse approximation

7The actual number, for any given p, is dependent on W MN and λ.
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problem. It also verifies that ARD methods will push unnecessary coefficients to ex-

actly zero, as opposed to merely making them small.

VI.E.4 Relating M-SBL and M-Jeffreys

Thus far, we have divided Bayesian approaches into two seemingly very dif-

ferent categories: an empirical Bayesian approach based on ARD and a class of MAP

estimators including M-BP, M-FOCUSS, and M-Jeffreys. In fact, M-SBL is closely

related to M-Jeffreys (and therefore M-FOCUSS with p small per the discussion in Ap-

pendix VI.H.1) albeit with several significant advantages. Both methods can be viewed

as starting with an identical likelihood and prior model, but then deviate sharply with

respect to how estimation and inference are performed. In this section, we re-derive

M-SBL using a variational procedure that highlights the similarities and differences be-

tween the MAP-based M-Jeffreys and the ARD-based M-SBL. The methodology draws

on the ideas from Chapter IV.

To begin, we assume the standard likelihood model from (VI.11) and hypoth-

esize a generalized sparse prior H that includes the M-Jeffreys prior as a special case.

Specifically, for the i-th row of W we adopt the distribution:

p(wi·;H) , C

(
b+

‖wi·‖2
2

2

)−(a+L/2)

, (VI.28)

where a, b, and C are constants. Such a prior favors rows with zero norm (and therefore

all zero elements) owing to the sharp peak at zero (assuming b is small) and heavy tails,
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the trademarks of a sparsity-inducing prior. The row priors are then multiplied together

to form the complete prior p(W ;H). While certainly other norms could be substituted

in place of the `2, this selection (as well as the inclusion of the factor L) was made to

facilitate the analysis below.

As occurs with the many of the MAP methods described in Section VI.B, the

resulting joint density p(W,T ;H) = p(T |W )p(W ;H) is saddled with numerous local

peaks and therefore mode-finding should be avoided. But perhaps there is a better way

to utilize a posterior distribution than simply searching for the mode. From a modern

Bayesian perspective, it has been argued that modes are misleading in general, and that

only areas of significant posterior mass are meaningful [56]. In the case of highly sparse

priors, mode-finding is easily lead astray by spurious posterior peaks, but many of these

peaks either reflect comparatively little mass or very misleading mass such as the heavy

peak at W = 0 that occurs with M-Jeffreys. Consequently, here we advocate an alterna-

tive strategy that is sensitive only to regions with posterior mass that likely reflects Wgen.

The goal is to model the problematic p(W,T ;H) with an approximating distribution

p(W,T ; Ĥ) that:

1. Captures the significant mass of the full posterior, which we assume reflects the

region where the weights Wgen reside.

2. Ignores spurious local peaks as well as degenerate solutions such asW = 0 where

possible.

3. Maintains easily computable moments, e.g., E
[
W |T ; Ĥ

]
can be analytically com-
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puted to obtain point estimates of the unknown weights.

To satisfy Property 1, it is natural to select Ĥ by minimizing the sum of the misaligned

mass, i.e.,

min
Ĥ

∫ ∣∣∣p(W,T ;H) − p(W,T ; Ĥ)
∣∣∣ dW. (VI.29)

The ultimate goal here is to chose a family of distributions rich enough to accurately

model the true posterior, at least in the regions of interest (Property 1), but coarse enough

such that most spurious peaks will naturally be ignored (Property 2). Furthermore, this

family must facilitate both the difficult optimization (VI.29), as well as subsequent in-

ference, i.e., computation of the posterior mean (Property 3). In doing so, we hope to

avoid some of the troubles that befall the MAP-based methods.

Given a cumbersome distribution, sparse or otherwise, variational methods

and convex analysis can be used to construct sets of simplified approximating distribu-

tions with several desirable properties [47]. In the present situation, this methodology

can be used to produce a convenient family of unimodal approximations, each member

of which acts as a strict lower bound on p(W,T ;H) and provides of useful means of

dealing with the absolute value in (VI.29). The quality of the approximation in a given

region of p(W,T ;H) depends on which member of this set is selected.

We note that variational approaches take on a variety of forms in the context of

Bayesian learning. Here we will draw on the well-established practice of lower bound-

ing intractable distributions using convex duality theory [47]. We do not address the
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alternative variational technique of forming a factorial approximation that minimizes

a free-energy-based cost function [1, 3]. While these two strategies can be related in

certain settings [70], this topic is beyond the scope of the current work.

The process begins by expressing the prior p(W ;H) in a dual form that hinges

on a set of variational hyperparameters. By extending convexity results from Chapter

IV, we arrive at

p(wi·;H) = max
γi≥0

exp

(
− b

γi

)
γ−a

i

L∏

j=1

(2πγi)
−1/2 exp

(
−w

2
ij

2γi

)
. (VI.30)

Details are contained in Appendix VI.H.3. When the maximization is dropped, we

obtain the rigorous lower bound

p(wi·;H) ≥ p(wi·; Ĥ) , exp

(
− b

γi

)
γ−a

i N (0, γiI) , (VI.31)

which holds for all γi ≥ 0. By multiplying each of these lower bounding row pri-

ors, we arrive at the full approximating prior p(W ; Ĥ) with attendant hyperparameters

γ = [γ1, . . . , γM ]T ∈ R
M
+ . Armed with this expression, we are positioned to minimize

(VI.29) using Ĥ selected from the specified set of variational approximations. Since

p(W,T ; Ĥ) ≤ p(W,T ;H) as a result of (VI.31), this process conveniently allows us to

remove the absolute value, leading to the simplification

min
Ĥ

∫
p(T |W )

∣∣∣p(W ;H) − p(W ; Ĥ)
∣∣∣ dW = min

Ĥ
−
∫
p(T |W )p(W ; Ĥ)dW,

(VI.32)
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where each candidate hypothesis Ĥ is characterized by a different γ vector. Using

(VI.31) and (VI.11), the constituent integral of (VI.32) can be analytically evaluated as

before, leading to the cost function

L(γ; a, b) , L(γ) + 2
M∑

i=1

(
b

γi

+ a log γi

)
. (VI.33)

For arbitrary a, b > 0, (VI.33) represents a multiple response extension of the general-

ized SBL cost function from [94] that, while appropriate for other circumstances, does

not produce strictly sparse representations (see Chapter IV for more details). However,

when a, b → 0, this expression reduces to L(γ); the approximate distribution and sub-

sequent weight estimate that emerge are therefore equivalent to M-SBL, only now we

have the added interpretation afforded by the variational perspective.

For example, the specific nature of the relationship between M-SBL and M-

Jeffreys can now be readily clarified. With a, b → 0, p(W ;H) equals the M-Jeffreys

prior up to an exponential factor of L. From a practical standpoint, this extra factor

is inconsequential since it can be merged into the trade-off parameter λ after the req-

uisite − log(·) transformation has been applied. Consequently, M-Jeffreys and M-SBL

are effectively based on an identical prior distribution and therefore an identical poste-

rior as well. The two are only distinguished by the manner in which this posterior is

handled. One searches directly for the mode. The other selects the mean of a tractable

approximate distribution that has been manipulated to align with the significant mass of

the full posterior. Additionally, while ARD methods have been touted for their sensitiv-
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ity to posterior mass, the exact relationship between this mass and the ARD estimation

process has typically not been quantified. Here that connection is made explicit.

Empirical and theoretical results from previous sections lend unequivocal sup-

port that the ARD route is much preferred. A intuitive explanation is as follows: M-

Jeffreys displays a combinatorial number of locally minimizing solutions that can sub-

stantially degrade performance. For example, there is the huge degenerate (and globally

optimal) peak at W = 0 as discussed in Appendix VI.H.1. Likewise, many other unde-

sirable peaks exist with d(W ) > 0. For example, M such peaks exist with d(W ) = 1,
(

M
2

)
peaks with d(W ) = 2, and so on. In general, when any subset of weights go to zero,

we are necessarily in the basin of a minimum with respect to these weights from which

we cannot escape. Therefore, if too many weights (or the wrong weights) converge to

zero, there is no way to retreat to a more appropriate solution.

Returning to M-SBL, we know that the full posterior distribution with which

we begin is identical. The crucial difference is that, instead of traversing this improper

probability density in search of a sufficiently “non-global" extremum (or mode), we in-

stead explore a restricted space of posterior mass. A substantial benefit of this approach

is that there is no issue of getting stuck at a point such as W = 0; at any stable fixed

point γ∗, we can never have M∗ = 0. This occurs because, although the full distribution

may place mass in the neighborhood of zero, the class of approximate distributions as

defined by p(W,T ; Ĥ) in general will not (unless the likelihood is maximized at zero,

in which case the solution W = 0 is probably correct). Likewise, a solution with d(W )

small is essentially impossible unless d(Wgen) is also small, assuming λ has been set to
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a reasonable value. In general, there is much less tendency of indiscriminately shrink-

ing important weights to zero and getting stuck, because these solutions display little

overlap between prior and likelihood and therefore, little probability mass. This helps

to explain, for example, the results in Figure VI.1(d), where M-SBL performance is

uniformly superior to M-Jeffreys for all values of λ.

VI.F Conclusions

While recent years have witnessed a tremendous amount of theoretical progress

in the understanding of sparse approximation algorithms, most notably Basis Pursuit and

Orthogonal Matching Pursuit, there has been comparably less progress with regard to

the development of new sparse approximation cost functions and algorithms. Using

an empirical Bayesian perspective, we have extended the ARD/SBL framework to al-

low for learning maximally sparse subsets of design variables in real or complex-valued

multiple response models, leading to the M-SBL algorithm. While many current meth-

ods focus on finding modes of distributions and frequently converge to unrepresentative

(possibly local) extrema, M-SBL traverses a well-motivated space of probability mass.

Both theoretical and empirical results suggest that this is a useful route to

solving simultaneous sparse approximation problems, often outperforming current state-

of-the-art approaches. Moreover, these results provide further support for the notion that

ARD, upon which SBL is based, does in fact lead to an exact sparsification (or pruning)

of highly overparameterized models. While previous claims to this effect have relied

mostly on heuristic arguments or empirical evidence, we have quantified the relationship
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between M-SBL and a specific sparsity-inducing prior and derived conditions, albeit

limited, whereby maximally sparse representations will necessarily be achieved.

From a signal and image processing standpoint, we envision that M-SBL could

become an integral component of many practical systems where multiple responses are

available. For example, M-SBL has already been successfully employed in the realm of

neuroelectromagnetic source imaging [75, 76]. These experiments are important since

they demonstrate the utility of M-SBL on a very large-scale problem, with a dictionary

of size 275×120, 000 andL = 1000 response vectors. Because of the severe redundancy

involved (M/N > 400) and the complexity of the required, neurophysiologically-based

(and severely ill-conditioned) dictionary, it seems likely that the ability of M-SBL to

avoid local minima in the pursuit of highly sparse representations is significant. In

any event, neuroelectromagnetic imaging appears to be an extremely worthwhile bench-

mark for further development and evaluation of simultaneous sparse approximation al-

gorithms. This will be discussed further in the next Chapter.
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VI.H Appendix

VI.H.1 Relating M-Jeffreys and M-FOCUSS

There exists an interesting relationship between the implicit priors of M-Jeffreys

and M-FOCUSS. To see this, consider the slightly modified cost function

Fp(W ) , ‖T − ΦW‖2
F +

λ′

p

M∑

i=1

‖wi·‖p
2 −

λ′

p
, (VI.34)

where we have set λ equal to some λ′/p and subtracted a constant term, which does

not change the topography. M-FOCUSS is capable of minimizing this cost function

for arbitrary p, including the limit as p −→ 0. This limiting case is elucidated by the

relationship

lim
p→0

1

p
(‖wi·‖p

2 − 1) = log ‖wi·‖2, (VI.35)

which we derive as follows. First, assume ‖wi·‖2 > 0. Using L’Hôpitals rule, we arrive

at
∂(‖wi·‖p

2−1)
∂p

∂p
∂p

= ‖wi·‖p
2 log ‖wi·‖2 −→ log ‖wi·‖2. (VI.36)

Likewise, when ‖wi·‖2 = 0, we have

1

p
(‖wi·‖p

2 − 1) = −1

p
−→ log ‖wi·‖2 = −∞. (VI.37)
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By applying this result for all i, we arrive at the limiting cost function

lim
p→0

Fp(W ) = ‖T − ΦW‖2
F + λ′

M∑

i=1

log ‖wi·‖2, (VI.38)

which is identical to the M-Jeffreys cost function. This demonstrates why M-Jeffreys

should be considered a special case of M-FOCUSS and clarifies why the update rules are

related even though they were originally derived with different considerations in mind.

In arriving at this association, we have effectively assumed that the regulariz-

ing component of the cost function (VI.34) has grown arbitrarily large. This discounts

the quality-of-fit component, leading to the globally optimal, yet degenerate solution

W = 0. But curiously, M-Jeffreys and equivalently M-FOCUSS (with λ = λ′/p, p→ 0)

still do consistently produce sparse representations that nonetheless retain the desirable

property T ≈ ΦW .

In fact, any success achieved by these algorithms can be attributed to their

ability to find appropriate, explicitly non-global, local minima. This is not unlike the

situation that occurs when using the EM algorithm to fit the parameters of a Gaussian

mixture model for density estimation. In this case, the cost function may always be

driven to infinity by collapsing a single mixture component around a single data point.

This is accomplished by making the component mean equal to the value of the data point

and allowing the component variance to converge to zero. Clearly, the desired solution

is not the globally optimal one and heuristics must be adopted to avoid getting stuck

[84].
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VI.H.2 Proof of Theorem 9

We say that a vector of hyperparameters is feasible iff

T = ΦM = ΦΓ1/2
(
ΦΓ1/2

)†
T. (VI.39)

It is not difficult to show that any stable fixed point (SFP) of (VI.17) and (VI.19), de-

noted γ∗, must be feasible. Conversely, if a fixed point is not feasible, it is unstable.

Additionally, if γ is feasible (whether a fixed point or not), then under the stipulated

conditions

N ≥ rank
(
ΦΓΦT

)
≥ min (spark(Φ) − 1, rank(Γ)) ≥ D0, (VI.40)

where ΦΓΦT is the limiting value of Σt as λ→ 0 and D0 , d(W0).

Now suppose we have converged to a stable fixed point γ∗ that satisfies the

condition rank(ΦΓ∗ΦT ) = N (later we will address the case where rank(ΦΓ∗ΦT ) <

N ). By virtue of the convergence properties of the EM algorithm, this solution must

necessarily represent a local minimum to the limiting cost function

L(γ) = L log
∣∣ΦΓΦT

∣∣+
L∑

j=1

tT·j
(
ΦΓΦT

)−1
t·j . (VI.41)

Otherwise γ∗ will be an unstable fixed point. We will now show that no local minima,

and therefore no SFPs, can exist with rank(ΦΓ∗ΦT ) = N .

Since we have specified that there exists a solution with D0 nonzero rows, we
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know that T is in the span of some subset of D0 columns of Φ, denoted ΦD0 . Therefore

T = ΦD0WD0 , where WD0 is the D0 × L matrix of weigths associated with ΦD0 . For

convenience, let SD0 be a diagonal matrix whose ii-th element equals the `2 norm of the

i-th row of WD0 and let U , ΦD0SD0 . It follows that T = US−1
D0
WD0 .

Our goal will be to show that adding a contribution from these D0 columns

(by increasing the associated hyperparameters) will necessarily reduce L(γ), indicating

that we cannot be at a local minimum. With this consideration in mind, we can express

the cost function in the neighborhood of γ∗ as,

L(α, β) = L log |αΣ∗
t + βUUT | +

L∑

j=1

tT·j
(
αΣ∗

t + βUUT
)−1

t·j, (VI.42)

where Σ∗
t = ΦΓ∗ΦT and α and β are parameters allowing us to balance contributions

from Σ∗
t and U to the overall covariance. When β = 0, we achieve the presumed local

minimum, whereas for β > 0, we are effectively adding a uniform contribution from U .

Also, the second term of this expression can be simplified via

L∑

j=1

tT·j
(
αΣ∗

t + βUUT
)−1

t·j = tr
[
T T
(
αΣ∗

t + βUUT
)−1

T
]

= tr
[
W T

D0
S−1

D0
UT
(
αΣ∗

t + βUUT
)−1

US−1
D0
WD0

]

= tr
[
UT
(
αΣ∗

t + βUUT
)−1

US−1
D0
S2

D0
S−1

D0

]

= tr
[
UT
(
αΣ∗

t + βUUT
)−1

U
]
. (VI.43)

where we have used the fact that WD0W
T
D0

= S2
D0

which follows from the stated orthog-
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onality condition.

At any true local minimum, the following conditions must hold:

∂L(α, β)

∂α

∣∣∣∣
α=1,β=0

= 0
∂L(α, β)

∂β

∣∣∣∣
α=1,β=0

≥ 0, (VI.44)

where we note that the gradient with respect to β need not equal zero since β must be

greater than or equal to zero. This is a reflection of the fact that all γi’s must be greater

than or equal to zero. To satisfy the first condition, it is easily shown that at the point

α = 1, β = 0,

tr
[
UT (Σ∗

t )
−1 U

]
= LN. (VI.45)

With regard to the second condition, after a series of manipulations, we arrive at

∂L(α, β)

∂β

∣∣∣∣
α=1,β=0

=

D0∑

i=1

(
Lλi − λ2

i

)
, (VI.46)

where λi is the i-th eigenvalue of UT (Σ∗
t )

−1 U . Because

D0∑

i=1

λi = tr(UT (Σ∗
t )

−1U) = LN, (VI.47)

then we have

∂L(α, β)

∂β

∣∣∣∣
α=1,β=0

= L2N −
D0∑

i=1

λ2
i ≤ L2N −

D0∑

i=1

λ̄2 = L2N − (LN)2

D0

, (VI.48)

where λ̄ , 1/D0

∑D0

i=1 λi = LN/D0. Since we have assumed that D0 < N , this
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gradient must be negative, contradicting our assumption that we are at a local minima.

Therefore, no local minima, and therefore no SFPs, can exist with rank(ΦΓ∗ΦT ) = N .

Now we assume that rank
(
ΦΓ∗ΦT

)
is equal to some integer N ′ in the interval

D0 ≤ N ′ < N . Because γ∗ must be feasible, this implies that each column of T must lie

in a N ′-dimensional subspace. Likewise, the D∗ columns of Φ associated with nonzero

elements in γ∗, as well as the D0 columns associated with nonzero rows of W0 must

also lie within this subspace (although there may exist some redundancy between these

two sets). In general, there will be K ≥ D∗ columns of Φ in this subspace.

As both the M-SBL cost function and update rules are rotationally invariant,

we can replace T and Φ by QT and QΦ where Q is an arbitrary orthonormal matrix.

Therefore, at any fixed point γ∗, we can always transform the original sparse recovery

problem to a more restricted one based on a data matrix T ′ ∈ R
N ′×L and dictionary

Φ′ ∈ R
N ′×K . The columns of Φ not in this subspace have been pruned.

More importantly, we have a useful isomorphism in the following sense: If γ∗

is a SFP with respect to our original problem, then the K hyperparameters associated

with Φ′ must comprise a SFP with respect to the reduced problem based on Φ′ and

T ′. Therefore, any SFP with rank(ΦΓ∗ΦT ) = N ′ must be a local minimum to the

transformed problem

L′(γ) = L log
∣∣Φ′ΓΦ′T ∣∣+

L∑

j=1

(t′T·j
(
Φ′ΓΦ′T )−1

t′·j . (VI.49)

When testing the local minimum condition, we get an analogous result as before, with



180

N ′ replacing N . In general, as long as N ′ is greater than D0, we cannot have a SFP.

However, when N ′ = D0, then (VI.48) is ambiguous since L2N ′ − (LN ′)2

D0
= 0. In this

unique situation, Φ′ must be a square (i.e., K = N ′ = D0), otherwise we violate the

assumption D0 < spark(Φ) − 1. The reduced cost function (VI.49) simplifies to

L′(γ) ≡ L log |Γ| +
L∑

j=1

t′T·j
(
Φ′−T Γ−1Φ′−1

)
t′·j . (VI.50)

This expression has a single minimum at the solution γi = 1/L‖(w0)i·‖2
2 for all i =

1, . . . , D0. By embedding this γ in the appropriate vector of zeros, we obtain the unique

M-SBL stable fixed point.

VI.H.3 Derivation of the Dual Form of p(wi·;H)

Any convex function f(y) : R → R can be represented in the dual form

f(y) = sup
λ

[λy − f ∗(λ)] , (VI.51)

where f ∗(λ) denotes the conjugate function [85]. Geometrically, this can be interpreted

as representing f(y) as the upper envelope or supremum of a set of lines parameterized

by λ. The selection of f ∗(λ) as the intercept term ensures that each line is tangent to

f(y). If we drop the maximization in (VI.51), we obtain a rigorous lower bound on

f(y), parameterized by λ. We may then optimize over λ to find the optimal or tightest

bound in a region of interest.

To accommodate the model development of Section VI.E.4, we require the
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dual representation of p(wi·;H). Clearly this density is not convex in wi·; however, if

we let yi , ‖wi·‖2
2 and define

f(yi) , log p(wi·;H) = −(a+ L/2) log
(
b+

yi

2

)
+ logC, (VI.52)

we now have a convex function in yi amenable to dual representation. The constant

C is not chosen to enforce proper normalization; rather, it is chosen to facilitate the

variational analysis below.

We can find the conjugate function f ∗(λi) using the duality relation

f ∗(λi) = max
yi

[λiyi − f(yi)] = max
yi

[
λiyi +

(
a+

L

2

)
log
(
b+

yi

2

)
− logC

]
.(VI.53)

To find the maximizing yi, we take the gradient of the quantity on the left and set it to

zero, giving us,

y
(max)
i = − a

λi

− L

2λi

− 2b. (VI.54)

Substituting this into the expression for f ∗(λi) and selecting

C = (2π)−L/2 exp

[
−
(
a+

L

2

)](
a+

L

2

)(a+L/2)

, (VI.55)

we arrive at

f ∗(λi) =

(
a+

L

2

)
log

(−1

2λi

)
+
L

2
log 2π − 2bλi. (VI.56)

We are now ready to represent f(yi) in its dual form, observing first that we only need



182

consider maximization over λi ≤ 0 since f(yi) is a monotonically decreasing function

(i.e., all tangent lines will have negative slope). Proceeding forward, we have

f(yi) = max
λi≤0

[λiyi − f ∗(λi)]

= max
λi≤0

[
λiyi −

(
a+

L

2

)
log

(−1

2λi

)
− L

2
log 2π + 2bλi

]

= max
γi≥0

[−yi

2γi

−
(
a+

L

2

)
log γi −

L

2
log 2π − b

γi

]
, (VI.57)

where we have used the monotonically increasing transformation λi = −1/(2γi), γi ≥

0. The attendant dual representation of p(wi·;H) can then be obtained by exponentiating

both sides of (VI.57) and substituting yi = ‖wi·‖2
2, giving us

p(wi·;H) = max
γi≥0

(2π)−L/2 exp

(
−‖wi·‖2

2

2γi

)
exp

(
− b

γi

)
γ
−(a+L/2)
i

= max
γi≥0

(2πγi)
−L/2 exp

(
−
∑L

j=1w
2
ij

2γi

)
exp

(
− b

γi

)
γ−a

i

= max
γi≥0

exp

(
− b

γi

)
γ−a

i

L∏

j=1

(2πγi)
−1/2 exp

(
−w

2
ij

2γi

)
. (VI.58)



Chapter VII

Covariance Component Estimation

with Application to

Neuroelectromagnetic Source Imaging

The purpose of this chapter is twofold. First, we discuss the subject of covari-

ance component estimation, which extends the sparsity results from previous chapters

to the case where dictionary columns can be arbitrarily grouped together to compose

basis matrices, each with an associated hyperparameter. A sparse collection of these

basis matrices is learned to estimate the sample (data) covariance. While most of the

discussion will revolve around the application to MEG/EEG source imaging, the results

are actually quite general and can be applied in many other situations.

The ill-posed nature of the MEG/EEG source localization problem requires

the incorporation of prior assumptions when choosing an appropriate solution out of an

183
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infinite set of candidates. Bayesian methods are useful in this capacity because they

allow these assumptions to be explicitly quantified. Recently, a number of empirical

Bayesian approaches have been proposed that attempt a form of model selection by us-

ing the data to guide the search for an appropriate prior. While seemingly quite different

in many respects, we apply a unifying framework based on covariance component esti-

mation and automatic relevance determination (ARD) that elucidates various attributes

of these methods and suggests directions for improvement. We also derive theoretical

properties of this methodology related to convergence, local minima, and localization

bias and explore connections with established algorithms.

VII.A Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) use an

array of sensors to take EM field measurements from on or near the scalp surface with

excellent temporal resolution. In both cases, the observed field is generated by the

same synchronous, compact current sources located within the brain. Because the map-

ping from source activity configuration to sensor measurement is many to one, accu-

rately determining the spatial locations of these unknown sources is extremely difficult.

The relevant localization problem can be posed as follows: The measured EM signal

is B ∈ <db×n, where db equals the number of sensors and n is the number of time

points at which measurements are made. The unknown sources S ∈ <ds×n are the

(discretized) current values at ds candidate locations distributed throughout the cortical

surface. These candidate locations are obtained by segmenting a structural MR scan of
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a human subject and tesselating the gray matter surface with a set of vertices. B and S

are related by the generative model

B = LS + E , (VII.1)

where L is the so-called lead-field matrix, the i-th column of which represents the sig-

nal vector that would be observed at the scalp given a unit current source at the i-th

vertex with a fixed orientation (flexible orientations can be incorporated by including

three columns per location, one for each directional component). Multiple methods

based on the physical properties of the brain and Maxwell’s equations are available for

this computation. Finally, E is a noise term with columns drawn independently from

N (0,Σε).

To obtain reasonable spatial resolution, the number of candidate source loca-

tions will necessarily be much larger than the number of sensors (ds � db). The salient

inverse problem then becomes the ill-posed estimation of these activity or source re-

gions, which are reflected by the nonzero rows of the source estimate matrix Ŝ. Because

the inverse model is underdetermined, all efforts at source reconstruction are heavily

dependent on prior assumptions, which in a Bayesian framework are embedded in the

distribution p(S). Such a prior is often considered to be fixed and known, as in the

case of minimum `2-norm approaches, minimum current estimation (MCE) [42, 100],1

FOCUSS [12, 33], and sLORETA [71]. Alternatively, a number of empirical Bayesian

1MCE is another name for BP applied to the neuroelectromagnetic source localization problem.
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approaches have been proposed that attempt a form of model selection by using the

data to guide the search for an appropriate prior. Examples include variational Bayesian

methods [87, 89], hierarchial covariance component models [28, 62, 73], and automatic

relevance determination (ARD) [56, 66, 75, 76, 94]. While seemingly quite different

in some respects, we present a generalized framework that encompasses many of these

methods and points to connections between algorithms. We also analyze several theo-

retical properties of this framework related to computational/convergence issues, local

minima, and localization bias. Overall, we envision that by providing a unifying per-

spective on these approaches, neuroelectromagnetic imaging practitioners will be better

able to assess the relative strengths with respect to a particular application. This process

also points to several promising directions for future research.

VII.B A Generalized Bayesian Framework for Source Localization

In this section, we present a general-purpose Bayesian framework for source

localization. In doing so, we focus on the common ground between many of the methods

discussed above. While derived using different assumptions and methodology, they

can be related via the notion of automatic relevance determination [66] and evidence

maximization [56].

To begin we involve the noise model from (VII.1), which fully defines the

assumed likelihood p(B|S). While the unknown noise covariance can also be param-

eterized and estimated from the data, for simplicity we assume that Σε is known and
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fixed. Next we adopt the following source prior for S:

p (S; Σs) = N (0,Σs) , Σs =

dγ∑

i=1

γiCi, (VII.2)

where the distribution is understood to apply independently to each column of S. Here

γ = [γ1, . . . , γdγ
]T is a vector of dγ nonnegative hyperparameters that control the rela-

tive contribution of each covariance basis matrix Ci, all of which we assume are fixed

and known. The unknown hyperparameters can be estimated from the data by first inte-

grating out the unknown sources S giving

p(B; Σb) =

∫
p (B|S) p (S; Σs) dS = N (0,Σb), (VII.3)

where Σb = Σε + LΣsL
T . A hyperprior p(γ) can also be included if desired. This ex-

pression is then maximized with respect to the unknown hyperparameters, a process re-

ferred to as type-II maximum likelihood or evidence maximization [56, 66] or restricted

maximum likelihood [28]. Thus the optimization problem shifts from finding the max-

imum a posteriori sources given a fixed prior to finding the optimal hyperparameters

of a parameterized prior. Once these estimates are obtained (computational issues will

be discussed in Section VII.B.1), a tractable posterior distribution p(S|B; Σ̂s) exists in

closed form, where Σ̂s =
∑

i γ̂iCi. To the extent that the ‘learned’ prior p(S; Σ̂s) is re-

alistic, this posterior quantifies regions of significant current density and point estimates
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for the unknown sources can be obtained by evaluating the posterior mean

Ŝ , E
[
S|B; Σ̂s

]
= Σ̂sL

T
(
Σε + LΣ̂sL

T
)−1

B. (VII.4)

The specific choice of the Ci’s is crucial and can be used to reflect any assumptions

about the possible distribution of current sources. It is this selection, rather than the

adoption of a covariance component model per se, that primarily differentiates the many

different empirical Bayesian approaches and points to novel algorithms for future study.

The optimization strategy adopted for computing γ̂, as well as the particular choice of

hyperprior p(γ), if any, can also be distinguishing factors.

In the simplest case, use of the single component Σs = γ1C1 = γ1I leads to a

regularized minimum-`2-norm solution. More interesting covariance component terms

have been used to effect spatial smoothness, depth bias compensation, and candidate

locations of likely activity [62, 73]. With regard to the latter, it has been suggested that

prior information about a source location can be codified by including a Ci term with all

zeros except a patch of 1’s along the diagonal signifying a location of probable source

activity, perhaps based on fMRI data [73]. An associated hyperparameter γi is then

estimated to determine the appropriate contribution of this component to the overall

prior covariance. The limitation of this approach is that we generally do not know,

a priori, the regions where activity is occurring with both high spatial and temporal

resolution. Therefore, we cannot reliably known how to choose an appropriate location-

prior term in many situations.
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The empirical Bayesian solution to this dilemma, which amounts to a form of

model selection, is to try out many different (or even all possible) combinations of loca-

tion priors, and determine which one has the highest Bayesian evidence, i.e., maximizes

p(B; Σb) [56]. For example, if we assume the underlying currents are formed from a

collection of dipolar point sources located at each vertex of the lead-field grid, then we

may choose Σs =
∑ds

i=1 γieieT
i , where each ei is a standard indexing vector of zeros

with a ‘1’ for the i-th element (and so Ci = eieT
i encodes a prior preference for a single

dipolar source at location i).2 This specification for the prior involves the counterintu-

itive addition of an unknown hyperparameter for every candidate source location which,

on casual analysis may seem prone to severe overfitting (in contrast to [73], which uses

only one or two fixed location priors). However, the process of marginalization, or the

integrating out of the unknown sources S, provides an extremely powerful regularizing

effect, driving most of the unknown γi to zero during the evidence maximization stage

(more on this in Section VII.C). This ameliorates the overfitting problem and effec-

tively reduces the space of possible active source locations by choosing a small relevant

subset of location priors that optimizes the Bayesian evidence (hence ARD). With this

‘learned’ prior in place, a once ill-posed inverse problem is no longer untenable, with the

posterior mean providing a good estimate of source activity. Such a procedure has been

empirically successful in the context of neural networks [66], kernel machines [94], and

multiple dipole fitting for MEG [75], a significant benefit to the latter being that the

optimal number of dipoles need not be known a priori.

2Here we assume dipoles with orientations constrained to be orthogonal to the cortical surface; however, the
method is easily extended to handle unconstrained dipoles.
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In contrast, to model sources with some spatial extent, we can choose Ci =

ψiψ
T
i , where each ψi represents, for example, an ds×1 geodesic neural basis vector that

specifies an a priori weight location and activity extent. In this scenario, the number of

hyperparameters satisfies dγ = vds, where v is the number of scales we wish to examine

in a multi-resolution decomposition, and can be quite large (dγ ≈ 106). As mentioned

above, the ARD framework tests many priors corresponding to many hypotheses or be-

liefs regarding the locations and scales of the nonzero current activity within the brain,

ultimately choosing the one with the highest evidence. The net result of this formu-

lation is a source prior composed of a mixture of Gaussian kernels of varying scales.

The number of mixture components, or the number of nonzero γi’s, is learned from the

data and is naturally forced to be small (sparse). In general, the methodology is quite

flexible and other prior specifications can be included as well, such as temporal and

spectral constraints. But the essential ingredient of ARD, that marginalization and sub-

sequent evidence maximization leads to a pruning of unsupported hypotheses, remains

unchanged.

We turn now to empirical Bayesian procedures that incorporate variational

methods. In [89], a plausible hierarchical prior is adopted that, unfortunately, leads to

intractable integrations when computing the desired source posterior. This motivates

the inclusion of a variational approximation that models the true posterior as a factored

distribution over parameters at two levels of the prior hierarchy. While seemingly quite

different, drawing on results from [5], we can show that the resulting cost function is
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exactly equivalent to standard ARD assuming Σs is parameterized as

Σs =
ds∑

i=1

γieiei +
ds∑

j=1

γ(ds+j)ψjψ
T
j , (VII.5)

and so dγ = 2ds. When fMRI data is available, it is incorporated into a particular

inverse Gamma hyperprior on γ, as is also commonly done with ARD methods [5].

Optimization is then performed using simple EM update rules.

In summary then, the general methods of [28, 62, 73] and [75, 76, 94] as

well as the variational method of [89] are all identical with respect to their ARD-based

cost functions; they differ only in which covariance components (and possibly hyper-

priors) are used and in how optimization is performed as will be discussed below. In

contrast, the variational model from [87] introduces an additional hierarchy to the ARD

framework to explicitly model correlations between sources which may be spatially sep-

arated.3 Here it is assumed that S can be decomposed with respect to dz pre-sources via

S = WZ, p(W ; Σw) = N (0,Σw), p(Z) = N (0, I), (VII.6)

where Z ∈ <dz×n represents the pre-source matrix and Σw is analogous to Σs. As stated

in [87], direct application of ARD would involve integration over W and Z to find the

hyperparameters γ that maximize p(B; Σb). While such a procedure is not analytically

tractable, it remains insightful to explore the characteristics of this method were we able

3Standard ARD can directly handle locally correlated sources as discussed above, but is not easily extended to
explicitly address correlated sources which are spatially separated.
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to perform the necessary computation. This allows us to relate the full model of [87] to

standard ARD.

Interestingly, it can be shown that the first and second order statistics of the

full prior (VII.6) and the standard ARD prior (VII.2) are equivalent (up to a constant

factor), although higher-order moments will be different. However, as the number of

pre-sources dz becomes large, multivariate central-limit-theorem arguments can be used

to explicitly show that the distribution of S converges to an identical Gaussian prior as

ARD. So exact evaluation of the full model, which is espoused as the ideal objective

were it feasible, approaches regular ARD when the number of pre-sources grows large.

In practice, because the full model is intractable, a variational approximation is adopted

similar to that proposed in [89]. In fact, if we assume the appropriate hyperprior on γ,

then this correlated source method is essentially the same as the procedure from [89]

but with an additional level in the approximate posterior factorization for handling the

decomposition (VII.6). This produces approximate posteriors onW and Z but the result

cannot be integrated to form the posterior on S. However, the posterior mean of W , Ŵ ,

is used as an estimate of the source correlation matrix (using ŴŴ T ) to substantially

improve beamforming results that were errantly based on uncorrelated source models.

Note however that this procedure implicitly uses the somewhat non-standard criteria

of combining the posterior mean of W with the prior on Z to form an estimate of the

distribution of S.
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VII.B.1 Computational Issues

The primary objective of ARD is to maximize the evidence p(B; Σb) with

respect to γ or equivalently, to minimize

L(γ) , − log p(B; Σb) ≡ n log |Σb| + trace
[
BT Σ−1

b B
]
. (VII.7)

In [28], a restricted maximum likelihood (ReML) approach is proposed for this opti-

mization, which utilizes what amounts to EM-based updates. This method typically

requires a nonlinear search for each M-step and does not guarantee that the estimated

covariance is positive definite. While shown to be successful in estimating a handful

of hyperparameters in [62, 73], this could potentially be problematic when very large

numbers of hyperparameters are present. For example, in several toy problems (with dγ

large) we have found that a fraction of the hyperparameters obtained can be negative-

valued, inconsistent with our initial premise.

As such, we present three alternative optimization procedures that extend the

methods from [56, 75, 89, 94] to the arbitrary covariance model discussed above and

guarantee that γi ≥ 0 for all i. Because of the flexibility this allows in constructing Σs,

and therefore Σb, some additional notation is required to proceed. A new decomposition

of Σb is defined as

Σb = Σε + L

(
dγ∑

i=1

γiCi

)
L

T = Σε +

dγ∑

i=1

γiL̃iL̃
T
i , (VII.8)
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where L̃iL̃
T
i , LCiL

T with ri , rank(L̃iL̃
T
i ) ≤ db. Also, using commutative properties

of the trace operator, L(γ) only depends on the data B through the db × db sample

correlation matrix BBT . Therefore, to reduce the computational burden, we replace

B with a matrix B̃ ∈ <db×rank(B) such that B̃B̃T = BBT . This removes any per-

iteration dependency on n, which can potentially be large, without altering that actual

cost function.

By treating the unknown sources as hidden data, an update can be derived for

the (k + 1)-th iteration

γ
(k+1)
i =

1

nri

∥∥∥∥γ
(k)
i L̃

T
i

(
Σ

(k)
b

)−1

B̃

∥∥∥∥
2

F
+

1

ri

trace

[
γ

(k)
i I − γ

(k)
i L̃

T
i

(
Σ

(k)
b

)−1

L̃iγ
(k)
i

]
,

(VII.9)

which reduces to the algorithm from [89] given the appropriate simplifying assumptions

on the form of Σs and some additional algebraic manipulations. It is also equivalent to

ReML with a different effective computation for the M-step. By casting the update rules

in this way and noting that off-diagonal elements of the second term need not be com-

puted, the per-iteration cost is at most O
(
d2

b

∑dγ

i=1 ri

)
≤ O (d3

bdγ). This expense can be

significantly reduced still further in cases where different pseudo lead-field components,

e.g., some L̃i and L̃j , contain one or more columns in common. This situation occurs

if we desire to use the geodesic basis functions with flexible orientation constraints, as

opposed to the fixed orientations assumed above. In general, the linear dependence on

dγ is one of the attractive aspects of this method, effectively allowing for extremely large

numbers of hyperparameters and covariance components.
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The problem then with (VII.9) is not the per-iteration complexity but the con-

vergence rate, which we have observed to be prohibitively slow in practical situations

with high-resolution lead-field matrices and large numbers of hyperparameters. The

only reported localization results using this type of EM algorithm are from [89], where

a relatively low resolution lead-field matrix is used in conjunction with a simplifying

heuristic that constrains some of the hyperparameter values. However, to avoid these

types of constraints, which can potentially degrade the quality of source estimates, a

faster update rule is needed. To this end, we modified the procedure of [56], which in-

volves taking the gradient of L(γ) with respect to γ, rearranging terms, and forming the

fixed-point update

γ
(k+1)
i =

γ
(k)
i

n

∥∥∥∥L̃
T
i

(
Σ

(k)
b

)−1

B̃

∥∥∥∥
2

F

(
trace

[
L̃

T
i

(
Σ

(k)
b

)−1

L̃i

])−1

. (VII.10)

The complexity of each iteration is the same as before, only now the convergence rate

can be orders of magnitude faster.4 For example, given db = 275 sensors, n = 1000

observation vectors, and using a pseudo lead-field with 120,000 unique columns and

an equal number of hyperparameters, requires approximately 5-10 mins. runtime using

Matlab code on a PC to completely converge. The EM update does not converge after

24 hours. Example localization results using (VII.10) demonstrate the ability to recover

very complex source configurations with variable spatial extent [76].

Unlike the EM method, one criticism of (VII.10) is that there currently exists

4Note that the slower EM iterations and the faster update (VII.10) need not converge to the same fixed point even
when initialized at the same location. In some situations, the EM variant may be preferred since it may be more likely
to reach the global minimum of L(γ), time permitting.



196

no proof that it represents a descent function, although we have never observed it to

increase (VII.7) in practice. While we can show that (VII.10) is equivalent to iteratively

solving a particular min-max problem in search of a saddle point, provable convergence

is still suspect. However, a similar update rule can be derived that is both significantly

faster than EM and is proven to produce γ vectors such that L
(
γ(k+1)

)
≤ L

(
γ(k)

)

for every iteration k. Using a dual-form representation of L(γ) that leads to a more

tractable auxiliary cost function, this update is given by

γ
(k+1)
i =

γ
(k)
i√
n

∥∥∥∥L̃
T
i

(
Σ

(k)
b

)−1

B̃

∥∥∥∥
F

(
trace

[
L̃

T
i

(
Σ

(k)
b

)−1

L̃i

])−1/2

. (VII.11)

Details of the derivation can be found in Appendix VII.F.1.

Finally, the correlated source method from [87] can be incorporated into the

general ARD framework as well using update rules related to the above; however, be-

cause all off-diagonal terms are required by this method, the iterations now scale as

(
∑

i ri)
2 in the general case. This quadratic dependence can be prohibitive in applica-

tions with large numbers of covariance components.

VII.B.2 Relationship with Other Bayesian Methods

As a point of comparison, we now describe how ARD can be related to al-

ternative Bayesian-inspired approaches such as the sLORETA paradigm [71] and the

iterative FOCUSS source localization algorithm [33]. The connection is most transpar-

ent when we substitute the prior covariance Σs =
∑ds

i=1 γieieT
i = Γ into (VII.10), giving
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the modified update

γ
(k+1)
i =

∥∥∥γ(k)
i `Ti

(
Σε + LΓ(k)

L
T
)−1

B
∥∥∥

2

2

(
nR

(k)
ii

)−1

, (VII.12)

where Γ , diag[γ], `i is the i-th column of L, and

R(k) , Γ(k)
L

T
(
Σε + LΓ(k)

L
T
)−1

L (VII.13)

is the effective resolution matrix given the hyperparameters at the k-th iteration. The

j-th column of R (called a point-spread function) equals the source estimate obtained

using (VII.4) when the true source is a unit dipole at location j [90].

Continuing, if we assume that initialization of ARD occurs with γ (0) = 1 (as

is customary), then the hyperparameters produced after a single iteration of ARD are

equivalent to computing the sLORETA estimate for standardized current density power

[71] (this assumes fixed orientation constraints). In this context, the inclusion of R as a

normalization factor helps to compensate for depth bias, which is the propensity for deep

current sources within the brain to be underrepresented at the scalp surface [71, 75]. So

ARD can be interpreted as a recursive refinement of what amounts to the non-adaptive,

linear sLORETA estimate.

As a further avenue for comparison, if we assume that R = I for all itera-

tions, then the update (VII.12) is nearly the same as the FOCUSS iterations modified

to simultaneously handle multiple observation vectors [12]. The only difference is the

factor of n in the denominator in the case of ARD, but this can be offset by an appropri-
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ate rescaling of the FOCUSS λ trade-off parameter. Therefore, ARD can be viewed in

some sense as taking the recursive FOCUSS update rules and including the sLORETA

normalization that, among other things, allows for depth bias compensation.

Thus far, we have focused on similarities in update rules between the ARD

formulation (restricted to the case where Σs = Γ) and sLORETA and FOCUSS. We

now switch gears and examine how the general ARD cost function relates to that of

FOCUSS and MCE and suggests a useful generalization of both approaches. Recall that

the evidence maximization procedure upon which ARD is based involves integrating

out the unknown sources before optimizing the hyperparameters γ. However, if some

p(γ) is assumed for γ, then we could just as easily do the opposite: namely, we can

integrate out the hyperparameters and then maximize S directly, thus solving the MAP

estimation problem

max
S

∫
p (B|S) p (S; Σs) p(γ)dγ ≡ min

{S:S=
P

i Ai
eSi}

‖B − LS‖2
Σ−1

ε
+

dγ∑

i=1

g
(
‖S̃i‖F

)
,

(VII.14)

where each Ai is derived from the i-th covariance component such that Ci = AiA
T
i ,

and g(·) is a function dependent on p(γ). For example, when p(γ) is a noninformative

Jeffreys prior, then g(x) = log x and (VII.14) becomes a generalized form of the FO-

CUSS cost function (and reduces to the exact FOCUSS cost when Ai = eieT
i for all i).

Likewise, when an exponential prior chosen, then g(x) = x and we obtain a generalized

version of MCE. In both cases, multiple simultaneous constraints (e.g., flexible dipole

orientations, spatial smoothing, etc.) can be naturally handled and, if desired, the noise
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covariance Σε can be seamlessly estimated as well (see [27] for a special case of the

latter in the context of kernel regression). This addresses many of the concerns raised

in [62] pertaining to existing MAP methods. Additionally, as with ARD, source com-

ponents that are not sufficiently important in representing the observed data are pruned;

however, the undesirable discontinuities in standard FOCUSS or MCE source estimates

across time, which previously have required smoothing using heuristic measures [42],

do not occur when using (VII.14). This is because sparsity is only encouraged between

components due to the concavity of g(·), but not within components where the Frobe-

nius norm operator promotes smooth solutions (see [12] as well as the issues discussed

in Chapter VI).

Presumably, there are a variety of ways to optimize (VII.14). One particularly

straightforward and convenient method involves a simple merger of the ARD rules from

Section VII.B.1 with the FOCUSS EM-framework discussed in Section I.D.1. This

leads to the

γ
(k+1)
i =

1

nri

∥∥∥∥γ
(k)
i L̃

T
i

(
Σ

(k)
b

)−1

B̃

∥∥∥∥
2−p

F
, (VII.15)

where p ∈ [0, 1]. Upon convergence to some fixed point γ∗, which is guaranteed, the

source estimate is computed using (VII.4) as with ARD. When p = 1, we get generalized

MCE; p = 0 leads to generalized FOCUSS. Any p in between maintains a balance

between the two.
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VII.C General Properties of ARD Methods

ARD methods maintain several attributes that make them desirable candidates

for source localization. For example, unlike most MAP procedures, the ARD cost func-

tion is often invariant to lead-field column normalizations, which only affect the implicit

initialization that is used or potentially the selection of the Ci’s. In contrast, MCE pro-

duces a different globally minimizing solution for every normalization scheme. As such,

ARD is considerably more robust to the particular heuristic used for this task and can

readily handle deep current sources.

Previously, we have claimed that the ARD process naturally forces exces-

sive/irrelevant hyperparameters to converge to zero, thereby reducing model complexity.

While this observation has been verified empirically by ourselves and others in various

application settings, there has been relatively little corroborating theoretical evidence,

largely because of the difficulty in analyzing the potentially multimodal, non-convex

ARD cost function. As such, we provide the following result:

Theorem 10. Every local minimum of the generalized ARD cost function (VII.7) can be

achieved at a solution with at most rank(B)db ≤ d2
b nonzero hyperparameters. Conse-

quently, the use of all covariance components is often not necessary to locally minimize

the cost function.

The proof is based on results in Section II.C.2. Theorem 10 comprises a worst-case

bound that is only tight in very nuanced situations. In practice, for any reasonable

value of Σε, the number of nonzero hyperparameters is typically much smaller than
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db. The bound holds for all Σε, including Σε = 0, indicating that some measure of

hyperparameter pruning, and therefore covariance component pruning, is built into the

ARD framework irrespective of the noise-based regularization. Moreover, the number

of nonzero hyperparameters decreases monotonically to zero as Σε is increased. And so

there is always some Σε = Σ′
ε sufficiently large such that all hyperparameters converge

to exactly zero. Therefore, we can be reasonable confident that the pruning mechanism

of ARD is not merely an empirical phenomena. Nor is it dependent on a particular

sparse hyperprior, since the ARD cost from (VII.7) implicitly assumes a flat (uniform)

hyperprior.

The number of observation vectors n also plays an important role in shaping

ARD solutions. Increasing n has two primary benefits: (i) it facilitates convergence to

the global minimum (as opposed to getting stuck in a suboptimal extrema) and (ii), it

improves the quality of this minimum by mitigating the effects of noise (Section VI.E

discusses these issues in more detail). With perfectly correlated (spatially separated)

sources, primarily only the later benefit is in effect. For example, with low noise and

perfectly correlated sources, the estimation problem reduces to an equivalent problem

with n = 1, so the local minima profile of the cost function does not improve with

increasing n. Of course standard ARD can still be very effective in this scenario [76].

In contrast, geometric arguments can be made to show that uncorrelated sources with

large n offer the best opportunity for local minima avoidance. However, when strong

correlations are present as well as high noise levels, the method of [87] (which explicitly

attempts to model correlations) could offer a worthwhile alternative, albeit at a high
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computational cost.

Further theoretical support for ARD is possible in the context of localization

bias assuming simple source configurations. For example, substantial import has been

devoted to quantifying localization bias when estimating a single dipolar source. Re-

cently it has been shown, both empirically [71] and theoretically [90], that sLORETA

has zero location bias under this condition at high SNR. Viewed then as an iterative en-

hancement of sLORETA as described in Section VII.B.2, the question naturally arises

whether ARD methods retain this desirable property. In fact, it can be shown that this is

indeed the case in two general situations. We assume that the lead-field matrix L repre-

sents a sufficiently high sampling of the source space such that any active dipole aligns

with some lead-field column. Unbiasedness results can also be shown in the continuous

case for both sLORETA and ARD, but the discrete scenario is more straightforward and

of course more relevant to any practical task.

Theorem 11. Assume that Σs includes (among others) ds covariance components of

the form Ci = eieT
i . Then in the absence of noise (high SNR), ARD has provably zero

localization bias when estimating a single dipolar source, regardless of the value of n.

Theorem 12. Let Σs be constructed as above and assume the noise covariance matrix

Σε is known up to a scale factor. Then given a single dipolar source, in the limit as

n becomes large the ARD cost function is unimodal, and a source estimate with zero

localization bias achieves the global minimum. Additionally, for certain reasonable

lead-field matrices and covariance components, this global minimum is unique.
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We focus here on Theorem 12; the argument for Theorem 11 emerges as a

special case. It also easily follows from both Theorem 5 and Theorem 9, which are also

relevant to the analysis in this section and can possibly be generalized in this context.

To begin, we require an intermediate lemma which is proven in Appendix VII.F.2.

Lemma 13. If the outerproduct BBT can be expressed as some non-negative linear

combination of the available covariance components Σε, L̃1L̃
T
1 , . . . , L̃dγ

L̃
T
dγ

, then the

ARD cost function is unimodal and Σb = n−1BBT at any minimizing solution.

As n becomes large, the conditions of Theorem 12 stipulate that n−1BBT will converge

to β`a`Ta + Σε, where `a denotes the column of L associated with the active dipole and

β > 0 is some constant. Because we are assuming that Σε and `a`Ta are available covari-

ance components, then the above lemma implies that at any minimum Σb = β`a`
T
a +Σε.

The hyperparameter vector γ∗ characterized by all zeroes except for a value of β in the

element corresponding to `a`Ta achieves this result (there will also be a nonzero hyper-

parameter associated with the Σε component). When we then proceed to compute Ŝ

via (VII.4), all elements will be zero except for the row corresponding with the active

dipole, hence zero localization bias.

Additionally, for certain reasonable lead-field and covariance components, γ∗

will be the unique hyperparameter vector such that Σb = β`a`
T
a +Σε, essentially guaran-

teeing that ARD will produce an unbiased estimate provided a proper descent algorithm

is used. For example, if Σs =
∑

i eieT
i , Σε ∝ I , and ds < (db + 1) db/2 (i.e., the number

of degrees of freedom in a db × db covariance matrix), then γ∗ will be the unique mini-
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mizer.5 Also, given the very particular ill-conditioned structure of L, and therefore any

derived L̃i, it is very likely that much looser restrictions will lead to uniqueness as well.

This is because it is very difficult for any combination of lead-field columns to exactly

match the contributions of both Σε ∝ I and `a`Ta to the overall covariance.

While theoretical results of this kind are admittedly very limited, other itera-

tive Bayesian schemes in fact fail to exhibit similar performance. For example, all of

the MAP-based focal algorithms we are aware of, including FOCUSS and MCE meth-

ods, provably maintain a localization bias in the general setting, although in particular

cases they may not exhibit one. (Also, because of the additional complexity involved,

it is still unclear whether the correlated source method of [87] satisfies a similar re-

sult.) When we move to more complex source configurations (e.g., multiple dipoles),

theoretical results are not available; however, empirical tests provide a useful means of

comparison. For example, given a 275 × 40, 000 lead-field matrix constructed from an

MR scan and assuming fixed orientation constraints and a spherical head model, ARD

using Σs = diag(γ) and n = 1 consistently maintains zero empirical localization bias

when estimating up to 15-20 dipoles, while sLORETA starts to show a bias with only a

few.

MCE (or BP in the parlance of previous chapters) and FOCUSS have been

compared with ARD as well; however, in both cases they are able to resolve fewer than

half the dipoles that ARD is capable of [75]. With FOCUSS (and p small), this is be-

cause of a greater tendency to converge to local minima. With MCE, this is because

5This assumes a very minor technical condition on L to circumvent some very contrived situations.
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the global solution is often not sufficiently sparse. This latter result is not surprising

since the lead-field matrix L is well known to have many columns that are almost per-

fectly correlated, which can make it very difficult for MCE to be effective (e.g., see the

discussion in Appendix II.F.2). Additionally, the prevalence of deep sulci implies that

current sources with opposing dipole moments may exist that will exhibit relatively high

`1 norm. Consequently, the MCE solution may not resemble the true sparse distribution

of dipoles.

VII.D Discussion

The efficacy of modern empirical Bayesian techniques and variational approx-

imations make them attractive candidates for source localization. However, it is not al-

ways transparent how these methods relate nor which should be expected to perform best

in various situations. By developing a general framework around the notion of ARD,

deriving several theoretical properties, and showing connections between algorithms,

we hope to bring an insightful perspective to these techniques.
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VII.F Appendix

VII.F.1 Derivation of Alternative Update Rule

In this section, we reexpress the ARD-based cost function L(γ) in a more con-

venient form leading to the update rule (VII.11) and a proof that L
(
γ(k+1)

)
≤ L

(
γ(k)

)

at each iteration. In fact, a wide variety of alternative, convergent update rules can be

developed by decoupling L(γ) using auxiliary functions and an additional set of pa-

rameters that can be easily optimized, along with γ, using coordinate descent. While

applicable in the general covariance component setting discussed in this chapter, these

results also lead to useful algorithms for finding sparse representations in the context of

previous chapters.

To begin, the data fit term can be expressed as

trace
[
B̃T Σ−1

b B̃
]

= min
X

1

λ

∥∥∥∥∥B̃ −
dγ∑

i=1

L̃iXi

∥∥∥∥∥

2

F

+

dγ∑

i=1

γ−1
i ‖Xi‖2

F , (VII.16)

where X =
[
XT

1 , . . . , X
T
dγ

]T
. Likewise, because the log-determinant term of L(γ) is

concave in γ (see Lemma 3), it can be expressed as an minimum over upper-bounding

hyperplanes via

n log |Σb| = min
z
zTγ − g∗(z), (VII.17)

where g∗(z) is the concave conjugate of log |Σb|. For our purposes below, we will never
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actually have to compute g∗(z).

Dropping the minimizations and combining terms from (VII.16) and (VII.17)

leads to the modified cost function

L(γ, X, z) =
1

λ

∥∥∥∥∥B̃ −
dγ∑

i=1

L̃iXi

∥∥∥∥∥

2

F

+

dγ∑

i=1

γ−1
i ‖Xi‖2

F + zTγ − g∗(z)

=
1

λ

∥∥∥∥∥B̃ −
dγ∑

i=1

L̃iXi

∥∥∥∥∥

2

F

+

dγ∑

i=1

[
γ−1

i ‖Xi‖2
F + ziγi

]
− g∗(z), (VII.18)

where by construction

L(γ) = min
X

min
z

L(γ, X, z). (VII.19)

It is straightforward to show that if {γ∗, X∗, z∗} is a local minimum to L(γ, X, z),

then γ∗ is a local minimum to L(γ). Likewise, if {γ∗, X∗, z∗} is a global minimum of

L(γ, X, z), then γ∗ globally minimizes L(γ).

Since direct optimization of L(γ) may be difficult, we can instead iteratively

optimize L(γ, X, z) via coordinate descent over γ, X , and z. In each case, when two

are held fixed, the third can be globally minimized in closed form. (In the case of γ this

occurs because each γi can be optimized independently given fixed values for X and z.)

This ensures that each cycle will reduce L(γ, X, z), but more importantly, will reduce

L(γ) (or leave it unchanged if a fixed-point or limit cycle is reached). The associated

update rules from this process are as follows.
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With z and X fixed, the minimizing γ is obtained by solving

OγL(γ, X, z) = 0. (VII.20)

This leads to the update

γnew
i =

‖Xi‖F√
zi

. (VII.21)

The optimal X (with γ and z fixed) is just the standard weighted minimum-norm solu-

tion given by

X new
i = γiL̃

T
i Σ−1

b B̃ (VII.22)

for each i. Finally, the minimizing z equals the slope at the current γ of n log |Σb|. As

such, we have

znew
i = Oγi

n log |Σb| = ntrace
[
L̃

T
i Σ−1

b L̃i

]
. (VII.23)

By merging these three rules into a single γ update, we arrive at the exact ARD iteration

given by (VII.11). Moreover, by using a slightly different set of auxiliary functions,

other updates (e.g., the standard EM rule), can be easily derived. Also, this process can

be used to show that the fixed-point update (VII.10) is iteratively solving a particular

min-max problem in search of a saddle point. Unfortunately though, proving conver-

gence in this context is more difficult.
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VII.F.2 Proof of Section VII.C Lemma

To facilitate the analysis below, we define a db × rank(B) matrix B̃ such that

B̃B̃T = n−1BBT . Now suppose we are at some local minimum of L(γ) characterized

by the covariance Σ∗
b . In the neighborhood of Σ∗

b , the ARD cost function can be written

as

L(α, β) = log
∣∣∣αB̃B̃T + βΣ∗

b

∣∣∣+ trace

[
B̃B̃T

(
αB̃B̃T + βΣ∗

b

)−1
]
, (VII.24)

where at the presumed local minimum, α = 0 and β = 1. In contrast, by increasing α,

we allow a contribution from B̃B̃T to the overall covariance. That such a term exists

is possible by the assumption that n−1BBT , and therefore B̃B̃T , can be represented

via a nonnegative linear combination of available covariance components. Note that for

simplicity, we will henceforth assume that the sample covariance n−1BBT is full rank,

and therefore any Σ∗
b must be too. However, the general case can be handled as well

with a little extra effort.

If Σ∗
b is a true local minimum of the original cost L(γ), then it must also

locally minimize L(α, β), necessary conditions for which are

∂L(α, β)

∂α

∣∣∣∣
α=1,β=0

= 0
∂L(α, β)

∂β

∣∣∣∣
α=1,β=0

≥ 0, (VII.25)

where the gradient with respect to α need not actually equal zero since αmust be greater

than or equal to zero. After some manipulations, the first condition is equivalent to the
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requirement

trace
[
B̃B̃T (Σ∗

b)
−1
]

= db. (VII.26)

Likewise, the second condition is tantamount to the inequality

trace
[
B̃B̃T (Σ∗

b)
−1
]
− trace

[
B̃B̃T (Σ∗

b)
−1 B̃B̃T (Σ∗

b)
−1
]
≥ 0. (VII.27)

Using the eigendecomposition B̃T (Σ∗
b)

−1 B̃ = V ΛV T , this expression reduces to

db∑

i=1

λi ≥
db∑

i=1

λ2
i , (VII.28)

where the summation is over the db eigenvalues defined above. Also, because

trace
[
B̃B̃T (Σ∗

b)
−1
]

=

db∑

i=1

λi, (VII.29)

the lefthand side of (VII.28) equals db. The only way then to satisfy this inequality is if

λi = 1 for all i = 1, . . . , db. This is why we chose to reparameterize via B̃, thus forcing

the number of eigenvalues to equal their sum. Furthermore, this implies that

B̃T (Σ∗
b)

−1 B̃ = V V T = I. (VII.30)

Solving (VII.30) gives Σ∗
b = B̃B̃T = n−1BBT , completing the proof.



Chapter VIII

Practical Issues and Extensions

This chapter discusses performance issues related to determining the trade-off

parameter λ as well as convergence. It concludes by deriving a fast means of learning

the dictionary Φ under the assumption that it is orthonormal. When combined with a

pre-whitening step, this can be used to implement a robust, noisy version of independent

component analysis (ICA).

VIII.A Estimating the Trade-Off Parameter λ

If we already have access to some reliable estimate for λ, then it can naturally

be incorporated into any of the update rules described in this thesis. When no such lux-

ury exists, it would be desirable to have some alternative at our disposal. As one option,

λ estimation can be incorporated into the empirical Bayesian framework as originally

discussed in [56, 94]. This involves replacing the M-step with a joint maximization over

λ and the hyperparameters γ. Because of decoupling, the γ update remains unchanged,

211
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while we must include, e.g., for the fast version of the multiple response SBL algorithm

from Section VI.C, the λ update

λ(new) =
1
L
‖T − ΦM‖2

F

N −M +
∑M

i=1
Σii

γi

. (VIII.1)

This equation generalizes (or reduces) to other SBL-based algorithms.

A word of caution is in order with respect to λ estimation that has not been ad-

dressed in the original SBL literature (this caveat applies equally to the single response

case). For suitably structured dictionaries and M ≥ N , λ estimates obtained via this

procedure can be extremely inaccurate. In effect, there is an identifiability issue when

any subset of N dictionary columns is sufficiently spread out such that L(γ, λ) can be

minimized with λ = 0. For example, if we choose the dictionary Φ′ = [Φ I], then λ as

well as the N hyperparameters associated with the identity matrix columns of Φ′ are not

identifiable in the strict statistical sense. This occurs because a nonzero λ and the appro-

priate N nonzero hyperparameters make an identical contribution to the covariance Σt.

In general, the signal dictionary will not contain I; however, the underlying problem of

basis vectors masquerading as noise can lead to biased-low estimates of λ. As such, we

generally recommend the more modest strategy of simply experimenting with different

values or using some other heuristic designed with a given application in mind.
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VIII.B Implementational and Convergence Issues

Per-iteration complexity of various algorithms has been addressed in Sections

VI.C.4 and VII.B.1, but several important outstanding issues warrant further discus-

sion. First, while standard EM implementations exist for many of the Bayesian methods

discussed in this thesis, not all have been provably shown to satisfy the Global Conver-

gence Theorem (GCT) of Zangwill [104]. While all are proven descent functions in the

sense that every iteration is guaranteed to reduce (or leave unchanged) the associated

cost,1 there is no assurance that the fixed points that ensue will be locally minimizing

solutions (or even saddle points) of the underlying cost function.

There are exceptions. The FOCUSS algorithm using p < 1 has been explic-

itly proven to satisfy all the GCT conditions [78]. However, the p = 1 case has not

been addressed, although this can be handled using standard alternatives like linear pro-

gramming, so the issue is less relevant. Likewise, SBL has also not been analyzed in

this sense of global convergence. The difficulty in doing so arises because the SBL

cost function and associated EM update rules do not satisfy (at least they have not been

proven to satisfy thus far) certain important properties that have been used in the past

to guarantee EM convergence to local minima (or in rare cases, a saddle point). For

example, if the likelihood (or posterior for MAP estimation) is not differentiable, or if

the solution does not lie in the interior of the parameter space, the GCT conditions for

EM algorithms do not seem to be covered by existing proofs [6, 103]. While we have

not observed any problems in practice, this is an issue to consider.

1There exist other, stricter definitions of descent functions.
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The heuristically-derived fast version of SBL proposed by Tipping [94] (and

MacKay earlier) is a different story. Here it has not even been proven that each iteration

will always reduce or leave unchanged the SBL cost, although we have never observed

an exception in empirical studies. We can show that these updates are equivalent to al-

ternating a min-max procedure to find a saddle point of a particular auxiliary function,

but this perspective has not yet led to any performance guarantees. A more serious prob-

lem, perhaps, is that it does appear that fast SBL can sometimes converge to fixed points

that are not local minima (or even saddle points) of the SBL cost. Apparently, some hy-

perparameters are pushed to zero too fast during application of the update rules. Once

a hyperparameter hits zero, or close enough relative to machine precision or some other

thresholding criteria, it will remain fixed forever unless some heuristic is developed to

reintroduce non-zero values. But even this may not help if there exists undue pressure

to push hyperparameters to zero at inopportune times.

Interestingly, this problem seems to be most pronounced (in the cases we have

tested) in a noiseless setting when some nonzero elements of w0 are small and random

dictionaries are used. (The EM version of SBL works much better in this case.) How-

ever, on large MEG or EEG leadfield dictionaries (e.g., 275 rows ×120, 000 columns)

this issue does not seem to arise.

We have derived other fast versions of SBL using convex analysis that are

guaranteed to reduce the cost at every iteration unlike the fast Tipping algorithm (see

Section VII.B.1). But these methods, while appealing as descent methods, can still

sometimes converge to fixed points that do not minimize the SBL cost. Regardless, this
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is an area that warrants further study.

VIII.C Learning Orthogonal Transforms for Promoting Sparsity

Given a set of L data vectors, the goal is to find an orthonormal matrix Φ that

promotes sparse representations in the transform domain. Such a procedure is useful

in many applications such as sparse coding, image denoising, and compressed sensing,

where the orthonormality restriction is essential to avoid inflating noise or inconsequen-

tial components. In practice, it is customary to either use a fixed, wavelet-based trans-

form [15] or to run a general ICA algorithm to convergence followed by a heuristic

orthonormalization step [44]. In contrast, we derive a novel algorithm that, like ICA-

based methods, adaptively learns a sparsity-inducing transformation; however, with our

approach the orthonormality constraint is embedded in the actual cost function and en-

forced at each iteration. The resulting update rules are provably convergent and com-

putationally very efficient. This method compares well with wavelet and sparse code

shrinkage methods in an image denoising application. Additionally, if we first whiten

the data T , then this method reduces to a robust means of performing noisy ICA assum-

ing super-Gaussian sources.

The generative model for this problem is

T = ΦW + E , (VIII.2)

where Φ ∈ R
N×N satisfies ΦT Φ = I but is otherwise unknown, W ∈ R

N×L is the
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unknown sources which are assumed to be sparse in some sense (e.g., super-Gaussian),

T is the observed mixtures, and E is unknown corrupting noise.

The actual optimization problem we propose to solve is

min
X,Φ

N∑

i=1

L∑

j=1

f (xij;λ) s.t. ΦT Φ = I, X = ΦTT, (VIII.3)

where

f(z;λ) =





z2/λ+ log λ, z2 ∈ [0, λ]

2 log |z| + 1, z2 ∈ [λ,∞).

(VIII.4)

A plot of f(z) is provided in Figure VIII.1.
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Figure VIII.1: Plot of f(z;λ = 16). The inflection point occurs at z =
√
λ = 4.

This function encourages many of the elements of X to go below
√
λ, where f(·) is

reduced quadratically. However, the constraint ΦT Φ = I will necessarily force some

elements above
√
λ, but this only incurs a logarithmic penalty. The net result is many
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small values below
√
λ and a few large values above it as desired.

To form an estimate of W , for denoising or coding purposes, etc., a threshold-

ing operator can be applied to X . For example, from Section VI.E.3 we know that the

optimal SBL threshold in this case would be

ŵij = xij

(
1 − λ

x2
ij

)+

, (VIII.5)

which equals the non-negative garrote estimator [7]. This operator has been endorsed

for wavelet denoising [26, 30].

The update rules for minimizing (VIII.3), which can be obtained using the EM

algorithm in an empirical Bayesian framework, are surprisingly simple. First, a suitable

initialization is chosen for the dictionary, Φ̂ := Φ′ which gives X̂ = Φ̂TT . Then Ŵ is

computed using (VIII.5). For the dictionary update, we have

Φ̂ = UV T , (VIII.6)

where USV T is the SVD of TŴ T . This value of Φ̂ solves the constrained optimization

problem2

min
Φ̂

‖T − Φ̂Ŵ‖F s.t. Φ̂T Φ̂ = I. (VIII.7)

This process is iterated until convergence. Note that these update rules are guaranteed

to reduce (VIII.3) at each step.

2See [32] for the proof.
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Preliminary results using this method on image data are quite promising. More-

over, the algorithm is quite fast, with each iteration (which uses all of the data unlike

some ICA methods) incurring only a O(N 2L) complexity cost, which is linear in the

number of samples.
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Chapter IX

Conclusion

Applications of sparsity continue to grow in signal and image processing,

functional brain imaging, neural modelling, and machine learning. While a diverse

set of Bayesian tools exist for finding sparse representations from overcomplete feature

dictionaries, the most common and well-understood methods involve simple MAP esti-

mation using a fixed, sparsity-inducing prior (e.g., OMP, BP, and FOCUSS). In contrast,

the relatively under-utilized empirical Bayesian approaches, which adopt a flexible, pa-

rameterized prior to encourage sparsity, show tremendous promise but lag behind in

terms of solid theoretical justification and rigorous analysis in the context of sparse es-

timation problems. Nor have all the connections between various families of Bayesian

algorithms been adequately fleshed out.

We have addressed these issues on a variety of fronts, particularly with re-

spect to sparse Bayesian learning (SBL), an empirical Bayesian framework built upon

the notion of automatic relevance determination (ARD). First, we have proven several

219
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results about the associated SBL cost function that elucidate its general behavior and

provide solid theoretical justification for using it to find maximally sparse represen-

tations. Specifically, we show that the global SBL minimum is always achieved at

the maximally sparse solution, unlike the BP cost function, while often possessing a

more limited constellation of local minima than comparable MAP methods which share

this property. We also derive conditions, dependent on the distribution of the nonzero

model weights embedded in the optimal representation, such that SBL has no local

minima. Finally, we demonstrate how a generalized form of SBL, out of a large class

of latent-variable Bayesian models (which includes both MAP and empirical Bayesian

algorithms), uniquely satisfies two minimal performance criteria directly linked to spar-

sity. These results lead to a deeper understanding of the connections between various

Bayesian-inspired strategies and suggest new sparse learning algorithms.

We have also extended these methodologies to handle more general problems

relevant to compressed sensing, source localization and the analysis of neural data. In

this context, modifications of SBL were considered for handling sparse representations

that arise in spatio-temporal settings and in the context of covariance component es-

timation. Here we assume that a small set of common features underly the observed

data collected over multiple instances. The theoretical properties of these SBL-based

cost functions were examined and evaluated in the context of existing methods. The

resulting algorithms display excellent performance on extremely large, ill-posed, and

ill-conditioned problems in neuroimaging, suggesting a strong potential for impacting

this field and others.
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